milvus/core/src/db/engine/ExecutionEngineImpl.cpp
yukun ff9697b184
Change input format for attributes (#1990)
* Change input of attributes

Signed-off-by: fishpenguin <kun.yu@zilliz.com>

* Fix unittest for new attrs format

Signed-off-by: fishpenguin <kun.yu@zilliz.com>

* Fix float type for new format

Signed-off-by: fishpenguin <kun.yu@zilliz.com>

* Use new HEntity

Signed-off-by: fishpenguin <kun.yu@zilliz.com>

* Add sdk_hybrid

Signed-off-by: fishpenguin <kun.yu@zilliz.com>

* Add metric_type assign in CreateHybridCollection

Signed-off-by: fishpenguin <kun.yu@zilliz.com>

* Fix for clang-format

Signed-off-by: fishpenguin <kun.yu@zilliz.com>

* Read engine_type from extra_params

Signed-off-by: fishpenguin <kun.yu@zilliz.com>

* Remove todo annotation

Signed-off-by: fishpenguin <kun.yu@zilliz.com>

* Remove some comments

Signed-off-by: fishpenguin <kun.yu@zilliz.com>

* Add DescribeHybridCollection request

Signed-off-by: fishpenguin <kun.yu@zilliz.com>

* Remove unused code

Signed-off-by: fishpenguin <kun.yu@zilliz.com>
2020-04-22 06:12:46 +00:00

1364 lines
52 KiB
C++

// Copyright (C) 2019-2020 Zilliz. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under the License.
#include "db/engine/ExecutionEngineImpl.h"
#include <faiss/utils/ConcurrentBitset.h>
#include <fiu-local.h>
#include <stdexcept>
#include <unordered_map>
#include <utility>
#include <vector>
#include "cache/CpuCacheMgr.h"
#include "cache/GpuCacheMgr.h"
#include "config/Config.h"
#include "db/Utils.h"
#include "knowhere/common/Config.h"
#include "knowhere/index/vector_index/ConfAdapter.h"
#include "knowhere/index/vector_index/ConfAdapterMgr.h"
#include "knowhere/index/vector_index/IndexBinaryIDMAP.h"
#include "knowhere/index/vector_index/IndexIDMAP.h"
#include "knowhere/index/vector_index/VecIndex.h"
#include "knowhere/index/vector_index/VecIndexFactory.h"
#include "knowhere/index/vector_index/adapter/VectorAdapter.h"
#ifdef MILVUS_GPU_VERSION
#include "knowhere/index/vector_index/gpu/GPUIndex.h"
#include "knowhere/index/vector_index/gpu/IndexIVFSQHybrid.h"
#include "knowhere/index/vector_index/gpu/Quantizer.h"
#include "knowhere/index/vector_index/helpers/Cloner.h"
#endif
#include "knowhere/index/vector_index/helpers/IndexParameter.h"
#include "metrics/Metrics.h"
#include "scheduler/Utils.h"
#include "segment/SegmentReader.h"
#include "segment/SegmentWriter.h"
#include "utils/CommonUtil.h"
#include "utils/Error.h"
#include "utils/Exception.h"
#include "utils/Log.h"
#include "utils/Status.h"
#include "utils/TimeRecorder.h"
#include "utils/ValidationUtil.h"
namespace milvus {
namespace engine {
namespace {
Status
MappingMetricType(MetricType metric_type, milvus::json& conf) {
switch (metric_type) {
case MetricType::IP:
conf[knowhere::Metric::TYPE] = knowhere::Metric::IP;
break;
case MetricType::L2:
conf[knowhere::Metric::TYPE] = knowhere::Metric::L2;
break;
case MetricType::HAMMING:
conf[knowhere::Metric::TYPE] = knowhere::Metric::HAMMING;
break;
case MetricType::JACCARD:
conf[knowhere::Metric::TYPE] = knowhere::Metric::JACCARD;
break;
case MetricType::TANIMOTO:
conf[knowhere::Metric::TYPE] = knowhere::Metric::TANIMOTO;
break;
case MetricType::SUBSTRUCTURE:
conf[knowhere::Metric::TYPE] = knowhere::Metric::SUBSTRUCTURE;
break;
case MetricType::SUPERSTRUCTURE:
conf[knowhere::Metric::TYPE] = knowhere::Metric::SUPERSTRUCTURE;
break;
default:
return Status(DB_ERROR, "Unsupported metric type");
}
return Status::OK();
}
bool
IsBinaryIndexType(knowhere::IndexType type) {
return type == knowhere::IndexEnum::INDEX_FAISS_BIN_IDMAP || type == knowhere::IndexEnum::INDEX_FAISS_BIN_IVFFLAT;
}
} // namespace
#ifdef MILVUS_GPU_VERSION
class CachedQuantizer : public cache::DataObj {
public:
explicit CachedQuantizer(knowhere::QuantizerPtr data) : data_(std::move(data)) {
}
knowhere::QuantizerPtr
Data() {
return data_;
}
int64_t
Size() override {
return data_->size;
}
private:
knowhere::QuantizerPtr data_;
};
#endif
ExecutionEngineImpl::ExecutionEngineImpl(uint16_t dimension, const std::string& location, EngineType index_type,
MetricType metric_type, const milvus::json& index_params)
: location_(location),
dim_(dimension),
index_type_(index_type),
metric_type_(metric_type),
index_params_(index_params) {
EngineType tmp_index_type =
utils::IsBinaryMetricType((int32_t)metric_type) ? EngineType::FAISS_BIN_IDMAP : EngineType::FAISS_IDMAP;
index_ = CreatetVecIndex(tmp_index_type);
if (!index_) {
throw Exception(DB_ERROR, "Unsupported index type");
}
milvus::json conf = index_params;
conf[knowhere::meta::DEVICEID] = gpu_num_;
conf[knowhere::meta::DIM] = dimension;
MappingMetricType(metric_type, conf);
LOG_ENGINE_DEBUG_ << "Index params: " << conf.dump();
auto adapter = knowhere::AdapterMgr::GetInstance().GetAdapter(index_->index_type());
if (!adapter->CheckTrain(conf, index_->index_mode())) {
throw Exception(DB_ERROR, "Illegal index params");
}
fiu_do_on("ExecutionEngineImpl.throw_exception", throw Exception(DB_ERROR, ""));
if (auto bf_index = std::dynamic_pointer_cast<knowhere::IDMAP>(index_)) {
bf_index->Train(knowhere::DatasetPtr(), conf);
} else if (auto bf_bin_index = std::dynamic_pointer_cast<knowhere::BinaryIDMAP>(index_)) {
bf_bin_index->Train(knowhere::DatasetPtr(), conf);
}
}
ExecutionEngineImpl::ExecutionEngineImpl(knowhere::VecIndexPtr index, const std::string& location,
EngineType index_type, MetricType metric_type,
const milvus::json& index_params)
: index_(std::move(index)),
location_(location),
index_type_(index_type),
metric_type_(metric_type),
index_params_(index_params) {
}
knowhere::VecIndexPtr
ExecutionEngineImpl::CreatetVecIndex(EngineType type) {
knowhere::VecIndexFactory& vec_index_factory = knowhere::VecIndexFactory::GetInstance();
knowhere::IndexMode mode = knowhere::IndexMode::MODE_CPU;
#ifdef MILVUS_GPU_VERSION
server::Config& config = server::Config::GetInstance();
bool gpu_resource_enable = true;
config.GetGpuResourceConfigEnable(gpu_resource_enable);
fiu_do_on("ExecutionEngineImpl.CreatetVecIndex.gpu_res_disabled", gpu_resource_enable = false);
if (gpu_resource_enable) {
mode = knowhere::IndexMode::MODE_GPU;
}
#endif
fiu_do_on("ExecutionEngineImpl.CreateVecIndex.invalid_type", type = EngineType::INVALID);
knowhere::VecIndexPtr index = nullptr;
switch (type) {
case EngineType::FAISS_IDMAP: {
index = vec_index_factory.CreateVecIndex(knowhere::IndexEnum::INDEX_FAISS_IDMAP, mode);
break;
}
case EngineType::FAISS_IVFFLAT: {
index = vec_index_factory.CreateVecIndex(knowhere::IndexEnum::INDEX_FAISS_IVFFLAT, mode);
break;
}
case EngineType::FAISS_PQ: {
index = vec_index_factory.CreateVecIndex(knowhere::IndexEnum::INDEX_FAISS_IVFPQ, mode);
break;
}
case EngineType::FAISS_IVFSQ8: {
index = vec_index_factory.CreateVecIndex(knowhere::IndexEnum::INDEX_FAISS_IVFSQ8, mode);
break;
}
#ifdef MILVUS_GPU_VERSION
case EngineType::FAISS_IVFSQ8H: {
index = vec_index_factory.CreateVecIndex(knowhere::IndexEnum::INDEX_FAISS_IVFSQ8H, mode);
break;
}
#endif
case EngineType::FAISS_BIN_IDMAP: {
index = vec_index_factory.CreateVecIndex(knowhere::IndexEnum::INDEX_FAISS_BIN_IDMAP, mode);
break;
}
case EngineType::FAISS_BIN_IVFFLAT: {
index = vec_index_factory.CreateVecIndex(knowhere::IndexEnum::INDEX_FAISS_BIN_IVFFLAT, mode);
break;
}
case EngineType::NSG_MIX: {
index = vec_index_factory.CreateVecIndex(knowhere::IndexEnum::INDEX_NSG, mode);
break;
}
case EngineType::SPTAG_KDT: {
index = vec_index_factory.CreateVecIndex(knowhere::IndexEnum::INDEX_SPTAG_KDT_RNT, mode);
break;
}
case EngineType::SPTAG_BKT: {
index = vec_index_factory.CreateVecIndex(knowhere::IndexEnum::INDEX_SPTAG_BKT_RNT, mode);
break;
}
case EngineType::HNSW: {
index = vec_index_factory.CreateVecIndex(knowhere::IndexEnum::INDEX_HNSW, mode);
break;
}
case EngineType::ANNOY: {
index = vec_index_factory.CreateVecIndex(knowhere::IndexEnum::INDEX_ANNOY, mode);
break;
}
default: {
LOG_ENGINE_ERROR_ << "Unsupported index type " << (int)type;
return nullptr;
}
}
if (index == nullptr) {
std::string err_msg = "Invalid index type " + std::to_string((int)type) + " mod " + std::to_string((int)mode);
LOG_ENGINE_ERROR_ << err_msg;
throw Exception(DB_ERROR, err_msg);
}
return index;
}
void
ExecutionEngineImpl::HybridLoad() const {
#ifdef MILVUS_GPU_VERSION
auto hybrid_index = std::dynamic_pointer_cast<knowhere::IVFSQHybrid>(index_);
if (hybrid_index == nullptr) {
LOG_ENGINE_WARNING_ << "HybridLoad only support with IVFSQHybrid";
return;
}
const std::string key = location_ + ".quantizer";
server::Config& config = server::Config::GetInstance();
std::vector<int64_t> gpus;
Status s = config.GetGpuResourceConfigSearchResources(gpus);
if (!s.ok()) {
LOG_ENGINE_ERROR_ << s.message();
return;
}
// cache hit
{
const int64_t NOT_FOUND = -1;
int64_t device_id = NOT_FOUND;
knowhere::QuantizerPtr quantizer = nullptr;
for (auto& gpu : gpus) {
auto cache = cache::GpuCacheMgr::GetInstance(gpu);
if (auto cached_quantizer = cache->GetIndex(key)) {
device_id = gpu;
quantizer = std::static_pointer_cast<CachedQuantizer>(cached_quantizer)->Data();
}
}
if (device_id != NOT_FOUND) {
hybrid_index->SetQuantizer(quantizer);
return;
}
}
// cache miss
{
std::vector<int64_t> all_free_mem;
for (auto& gpu : gpus) {
auto cache = cache::GpuCacheMgr::GetInstance(gpu);
auto free_mem = cache->CacheCapacity() - cache->CacheUsage();
all_free_mem.push_back(free_mem);
}
auto max_e = std::max_element(all_free_mem.begin(), all_free_mem.end());
auto best_index = std::distance(all_free_mem.begin(), max_e);
auto best_device_id = gpus[best_index];
milvus::json quantizer_conf{{knowhere::meta::DEVICEID, best_device_id}, {"mode", 1}};
auto quantizer = hybrid_index->LoadQuantizer(quantizer_conf);
LOG_ENGINE_DEBUG_ << "Quantizer params: " << quantizer_conf.dump();
if (quantizer == nullptr) {
LOG_ENGINE_ERROR_ << "quantizer is nullptr";
}
hybrid_index->SetQuantizer(quantizer);
auto cache_quantizer = std::make_shared<CachedQuantizer>(quantizer);
cache::GpuCacheMgr::GetInstance(best_device_id)->InsertItem(key, cache_quantizer);
}
#endif
}
void
ExecutionEngineImpl::HybridUnset() const {
#ifdef MILVUS_GPU_VERSION
auto hybrid_index = std::dynamic_pointer_cast<knowhere::IVFSQHybrid>(index_);
if (hybrid_index == nullptr) {
return;
}
hybrid_index->UnsetQuantizer();
#endif
}
Status
ExecutionEngineImpl::AddWithIds(int64_t n, const float* xdata, const int64_t* xids) {
auto dataset = knowhere::GenDatasetWithIds(n, index_->Dim(), xdata, xids);
index_->Add(dataset, knowhere::Config());
return Status::OK();
}
Status
ExecutionEngineImpl::AddWithIds(int64_t n, const uint8_t* xdata, const int64_t* xids) {
auto dataset = knowhere::GenDatasetWithIds(n, index_->Dim(), xdata, xids);
index_->Add(dataset, knowhere::Config());
return Status::OK();
}
size_t
ExecutionEngineImpl::Count() const {
if (index_ == nullptr) {
LOG_ENGINE_ERROR_ << "ExecutionEngineImpl: index is null, return count 0";
return 0;
}
return index_->Count();
}
size_t
ExecutionEngineImpl::Dimension() const {
if (index_ == nullptr) {
LOG_ENGINE_ERROR_ << "ExecutionEngineImpl: index is null, return dimension " << dim_;
return dim_;
}
return index_->Dim();
}
size_t
ExecutionEngineImpl::Size() const {
if (index_ == nullptr) {
LOG_ENGINE_ERROR_ << "ExecutionEngineImpl: index is null, return size 0";
return 0;
}
return index_->Size();
}
Status
ExecutionEngineImpl::Serialize() {
std::string segment_dir;
utils::GetParentPath(location_, segment_dir);
auto segment_writer_ptr = std::make_shared<segment::SegmentWriter>(segment_dir);
segment_writer_ptr->SetVectorIndex(index_);
segment_writer_ptr->WriteVectorIndex(location_);
// here we reset index size by file size,
// since some index type(such as SQ8) data size become smaller after serialized
index_->SetIndexSize(server::CommonUtil::GetFileSize(location_));
LOG_ENGINE_DEBUG_ << "Finish serialize index file: " << location_ << " size: " << index_->Size();
if (index_->Size() == 0) {
std::string msg = "Failed to serialize file: " + location_ + " reason: out of disk space or memory";
return Status(DB_ERROR, msg);
}
return Status::OK();
}
Status
ExecutionEngineImpl::Load(bool to_cache) {
index_ = std::static_pointer_cast<knowhere::VecIndex>(cache::CpuCacheMgr::GetInstance()->GetIndex(location_));
bool already_in_cache = (index_ != nullptr);
if (!already_in_cache) {
std::string segment_dir;
utils::GetParentPath(location_, segment_dir);
auto segment_reader_ptr = std::make_shared<segment::SegmentReader>(segment_dir);
knowhere::VecIndexFactory& vec_index_factory = knowhere::VecIndexFactory::GetInstance();
if (utils::IsRawIndexType((int32_t)index_type_)) {
if (index_type_ == EngineType::FAISS_IDMAP) {
index_ = vec_index_factory.CreateVecIndex(knowhere::IndexEnum::INDEX_FAISS_IDMAP);
} else {
index_ = vec_index_factory.CreateVecIndex(knowhere::IndexEnum::INDEX_FAISS_BIN_IDMAP);
}
milvus::json conf{{knowhere::meta::DEVICEID, gpu_num_}, {knowhere::meta::DIM, dim_}};
MappingMetricType(metric_type_, conf);
auto adapter = knowhere::AdapterMgr::GetInstance().GetAdapter(index_->index_type());
LOG_ENGINE_DEBUG_ << "Index params: " << conf.dump();
if (!adapter->CheckTrain(conf, index_->index_mode())) {
throw Exception(DB_ERROR, "Illegal index params");
}
auto status = segment_reader_ptr->Load();
if (!status.ok()) {
std::string msg = "Failed to load segment from " + location_;
LOG_ENGINE_ERROR_ << msg;
return Status(DB_ERROR, msg);
}
segment::SegmentPtr segment_ptr;
segment_reader_ptr->GetSegment(segment_ptr);
auto& vectors = segment_ptr->vectors_ptr_;
auto& deleted_docs = segment_ptr->deleted_docs_ptr_->GetDeletedDocs();
auto& vectors_uids = vectors->GetMutableUids();
auto count = vectors_uids.size();
index_->SetUids(vectors_uids);
LOG_ENGINE_DEBUG_ << "set uids " << index_->GetUids().size() << " for index " << location_;
auto& vectors_data = vectors->GetData();
auto attrs = segment_ptr->attrs_ptr_;
auto attrs_it = attrs->attrs.begin();
for (; attrs_it != attrs->attrs.end(); ++attrs_it) {
attr_data_.insert(std::pair(attrs_it->first, attrs_it->second->GetData()));
attr_size_.insert(std::pair(attrs_it->first, attrs_it->second->GetNbytes()));
}
vector_count_ = count;
faiss::ConcurrentBitsetPtr concurrent_bitset_ptr = std::make_shared<faiss::ConcurrentBitset>(count);
for (auto& offset : deleted_docs) {
concurrent_bitset_ptr->set(offset);
}
auto dataset = knowhere::GenDataset(count, this->dim_, vectors_data.data());
if (index_type_ == EngineType::FAISS_IDMAP) {
auto bf_index = std::static_pointer_cast<knowhere::IDMAP>(index_);
bf_index->Train(knowhere::DatasetPtr(), conf);
bf_index->AddWithoutIds(dataset, conf);
bf_index->SetBlacklist(concurrent_bitset_ptr);
} else if (index_type_ == EngineType::FAISS_BIN_IDMAP) {
auto bin_bf_index = std::static_pointer_cast<knowhere::BinaryIDMAP>(index_);
bin_bf_index->Train(knowhere::DatasetPtr(), conf);
bin_bf_index->AddWithoutIds(dataset, conf);
bin_bf_index->SetBlacklist(concurrent_bitset_ptr);
}
LOG_ENGINE_DEBUG_ << "Finished loading raw data from segment " << segment_dir;
} else {
try {
segment::SegmentPtr segment_ptr;
segment_reader_ptr->GetSegment(segment_ptr);
auto status = segment_reader_ptr->LoadVectorIndex(location_, segment_ptr->vector_index_ptr_);
index_ = segment_ptr->vector_index_ptr_->GetVectorIndex();
if (index_ == nullptr) {
std::string msg = "Failed to load index from " + location_;
LOG_ENGINE_ERROR_ << msg;
return Status(DB_ERROR, msg);
} else {
segment::DeletedDocsPtr deleted_docs_ptr;
auto status = segment_reader_ptr->LoadDeletedDocs(deleted_docs_ptr);
if (!status.ok()) {
std::string msg = "Failed to load deleted docs from " + location_;
LOG_ENGINE_ERROR_ << msg;
return Status(DB_ERROR, msg);
}
auto& deleted_docs = deleted_docs_ptr->GetDeletedDocs();
faiss::ConcurrentBitsetPtr concurrent_bitset_ptr =
std::make_shared<faiss::ConcurrentBitset>(index_->Count());
for (auto& offset : deleted_docs) {
if (!concurrent_bitset_ptr->test(offset)) {
concurrent_bitset_ptr->set(offset);
}
}
index_->SetBlacklist(concurrent_bitset_ptr);
std::vector<segment::doc_id_t> uids;
segment_reader_ptr->LoadUids(uids);
index_->SetUids(uids);
LOG_ENGINE_DEBUG_ << "set uids " << index_->GetUids().size() << " for index " << location_;
LOG_ENGINE_DEBUG_ << "Finished loading index file from segment " << segment_dir;
}
} catch (std::exception& e) {
LOG_ENGINE_ERROR_ << e.what();
return Status(DB_ERROR, e.what());
}
}
}
if (!already_in_cache && to_cache) {
Cache();
}
return Status::OK();
} // namespace engine
Status
ExecutionEngineImpl::CopyToGpu(uint64_t device_id, bool hybrid) {
#if 0
if (hybrid) {
const std::string key = location_ + ".quantizer";
std::vector<uint64_t> gpus{device_id};
const int64_t NOT_FOUND = -1;
int64_t device_id = NOT_FOUND;
// cache hit
{
knowhere::QuantizerPtr quantizer = nullptr;
for (auto& gpu : gpus) {
auto cache = cache::GpuCacheMgr::GetInstance(gpu);
if (auto cached_quantizer = cache->GetIndex(key)) {
device_id = gpu;
quantizer = std::static_pointer_cast<CachedQuantizer>(cached_quantizer)->Data();
}
}
if (device_id != NOT_FOUND) {
// cache hit
milvus::json quantizer_conf{{knowhere::meta::DEVICEID : device_id}, {"mode" : 2}};
auto new_index = index_->LoadData(quantizer, config);
index_ = new_index;
}
}
if (device_id == NOT_FOUND) {
// cache miss
std::vector<int64_t> all_free_mem;
for (auto& gpu : gpus) {
auto cache = cache::GpuCacheMgr::GetInstance(gpu);
auto free_mem = cache->CacheCapacity() - cache->CacheUsage();
all_free_mem.push_back(free_mem);
}
auto max_e = std::max_element(all_free_mem.begin(), all_free_mem.end());
auto best_index = std::distance(all_free_mem.begin(), max_e);
device_id = gpus[best_index];
auto pair = index_->CopyToGpuWithQuantizer(device_id);
index_ = pair.first;
// cache
auto cached_quantizer = std::make_shared<CachedQuantizer>(pair.second);
cache::GpuCacheMgr::GetInstance(device_id)->InsertItem(key, cached_quantizer);
}
return Status::OK();
}
#endif
#ifdef MILVUS_GPU_VERSION
auto data_obj_ptr = cache::GpuCacheMgr::GetInstance(device_id)->GetIndex(location_);
auto index = std::static_pointer_cast<knowhere::VecIndex>(data_obj_ptr);
bool already_in_cache = (index != nullptr);
if (already_in_cache) {
index_ = index;
} else {
if (index_ == nullptr) {
LOG_ENGINE_ERROR_ << "ExecutionEngineImpl: index is null, failed to copy to gpu";
return Status(DB_ERROR, "index is null");
}
try {
/* Index data is copied to GPU first, then added into GPU cache.
* Add lock here to avoid multiple INDEX are copied to one GPU card at same time.
* And reserve space to avoid GPU out of memory issue.
*/
LOG_ENGINE_DEBUG_ << "CPU to GPU" << device_id << " start";
auto gpu_cache_mgr = cache::GpuCacheMgr::GetInstance(device_id);
// gpu_cache_mgr->Reserve(index_->Size());
index_ = knowhere::cloner::CopyCpuToGpu(index_, device_id, knowhere::Config());
// gpu_cache_mgr->InsertItem(location_, std::static_pointer_cast<cache::DataObj>(index_));
LOG_ENGINE_DEBUG_ << "CPU to GPU" << device_id << " finished";
} catch (std::exception& e) {
LOG_ENGINE_ERROR_ << e.what();
return Status(DB_ERROR, e.what());
}
}
#endif
return Status::OK();
}
Status
ExecutionEngineImpl::CopyToIndexFileToGpu(uint64_t device_id) {
#ifdef MILVUS_GPU_VERSION
// the ToIndexData is only a placeholder, cpu-copy-to-gpu action is performed in
if (index_) {
auto gpu_cache_mgr = milvus::cache::GpuCacheMgr::GetInstance(device_id);
gpu_num_ = device_id;
gpu_cache_mgr->Reserve(index_->Size());
}
#endif
return Status::OK();
}
Status
ExecutionEngineImpl::CopyToCpu() {
#ifdef MILVUS_GPU_VERSION
auto index = std::static_pointer_cast<knowhere::VecIndex>(cache::CpuCacheMgr::GetInstance()->GetIndex(location_));
bool already_in_cache = (index != nullptr);
if (already_in_cache) {
index_ = index;
} else {
if (index_ == nullptr) {
LOG_ENGINE_ERROR_ << "ExecutionEngineImpl: index is null, failed to copy to cpu";
return Status(DB_ERROR, "index is null");
}
try {
index_ = knowhere::cloner::CopyGpuToCpu(index_, knowhere::Config());
LOG_ENGINE_DEBUG_ << "GPU to CPU";
} catch (std::exception& e) {
LOG_ENGINE_ERROR_ << e.what();
return Status(DB_ERROR, e.what());
}
}
if (!already_in_cache) {
Cache();
}
return Status::OK();
#else
LOG_ENGINE_ERROR_ << "Calling ExecutionEngineImpl::CopyToCpu when using CPU version";
return Status(DB_ERROR, "Calling ExecutionEngineImpl::CopyToCpu when using CPU version");
#endif
}
ExecutionEnginePtr
ExecutionEngineImpl::BuildIndex(const std::string& location, EngineType engine_type) {
LOG_ENGINE_DEBUG_ << "Build index file: " << location << " from: " << location_;
auto from_index = std::dynamic_pointer_cast<knowhere::IDMAP>(index_);
auto bin_from_index = std::dynamic_pointer_cast<knowhere::BinaryIDMAP>(index_);
if (from_index == nullptr && bin_from_index == nullptr) {
LOG_ENGINE_ERROR_ << "ExecutionEngineImpl: from_index is null, failed to build index";
return nullptr;
}
auto to_index = CreatetVecIndex(engine_type);
if (!to_index) {
throw Exception(DB_ERROR, "Unsupported index type");
}
milvus::json conf = index_params_;
conf[knowhere::meta::DIM] = Dimension();
conf[knowhere::meta::ROWS] = Count();
conf[knowhere::meta::DEVICEID] = gpu_num_;
MappingMetricType(metric_type_, conf);
LOG_ENGINE_DEBUG_ << "Index params: " << conf.dump();
auto adapter = knowhere::AdapterMgr::GetInstance().GetAdapter(to_index->index_type());
if (!adapter->CheckTrain(conf, to_index->index_mode())) {
throw Exception(DB_ERROR, "Illegal index params");
}
LOG_ENGINE_DEBUG_ << "Index config: " << conf.dump();
std::vector<segment::doc_id_t> uids;
faiss::ConcurrentBitsetPtr blacklist;
if (from_index) {
auto dataset =
knowhere::GenDatasetWithIds(Count(), Dimension(), from_index->GetRawVectors(), from_index->GetRawIds());
to_index->BuildAll(dataset, conf);
uids = from_index->GetUids();
blacklist = from_index->GetBlacklist();
} else if (bin_from_index) {
auto dataset = knowhere::GenDatasetWithIds(Count(), Dimension(), bin_from_index->GetRawVectors(),
bin_from_index->GetRawIds());
to_index->BuildAll(dataset, conf);
uids = bin_from_index->GetUids();
blacklist = bin_from_index->GetBlacklist();
}
#ifdef MILVUS_GPU_VERSION
/* for GPU index, need copy back to CPU */
if (to_index->index_mode() == knowhere::IndexMode::MODE_GPU) {
auto device_index = std::dynamic_pointer_cast<knowhere::GPUIndex>(to_index);
to_index = device_index->CopyGpuToCpu(conf);
}
#endif
to_index->SetUids(uids);
LOG_ENGINE_DEBUG_ << "Set " << to_index->GetUids().size() << "uids for " << location;
if (blacklist != nullptr) {
to_index->SetBlacklist(blacklist);
LOG_ENGINE_DEBUG_ << "Set blacklist for index " << location;
}
LOG_ENGINE_DEBUG_ << "Finish build index: " << location;
return std::make_shared<ExecutionEngineImpl>(to_index, location, engine_type, metric_type_, index_params_);
}
void
MapAndCopyResult(const knowhere::DatasetPtr& dataset, const std::vector<milvus::segment::doc_id_t>& uids, int64_t nq,
int64_t k, float* distances, int64_t* labels) {
int64_t* res_ids = dataset->Get<int64_t*>(knowhere::meta::IDS);
float* res_dist = dataset->Get<float*>(knowhere::meta::DISTANCE);
memcpy(distances, res_dist, sizeof(float) * nq * k);
/* map offsets to ids */
int64_t num = nq * k;
for (int64_t i = 0; i < num; ++i) {
int64_t offset = res_ids[i];
if (offset != -1) {
labels[i] = uids[offset];
} else {
labels[i] = -1;
}
}
free(res_ids);
free(res_dist);
}
template <typename T>
void
ProcessRangeQuery(std::vector<T> data, T value, query::CompareOperator type, uint64_t j,
faiss::ConcurrentBitsetPtr& bitset) {
switch (type) {
case query::CompareOperator::LT: {
for (uint64_t i = 0; i < data.size(); ++i) {
if (data[i] >= value) {
if (!bitset->test(i)) {
bitset->set(i);
}
}
}
break;
}
case query::CompareOperator::LTE: {
for (uint64_t i = 0; i < data.size(); ++i) {
if (data[i] > value) {
if (!bitset->test(i)) {
bitset->set(i);
}
}
}
break;
}
case query::CompareOperator::GT: {
for (uint64_t i = 0; i < data.size(); ++i) {
if (data[i] <= value) {
if (!bitset->test(i)) {
bitset->set(i);
}
}
}
break;
}
case query::CompareOperator::GTE: {
for (uint64_t i = 0; i < data.size(); ++i) {
if (data[i] < value) {
if (!bitset->test(i)) {
bitset->set(i);
}
}
}
break;
}
case query::CompareOperator::EQ: {
for (uint64_t i = 0; i < data.size(); ++i) {
if (data[i] != value) {
if (!bitset->test(i)) {
bitset->set(i);
}
}
}
}
case query::CompareOperator::NE: {
for (uint64_t i = 0; i < data.size(); ++i) {
if (data[i] == value) {
if (!bitset->test(i)) {
bitset->set(i);
}
}
}
break;
}
}
}
Status
ExecutionEngineImpl::ExecBinaryQuery(milvus::query::GeneralQueryPtr general_query, faiss::ConcurrentBitsetPtr bitset,
std::unordered_map<std::string, DataType>& attr_type, uint64_t& nq, uint64_t& topk,
std::vector<float>& distances, std::vector<int64_t>& labels) {
if (bitset == nullptr) {
bitset = std::make_shared<faiss::ConcurrentBitset>(vector_count_);
}
if (general_query->leaf == nullptr) {
Status status;
if (general_query->bin->left_query != nullptr) {
status = ExecBinaryQuery(general_query->bin->left_query, bitset, attr_type, nq, topk, distances, labels);
}
if (general_query->bin->right_query != nullptr) {
status = ExecBinaryQuery(general_query->bin->right_query, bitset, attr_type, nq, topk, distances, labels);
}
return status;
} else {
if (general_query->leaf->term_query != nullptr) {
// process attrs_data
auto field_name = general_query->leaf->term_query->field_name;
auto type = attr_type.at(field_name);
auto size = attr_size_.at(field_name);
switch (type) {
case DataType::INT8: {
std::vector<int8_t> data;
data.resize(size / sizeof(int8_t));
memcpy(data.data(), attr_data_.at(field_name).data(), size);
std::vector<int8_t> term_value;
auto term_size =
general_query->leaf->term_query->field_value.size() * (sizeof(int8_t)) / sizeof(int8_t);
term_value.resize(term_size);
memcpy(term_value.data(), general_query->leaf->term_query->field_value.data(),
term_size * sizeof(int8_t));
for (uint64_t i = 0; i < data.size(); ++i) {
bool value_in_term = false;
for (auto query_value : term_value) {
if (data[i] == query_value) {
value_in_term = true;
break;
}
}
if (!value_in_term) {
if (!bitset->test(i)) {
bitset->set(i);
}
}
}
break;
}
case DataType::INT16: {
std::vector<int16_t> data;
data.resize(size / sizeof(int16_t));
memcpy(data.data(), attr_data_.at(field_name).data(), size);
std::vector<int16_t> term_value;
auto term_size =
general_query->leaf->term_query->field_value.size() * (sizeof(int8_t)) / sizeof(int16_t);
term_value.resize(term_size);
memcpy(term_value.data(), general_query->leaf->term_query->field_value.data(),
term_size * sizeof(int16_t));
for (uint64_t i = 0; i < data.size(); ++i) {
bool value_in_term = false;
for (auto query_value : term_value) {
if (data[i] == query_value) {
value_in_term = true;
break;
}
}
if (!value_in_term) {
if (!bitset->test(i)) {
bitset->set(i);
}
}
}
break;
}
case DataType::INT32: {
std::vector<int32_t> data;
data.resize(size / sizeof(int32_t));
memcpy(data.data(), attr_data_.at(field_name).data(), size);
std::vector<int32_t> term_value;
auto term_size =
general_query->leaf->term_query->field_value.size() * (sizeof(int8_t)) / sizeof(int32_t);
term_value.resize(term_size);
memcpy(term_value.data(), general_query->leaf->term_query->field_value.data(),
term_size * sizeof(int32_t));
for (uint64_t i = 0; i < data.size(); ++i) {
bool value_in_term = false;
for (auto query_value : term_value) {
if (data[i] == query_value) {
value_in_term = true;
break;
}
}
if (!value_in_term) {
if (!bitset->test(i)) {
bitset->set(i);
}
}
}
break;
}
case DataType::INT64: {
std::vector<int64_t> data;
data.resize(size / sizeof(int64_t));
memcpy(data.data(), attr_data_.at(field_name).data(), size);
std::vector<int64_t> term_value;
auto term_size =
general_query->leaf->term_query->field_value.size() * (sizeof(int8_t)) / sizeof(int64_t);
term_value.resize(term_size);
memcpy(term_value.data(), general_query->leaf->term_query->field_value.data(),
term_size * sizeof(int64_t));
for (uint64_t i = 0; i < data.size(); ++i) {
bool value_in_term = false;
for (auto query_value : term_value) {
if (data[i] == query_value) {
value_in_term = true;
break;
}
}
if (!value_in_term) {
if (!bitset->test(i)) {
bitset->set(i);
}
}
}
break;
}
case DataType::FLOAT: {
std::vector<float> data;
data.resize(size / sizeof(float));
memcpy(data.data(), attr_data_.at(field_name).data(), size);
std::vector<float> term_value;
auto term_size =
general_query->leaf->term_query->field_value.size() * (sizeof(int8_t)) / sizeof(float);
term_value.resize(term_size);
memcpy(term_value.data(), general_query->leaf->term_query->field_value.data(),
term_size * sizeof(int64_t));
for (uint64_t i = 0; i < data.size(); ++i) {
bool value_in_term = false;
for (auto query_value : term_value) {
if (data[i] == query_value) {
value_in_term = true;
break;
}
}
if (!value_in_term) {
if (!bitset->test(i)) {
bitset->set(i);
}
}
}
break;
}
case DataType::DOUBLE: {
std::vector<double> data;
data.resize(size / sizeof(double));
memcpy(data.data(), attr_data_.at(field_name).data(), size);
std::vector<double> term_value;
auto term_size =
general_query->leaf->term_query->field_value.size() * (sizeof(int8_t)) / sizeof(double);
term_value.resize(term_size);
memcpy(term_value.data(), general_query->leaf->term_query->field_value.data(),
term_size * sizeof(double));
for (uint64_t i = 0; i < data.size(); ++i) {
bool value_in_term = false;
for (auto query_value : term_value) {
if (data[i] == query_value) {
value_in_term = true;
break;
}
}
if (!value_in_term) {
if (!bitset->test(i)) {
bitset->set(i);
}
}
}
break;
}
}
return Status::OK();
}
if (general_query->leaf->range_query != nullptr) {
auto field_name = general_query->leaf->range_query->field_name;
auto com_expr = general_query->leaf->range_query->compare_expr;
auto type = attr_type.at(field_name);
auto size = attr_size_.at(field_name);
for (uint64_t j = 0; j < com_expr.size(); ++j) {
auto operand = com_expr[j].operand;
switch (type) {
case DataType::INT8: {
std::vector<int8_t> data;
data.resize(size / sizeof(int8_t));
memcpy(data.data(), attr_data_.at(field_name).data(), size);
int8_t value = atoi(operand.c_str());
ProcessRangeQuery<int8_t>(data, value, com_expr[j].compare_operator, j, bitset);
break;
}
case DataType::INT16: {
std::vector<int16_t> data;
data.resize(size / sizeof(int16_t));
memcpy(data.data(), attr_data_.at(field_name).data(), size);
int16_t value = atoi(operand.c_str());
ProcessRangeQuery<int16_t>(data, value, com_expr[j].compare_operator, j, bitset);
break;
}
case DataType::INT32: {
std::vector<int32_t> data;
data.resize(size / sizeof(int32_t));
memcpy(data.data(), attr_data_.at(field_name).data(), size);
int32_t value = atoi(operand.c_str());
ProcessRangeQuery<int32_t>(data, value, com_expr[j].compare_operator, j, bitset);
break;
}
case DataType::INT64: {
std::vector<int64_t> data;
data.resize(size / sizeof(int64_t));
memcpy(data.data(), attr_data_.at(field_name).data(), size);
int64_t value = atoi(operand.c_str());
ProcessRangeQuery<int64_t>(data, value, com_expr[j].compare_operator, j, bitset);
break;
}
case DataType::FLOAT: {
std::vector<float> data;
data.resize(size / sizeof(float));
memcpy(data.data(), attr_data_.at(field_name).data(), size);
std::istringstream iss(operand);
double value;
iss >> value;
ProcessRangeQuery<float>(data, value, com_expr[j].compare_operator, j, bitset);
break;
}
case DataType::DOUBLE: {
std::vector<double> data;
data.resize(size / sizeof(double));
memcpy(data.data(), attr_data_.at(field_name).data(), size);
std::istringstream iss(operand);
double value;
iss >> value;
ProcessRangeQuery<double>(data, value, com_expr[j].compare_operator, j, bitset);
break;
}
}
}
return Status::OK();
}
if (general_query->leaf->vector_query != nullptr) {
// Do search
faiss::ConcurrentBitsetPtr list;
list = index_->GetBlacklist();
// Do OR
for (uint64_t i = 0; i < vector_count_; ++i) {
if (list->test(i) || bitset->test(i)) {
bitset->set(i);
}
}
index_->SetBlacklist(bitset);
auto vector_query = general_query->leaf->vector_query;
topk = vector_query->topk;
nq = vector_query->query_vector.float_data.size() / dim_;
distances.resize(nq * topk);
labels.resize(nq * topk);
return Search(nq, vector_query->query_vector.float_data.data(), topk, vector_query->extra_params,
distances.data(), labels.data());
}
}
}
Status
ExecutionEngineImpl::Search(int64_t n, const float* data, int64_t k, const milvus::json& extra_params, float* distances,
int64_t* labels, bool hybrid) {
#if 0
if (index_type_ == EngineType::FAISS_IVFSQ8H) {
if (!hybrid) {
const std::string key = location_ + ".quantizer";
std::vector<uint64_t> gpus = scheduler::get_gpu_pool();
const int64_t NOT_FOUND = -1;
int64_t device_id = NOT_FOUND;
// cache hit
{
knowhere::QuantizerPtr quantizer = nullptr;
for (auto& gpu : gpus) {
auto cache = cache::GpuCacheMgr::GetInstance(gpu);
if (auto cached_quantizer = cache->GetIndex(key)) {
device_id = gpu;
quantizer = std::static_pointer_cast<CachedQuantizer>(cached_quantizer)->Data();
}
}
if (device_id != NOT_FOUND) {
// cache hit
milvus::json quantizer_conf{{knowhere::meta::DEVICEID : device_id}, {"mode" : 2}};
auto new_index = index_->LoadData(quantizer, config);
index_ = new_index;
}
}
if (device_id == NOT_FOUND) {
// cache miss
std::vector<int64_t> all_free_mem;
for (auto& gpu : gpus) {
auto cache = cache::GpuCacheMgr::GetInstance(gpu);
auto free_mem = cache->CacheCapacity() - cache->CacheUsage();
all_free_mem.push_back(free_mem);
}
auto max_e = std::max_element(all_free_mem.begin(), all_free_mem.end());
auto best_index = std::distance(all_free_mem.begin(), max_e);
device_id = gpus[best_index];
auto pair = index_->CopyToGpuWithQuantizer(device_id);
index_ = pair.first;
// cache
auto cached_quantizer = std::make_shared<CachedQuantizer>(pair.second);
cache::GpuCacheMgr::GetInstance(device_id)->InsertItem(key, cached_quantizer);
}
}
}
#endif
TimeRecorder rc(LogOut("[%s][%ld] ExecutionEngineImpl::Search float", "search", 0));
if (index_ == nullptr) {
LOG_ENGINE_ERROR_ << LogOut("[%s][%ld] ExecutionEngineImpl: index is null, failed to search", "search", 0);
return Status(DB_ERROR, "index is null");
}
milvus::json conf = extra_params;
conf[knowhere::meta::TOPK] = k;
auto adapter = knowhere::AdapterMgr::GetInstance().GetAdapter(index_->index_type());
if (!adapter->CheckSearch(conf, index_->index_type(), index_->index_mode())) {
LOG_ENGINE_ERROR_ << LogOut("[%s][%ld] Illegal search params", "search", 0);
throw Exception(DB_ERROR, "Illegal search params");
}
if (hybrid) {
HybridLoad();
}
rc.RecordSection("query prepare");
auto dataset = knowhere::GenDataset(n, index_->Dim(), data);
auto result = index_->Query(dataset, conf);
rc.RecordSection("query done");
LOG_ENGINE_DEBUG_ << LogOut("[%s][%ld] get %ld uids from index %s", "search", 0, index_->GetUids().size(),
location_.c_str());
MapAndCopyResult(result, index_->GetUids(), n, k, distances, labels);
rc.RecordSection("map uids " + std::to_string(n * k));
if (hybrid) {
HybridUnset();
}
return Status::OK();
}
Status
ExecutionEngineImpl::Search(int64_t n, const uint8_t* data, int64_t k, const milvus::json& extra_params,
float* distances, int64_t* labels, bool hybrid) {
TimeRecorder rc(LogOut("[%s][%ld] ExecutionEngineImpl::Search uint8", "search", 0));
if (index_ == nullptr) {
LOG_ENGINE_ERROR_ << LogOut("[%s][%ld] ExecutionEngineImpl: index is null, failed to search", "search", 0);
return Status(DB_ERROR, "index is null");
}
milvus::json conf = extra_params;
conf[knowhere::meta::TOPK] = k;
auto adapter = knowhere::AdapterMgr::GetInstance().GetAdapter(index_->index_type());
if (!adapter->CheckSearch(conf, index_->index_type(), index_->index_mode())) {
LOG_ENGINE_ERROR_ << LogOut("[%s][%ld] Illegal search params", "search", 0);
throw Exception(DB_ERROR, "Illegal search params");
}
if (hybrid) {
HybridLoad();
}
rc.RecordSection("query prepare");
auto dataset = knowhere::GenDataset(n, index_->Dim(), data);
auto result = index_->Query(dataset, conf);
rc.RecordSection("query done");
LOG_ENGINE_DEBUG_ << LogOut("[%s][%ld] get %ld uids from index %s", "search", 0, index_->GetUids().size(),
location_.c_str());
MapAndCopyResult(result, index_->GetUids(), n, k, distances, labels);
rc.RecordSection("map uids " + std::to_string(n * k));
if (hybrid) {
HybridUnset();
}
return Status::OK();
}
Status
ExecutionEngineImpl::Search(int64_t n, const std::vector<int64_t>& ids, int64_t k, const milvus::json& extra_params,
float* distances, int64_t* labels, bool hybrid) {
TimeRecorder rc(LogOut("[%s][%ld] ExecutionEngineImpl::Search vector of ids", "search", 0));
if (index_ == nullptr) {
LOG_ENGINE_ERROR_ << LogOut("[%s][%ld] ExecutionEngineImpl: index is null, failed to search", "search", 0);
return Status(DB_ERROR, "index is null");
}
milvus::json conf = extra_params;
conf[knowhere::meta::TOPK] = k;
auto adapter = knowhere::AdapterMgr::GetInstance().GetAdapter(index_->index_type());
if (!adapter->CheckSearch(conf, index_->index_type(), index_->index_mode())) {
LOG_ENGINE_ERROR_ << LogOut("[%s][%ld] Illegal search params", "search", 0);
throw Exception(DB_ERROR, "Illegal search params");
}
if (hybrid) {
HybridLoad();
}
rc.RecordSection("search prepare");
// std::string segment_dir;
// utils::GetParentPath(location_, segment_dir);
// segment::SegmentReader segment_reader(segment_dir);
// segment::IdBloomFilterPtr id_bloom_filter_ptr;
// segment_reader.LoadBloomFilter(id_bloom_filter_ptr);
// Check if the id is present. If so, find its offset
const std::vector<segment::doc_id_t>& uids = index_->GetUids();
std::vector<int64_t> offsets;
/*
std::vector<segment::doc_id_t> uids;
auto status = segment_reader.LoadUids(uids);
if (!status.ok()) {
return status;
}
*/
// There is only one id in ids
for (auto& id : ids) {
// if (id_bloom_filter_ptr->Check(id)) {
// if (uids.empty()) {
// segment_reader.LoadUids(uids);
// }
// auto found = std::find(uids.begin(), uids.end(), id);
// if (found != uids.end()) {
// auto offset = std::distance(uids.begin(), found);
// offsets.emplace_back(offset);
// }
// }
auto found = std::find(uids.begin(), uids.end(), id);
if (found != uids.end()) {
auto offset = std::distance(uids.begin(), found);
offsets.emplace_back(offset);
}
}
rc.RecordSection("get offset");
if (!offsets.empty()) {
auto dataset = knowhere::GenDatasetWithIds(offsets.size(), index_->Dim(), nullptr, offsets.data());
auto result = index_->QueryById(dataset, conf);
rc.RecordSection("query by id done");
LOG_ENGINE_DEBUG_ << LogOut("[%s][%ld] get %ld uids from index %s", "search", 0, index_->GetUids().size(),
location_.c_str());
MapAndCopyResult(result, uids, offsets.size(), k, distances, labels);
rc.RecordSection("map uids " + std::to_string(offsets.size() * k));
}
if (hybrid) {
HybridUnset();
}
return Status::OK();
}
Status
ExecutionEngineImpl::GetVectorByID(const int64_t& id, float* vector, bool hybrid) {
if (index_ == nullptr) {
LOG_ENGINE_ERROR_ << "ExecutionEngineImpl: index is null, failed to search";
return Status(DB_ERROR, "index is null");
}
if (hybrid) {
HybridLoad();
}
// Only one id for now
std::vector<int64_t> ids{id};
auto dataset = knowhere::GenDatasetWithIds(1, index_->Dim(), nullptr, ids.data());
auto result = index_->GetVectorById(dataset, knowhere::Config());
float* res_vec = (float*)(result->Get<void*>(knowhere::meta::TENSOR));
memcpy(vector, res_vec, sizeof(float) * 1 * index_->Dim());
if (hybrid) {
HybridUnset();
}
return Status::OK();
}
Status
ExecutionEngineImpl::GetVectorByID(const int64_t& id, uint8_t* vector, bool hybrid) {
if (index_ == nullptr) {
LOG_ENGINE_ERROR_ << "ExecutionEngineImpl: index is null, failed to search";
return Status(DB_ERROR, "index is null");
}
LOG_ENGINE_DEBUG_ << "Get binary vector by id: " << id;
if (hybrid) {
HybridLoad();
}
// Only one id for now
std::vector<int64_t> ids{id};
auto dataset = knowhere::GenDatasetWithIds(1, index_->Dim(), nullptr, ids.data());
auto result = index_->GetVectorById(dataset, knowhere::Config());
uint8_t* res_vec = (uint8_t*)(result->Get<void*>(knowhere::meta::TENSOR));
memcpy(vector, res_vec, sizeof(uint8_t) * 1 * index_->Dim());
if (hybrid) {
HybridUnset();
}
return Status::OK();
}
Status
ExecutionEngineImpl::Cache() {
auto cpu_cache_mgr = milvus::cache::CpuCacheMgr::GetInstance();
cache::DataObjPtr obj = std::static_pointer_cast<cache::DataObj>(index_);
cpu_cache_mgr->InsertItem(location_, obj);
return Status::OK();
}
// TODO(linxj): remove.
Status
ExecutionEngineImpl::Init() {
#ifdef MILVUS_GPU_VERSION
server::Config& config = server::Config::GetInstance();
std::vector<int64_t> gpu_ids;
Status s = config.GetGpuResourceConfigBuildIndexResources(gpu_ids);
if (!s.ok()) {
gpu_num_ = -1;
return s;
}
for (auto id : gpu_ids) {
if (gpu_num_ == id) {
return Status::OK();
}
}
std::string msg = "Invalid gpu_num";
return Status(SERVER_INVALID_ARGUMENT, msg);
#else
return Status::OK();
#endif
}
} // namespace engine
} // namespace milvus