mirror of
https://gitee.com/milvus-io/milvus.git
synced 2026-01-07 19:31:51 +08:00
568 lines
21 KiB
C++
568 lines
21 KiB
C++
////////////////////////////////////////////////////////////////////////////////
|
|
// Copyright 上海赜睿信息科技有限公司(Zilliz) - All Rights Reserved
|
|
// Unauthorized copying of this file, via any medium is strictly prohibited.
|
|
// Proprietary and confidential.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <iostream>
|
|
#include <thread>
|
|
|
|
#include <faiss/AutoTune.h>
|
|
#include <faiss/gpu/GpuAutoTune.h>
|
|
#include <faiss/gpu/GpuIndexIVFFlat.h>
|
|
|
|
#include "knowhere/index/vector_index/gpu_ivf.h"
|
|
#include "knowhere/index/vector_index/ivf.h"
|
|
#include "knowhere/adapter/structure.h"
|
|
#include "knowhere/index/vector_index/cloner.h"
|
|
#include "knowhere/common/exception.h"
|
|
#include "knowhere/common/timer.h"
|
|
|
|
#include "utils.h"
|
|
|
|
|
|
using namespace zilliz::knowhere;
|
|
|
|
using ::testing::TestWithParam;
|
|
using ::testing::Values;
|
|
using ::testing::Combine;
|
|
|
|
static int device_id = 0;
|
|
IVFIndexPtr IndexFactory(const std::string &type) {
|
|
if (type == "IVF") {
|
|
return std::make_shared<IVF>();
|
|
} else if (type == "IVFPQ") {
|
|
return std::make_shared<IVFPQ>();
|
|
} else if (type == "GPUIVF") {
|
|
return std::make_shared<GPUIVF>(device_id);
|
|
} else if (type == "GPUIVFPQ") {
|
|
return std::make_shared<GPUIVFPQ>(device_id);
|
|
} else if (type == "IVFSQ") {
|
|
return std::make_shared<IVFSQ>();
|
|
} else if (type == "GPUIVFSQ") {
|
|
return std::make_shared<GPUIVFSQ>(device_id);
|
|
}
|
|
}
|
|
|
|
class IVFTest
|
|
: public DataGen, public TestWithParam<::std::tuple<std::string, Config, Config, Config, Config>> {
|
|
protected:
|
|
void SetUp() override {
|
|
std::tie(index_type, preprocess_cfg, train_cfg, add_cfg, search_cfg) = GetParam();
|
|
//Init_with_default();
|
|
Generate(128, 1000000/100, 10);
|
|
index_ = IndexFactory(index_type);
|
|
FaissGpuResourceMgr::GetInstance().InitDevice(device_id, 1024*1024*200, 1024*1024*600, 2);
|
|
}
|
|
void TearDown() override {
|
|
FaissGpuResourceMgr::GetInstance().Free();
|
|
}
|
|
|
|
protected:
|
|
std::string index_type;
|
|
Config preprocess_cfg;
|
|
Config train_cfg;
|
|
Config add_cfg;
|
|
Config search_cfg;
|
|
IVFIndexPtr index_ = nullptr;
|
|
};
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(IVFParameters, IVFTest,
|
|
Values(
|
|
std::make_tuple("IVF",
|
|
Config(),
|
|
Config::object{{"nlist", 100}, {"metric_type", "L2"}},
|
|
Config(),
|
|
Config::object{{"k", 10}}),
|
|
std::make_tuple("IVFPQ",
|
|
Config(),
|
|
Config::object{{"nlist", 100}, {"M", 8}, {"nbits", 8}, {"metric_type", "L2"}},
|
|
Config(),
|
|
Config::object{{"k", 10}}),
|
|
std::make_tuple("GPUIVF",
|
|
Config(),
|
|
Config::object{{"nlist", 100}, {"gpu_id", device_id}, {"metric_type", "L2"}},
|
|
Config(),
|
|
Config::object{{"k", 10}}),
|
|
std::make_tuple("GPUIVFPQ",
|
|
Config(),
|
|
Config::object{{"gpu_id", device_id}, {"nlist", 100}, {"M", 8}, {"nbits", 8}, {"metric_type", "L2"}},
|
|
Config(),
|
|
Config::object{{"k", 10}}),
|
|
std::make_tuple("IVFSQ",
|
|
Config(),
|
|
Config::object{{"nlist", 100}, {"nbits", 8}, {"metric_type", "L2"}},
|
|
Config(),
|
|
Config::object{{"k", 10}}),
|
|
std::make_tuple("GPUIVFSQ",
|
|
Config(),
|
|
Config::object{{"gpu_id", device_id}, {"nlist", 100}, {"nbits", 8}, {"metric_type", "L2"}},
|
|
Config(),
|
|
Config::object{{"k", 10}})
|
|
)
|
|
);
|
|
|
|
void AssertAnns(const DatasetPtr &result,
|
|
const int &nq,
|
|
const int &k) {
|
|
auto ids = result->array()[0];
|
|
for (auto i = 0; i < nq; i++) {
|
|
EXPECT_EQ(i, *(ids->data()->GetValues<int64_t>(1, i * k)));
|
|
}
|
|
}
|
|
|
|
void PrintResult(const DatasetPtr &result,
|
|
const int &nq,
|
|
const int &k) {
|
|
auto ids = result->array()[0];
|
|
auto dists = result->array()[1];
|
|
|
|
std::stringstream ss_id;
|
|
std::stringstream ss_dist;
|
|
for (auto i = 0; i < 10; i++) {
|
|
for (auto j = 0; j < k; ++j) {
|
|
ss_id << *(ids->data()->GetValues<int64_t>(1, i * k + j)) << " ";
|
|
ss_dist << *(dists->data()->GetValues<float>(1, i * k + j)) << " ";
|
|
}
|
|
ss_id << std::endl;
|
|
ss_dist << std::endl;
|
|
}
|
|
std::cout << "id\n" << ss_id.str() << std::endl;
|
|
std::cout << "dist\n" << ss_dist.str() << std::endl;
|
|
}
|
|
|
|
TEST_P(IVFTest, ivf_basic) {
|
|
assert(!xb.empty());
|
|
|
|
auto preprocessor = index_->BuildPreprocessor(base_dataset, preprocess_cfg);
|
|
index_->set_preprocessor(preprocessor);
|
|
|
|
auto model = index_->Train(base_dataset, train_cfg);
|
|
index_->set_index_model(model);
|
|
index_->Add(base_dataset, add_cfg);
|
|
EXPECT_EQ(index_->Count(), nb);
|
|
EXPECT_EQ(index_->Dimension(), dim);
|
|
auto result = index_->Search(query_dataset, search_cfg);
|
|
AssertAnns(result, nq, k);
|
|
//PrintResult(result, nq, k);
|
|
}
|
|
|
|
//TEST_P(IVFTest, gpu_to_cpu) {
|
|
// if (index_type.find("GPU") == std::string::npos) { return; }
|
|
//
|
|
// // else
|
|
// assert(!xb.empty());
|
|
//
|
|
// auto preprocessor = index_->BuildPreprocessor(base_dataset, preprocess_cfg);
|
|
// index_->set_preprocessor(preprocessor);
|
|
//
|
|
// auto model = index_->Train(base_dataset, train_cfg);
|
|
// index_->set_index_model(model);
|
|
// index_->Add(base_dataset, add_cfg);
|
|
// EXPECT_EQ(index_->Count(), nb);
|
|
// EXPECT_EQ(index_->Dimension(), dim);
|
|
// auto result = index_->Search(query_dataset, search_cfg);
|
|
// AssertAnns(result, nq, k);
|
|
//
|
|
// if (auto device_index = std::dynamic_pointer_cast<GPUIVF>(index_)) {
|
|
// auto host_index = device_index->Copy_index_gpu_to_cpu();
|
|
// auto result = host_index->Search(query_dataset, search_cfg);
|
|
// AssertAnns(result, nq, k);
|
|
// }
|
|
//}
|
|
|
|
TEST_P(IVFTest, ivf_serialize) {
|
|
auto serialize = [](const std::string &filename, BinaryPtr &bin, uint8_t *ret) {
|
|
FileIOWriter writer(filename);
|
|
writer(static_cast<void *>(bin->data.get()), bin->size);
|
|
|
|
FileIOReader reader(filename);
|
|
reader(ret, bin->size);
|
|
};
|
|
|
|
{
|
|
// serialize index-model
|
|
auto model = index_->Train(base_dataset, train_cfg);
|
|
auto binaryset = model->Serialize();
|
|
auto bin = binaryset.GetByName("IVF");
|
|
|
|
std::string filename = "/tmp/ivf_test_model_serialize.bin";
|
|
auto load_data = new uint8_t[bin->size];
|
|
serialize(filename, bin, load_data);
|
|
|
|
binaryset.clear();
|
|
auto data = std::make_shared<uint8_t>();
|
|
data.reset(load_data);
|
|
binaryset.Append("IVF", data, bin->size);
|
|
|
|
model->Load(binaryset);
|
|
|
|
index_->set_index_model(model);
|
|
index_->Add(base_dataset, add_cfg);
|
|
auto result = index_->Search(query_dataset, search_cfg);
|
|
AssertAnns(result, nq, k);
|
|
}
|
|
|
|
{
|
|
// serialize index
|
|
auto model = index_->Train(base_dataset, train_cfg);
|
|
index_->set_index_model(model);
|
|
index_->Add(base_dataset, add_cfg);
|
|
auto binaryset = index_->Serialize();
|
|
auto bin = binaryset.GetByName("IVF");
|
|
|
|
std::string filename = "/tmp/ivf_test_serialize.bin";
|
|
auto load_data = new uint8_t[bin->size];
|
|
serialize(filename, bin, load_data);
|
|
|
|
binaryset.clear();
|
|
auto data = std::make_shared<uint8_t>();
|
|
data.reset(load_data);
|
|
binaryset.Append("IVF", data, bin->size);
|
|
|
|
index_->Load(binaryset);
|
|
EXPECT_EQ(index_->Count(), nb);
|
|
EXPECT_EQ(index_->Dimension(), dim);
|
|
auto result = index_->Search(query_dataset, search_cfg);
|
|
AssertAnns(result, nq, k);
|
|
}
|
|
}
|
|
|
|
TEST_P(IVFTest, clone_test) {
|
|
assert(!xb.empty());
|
|
|
|
auto preprocessor = index_->BuildPreprocessor(base_dataset, preprocess_cfg);
|
|
index_->set_preprocessor(preprocessor);
|
|
|
|
auto model = index_->Train(base_dataset, train_cfg);
|
|
index_->set_index_model(model);
|
|
index_->Add(base_dataset, add_cfg);
|
|
EXPECT_EQ(index_->Count(), nb);
|
|
EXPECT_EQ(index_->Dimension(), dim);
|
|
auto result = index_->Search(query_dataset, search_cfg);
|
|
AssertAnns(result, nq, k);
|
|
//PrintResult(result, nq, k);
|
|
|
|
auto AssertEqual = [&] (DatasetPtr p1, DatasetPtr p2) {
|
|
auto ids_p1 = p1->array()[0];
|
|
auto ids_p2 = p2->array()[0];
|
|
|
|
for (int i = 0; i < nq * k; ++i) {
|
|
EXPECT_EQ(*(ids_p2->data()->GetValues<int64_t>(1, i)),
|
|
*(ids_p1->data()->GetValues<int64_t>(1, i)));
|
|
}
|
|
};
|
|
|
|
{
|
|
// clone in place
|
|
std::vector<std::string> support_idx_vec{"IVF", "GPUIVF", "IVFPQ", "IVFSQ", "GPUIVFSQ"};
|
|
auto finder = std::find(support_idx_vec.cbegin(), support_idx_vec.cend(), index_type);
|
|
if (finder != support_idx_vec.cend()) {
|
|
EXPECT_NO_THROW({
|
|
auto clone_index = index_->Clone();
|
|
auto clone_result = clone_index->Search(query_dataset, search_cfg);
|
|
//AssertAnns(result, nq, k);
|
|
AssertEqual(result, clone_result);
|
|
std::cout << "inplace clone [" << index_type << "] success" << std::endl;
|
|
});
|
|
} else {
|
|
EXPECT_THROW({
|
|
std::cout << "inplace clone [" << index_type << "] failed" << std::endl;
|
|
auto clone_index = index_->Clone();
|
|
}, KnowhereException);
|
|
}
|
|
}
|
|
|
|
{
|
|
// copy from gpu to cpu
|
|
std::vector<std::string> support_idx_vec{"GPUIVF", "GPUIVFSQ"};
|
|
auto finder = std::find(support_idx_vec.cbegin(), support_idx_vec.cend(), index_type);
|
|
if (finder != support_idx_vec.cend()) {
|
|
EXPECT_NO_THROW({
|
|
auto clone_index = CopyGpuToCpu(index_, Config());
|
|
auto clone_result = clone_index->Search(query_dataset, search_cfg);
|
|
AssertEqual(result, clone_result);
|
|
std::cout << "clone G <=> C [" << index_type << "] success" << std::endl;
|
|
});
|
|
} else {
|
|
EXPECT_THROW({
|
|
std::cout << "clone G <=> C [" << index_type << "] failed" << std::endl;
|
|
auto clone_index = CopyGpuToCpu(index_, Config());
|
|
}, KnowhereException);
|
|
}
|
|
}
|
|
|
|
{
|
|
// copy to gpu
|
|
std::vector<std::string> support_idx_vec{"IVF", "GPUIVF", "IVFSQ", "GPUIVFSQ"};
|
|
auto finder = std::find(support_idx_vec.cbegin(), support_idx_vec.cend(), index_type);
|
|
if (finder != support_idx_vec.cend()) {
|
|
EXPECT_NO_THROW({
|
|
auto clone_index = CopyCpuToGpu(index_, device_id, Config());
|
|
auto clone_result = clone_index->Search(query_dataset, search_cfg);
|
|
AssertEqual(result, clone_result);
|
|
std::cout << "clone C <=> G [" << index_type << "] success" << std::endl;
|
|
});
|
|
} else {
|
|
EXPECT_THROW({
|
|
std::cout << "clone C <=> G [" << index_type << "] failed" << std::endl;
|
|
auto clone_index = CopyCpuToGpu(index_, device_id, Config());
|
|
}, KnowhereException);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_P(IVFTest, seal_test) {
|
|
//FaissGpuResourceMgr::GetInstance().InitDevice(device_id);
|
|
|
|
std::vector<std::string> support_idx_vec{"GPUIVF", "GPUIVFSQ"};
|
|
auto finder = std::find(support_idx_vec.cbegin(), support_idx_vec.cend(), index_type);
|
|
if (finder == support_idx_vec.cend()) {
|
|
return;
|
|
}
|
|
|
|
assert(!xb.empty());
|
|
|
|
//index_ = std::make_shared<GPUIVF>(0);
|
|
auto preprocessor = index_->BuildPreprocessor(base_dataset, preprocess_cfg);
|
|
index_->set_preprocessor(preprocessor);
|
|
|
|
auto model = index_->Train(base_dataset, train_cfg);
|
|
index_->set_index_model(model);
|
|
index_->Add(base_dataset, add_cfg);
|
|
EXPECT_EQ(index_->Count(), nb);
|
|
EXPECT_EQ(index_->Dimension(), dim);
|
|
auto result = index_->Search(query_dataset, search_cfg);
|
|
AssertAnns(result, nq, k);
|
|
|
|
auto cpu_idx = CopyGpuToCpu(index_, Config());
|
|
|
|
TimeRecorder tc("CopyToGpu");
|
|
CopyCpuToGpu(cpu_idx, device_id, Config());
|
|
auto without_seal = tc.RecordSection("Without seal");
|
|
cpu_idx->Seal();
|
|
tc.RecordSection("seal cost");
|
|
CopyCpuToGpu(cpu_idx, device_id, Config());
|
|
auto with_seal = tc.RecordSection("With seal");
|
|
ASSERT_GE(without_seal, with_seal);
|
|
}
|
|
|
|
|
|
class GPURESTEST
|
|
: public DataGen, public ::testing::Test {
|
|
protected:
|
|
void SetUp() override {
|
|
//std::tie(index_type, preprocess_cfg, train_cfg, add_cfg, search_cfg) = GetParam();
|
|
//Init_with_default();
|
|
Generate(128, 1000000, 1000);
|
|
k = 100;
|
|
//index_ = IndexFactory(index_type);
|
|
FaissGpuResourceMgr::GetInstance().InitDevice(device_id, 1024*1024*200, 1024*1024*300, 2);
|
|
|
|
elems = nq * k;
|
|
ids = (int64_t *) malloc(sizeof(int64_t) * elems);
|
|
dis = (float *) malloc(sizeof(float) * elems);
|
|
}
|
|
|
|
void TearDown() override {
|
|
delete ids;
|
|
delete dis;
|
|
FaissGpuResourceMgr::GetInstance().Free();
|
|
}
|
|
|
|
protected:
|
|
std::string index_type;
|
|
Config preprocess_cfg;
|
|
Config train_cfg;
|
|
Config add_cfg;
|
|
Config search_cfg;
|
|
IVFIndexPtr index_ = nullptr;
|
|
|
|
int64_t *ids = nullptr;
|
|
float *dis = nullptr;
|
|
int64_t elems = 0;
|
|
};
|
|
|
|
const int search_count = 18;
|
|
const int load_count = 3;
|
|
|
|
TEST_F(GPURESTEST, gpu_ivf_resource_test) {
|
|
assert(!xb.empty());
|
|
|
|
|
|
{
|
|
index_ = std::make_shared<GPUIVF>(-1);
|
|
ASSERT_EQ(std::dynamic_pointer_cast<GPUIVF>(index_)->GetGpuDevice(), -1);
|
|
std::dynamic_pointer_cast<GPUIVF>(index_)->SetGpuDevice(device_id);
|
|
ASSERT_EQ(std::dynamic_pointer_cast<GPUIVF>(index_)->GetGpuDevice(), device_id);
|
|
|
|
auto preprocessor = index_->BuildPreprocessor(base_dataset, preprocess_cfg);
|
|
index_->set_preprocessor(preprocessor);
|
|
train_cfg = Config::object{{"nlist", 1638}, {"gpu_id", device_id}, {"metric_type", "L2"}};
|
|
auto model = index_->Train(base_dataset, train_cfg);
|
|
index_->set_index_model(model);
|
|
index_->Add(base_dataset, add_cfg);
|
|
EXPECT_EQ(index_->Count(), nb);
|
|
EXPECT_EQ(index_->Dimension(), dim);
|
|
|
|
search_cfg = Config::object{{"k", k}};
|
|
TimeRecorder tc("knowere GPUIVF");
|
|
for (int i = 0; i < search_count; ++i) {
|
|
index_->Search(query_dataset, search_cfg);
|
|
if (i > search_count - 6 || i < 5)
|
|
tc.RecordSection("search once");
|
|
}
|
|
tc.ElapseFromBegin("search all");
|
|
}
|
|
FaissGpuResourceMgr::GetInstance().Dump();
|
|
|
|
{
|
|
// IVF-Search
|
|
faiss::gpu::StandardGpuResources res;
|
|
faiss::gpu::GpuIndexIVFFlatConfig idx_config;
|
|
idx_config.device = device_id;
|
|
faiss::gpu::GpuIndexIVFFlat device_index(&res, dim, 1638, faiss::METRIC_L2, idx_config);
|
|
device_index.train(nb, xb.data());
|
|
device_index.add(nb, xb.data());
|
|
|
|
TimeRecorder tc("ori IVF");
|
|
for (int i = 0; i < search_count; ++i) {
|
|
device_index.search(nq, xq.data(), k, dis, ids);
|
|
if (i > search_count - 6 || i < 5)
|
|
tc.RecordSection("search once");
|
|
}
|
|
tc.ElapseFromBegin("search all");
|
|
}
|
|
|
|
}
|
|
|
|
TEST_F(GPURESTEST, gpuivfsq) {
|
|
{
|
|
// knowhere gpu ivfsq
|
|
index_type = "GPUIVFSQ";
|
|
index_ = IndexFactory(index_type);
|
|
auto preprocessor = index_->BuildPreprocessor(base_dataset, preprocess_cfg);
|
|
index_->set_preprocessor(preprocessor);
|
|
train_cfg = Config::object{{"gpu_id", device_id}, {"nlist", 1638}, {"nbits", 8}, {"metric_type", "L2"}};
|
|
auto model = index_->Train(base_dataset, train_cfg);
|
|
index_->set_index_model(model);
|
|
index_->Add(base_dataset, add_cfg);
|
|
search_cfg = Config::object{{"k", k}};
|
|
auto result = index_->Search(query_dataset, search_cfg);
|
|
AssertAnns(result, nq, k);
|
|
|
|
auto cpu_idx = CopyGpuToCpu(index_, Config());
|
|
cpu_idx->Seal();
|
|
|
|
TimeRecorder tc("knowhere GPUSQ8");
|
|
auto search_idx = CopyCpuToGpu(cpu_idx, device_id, Config());
|
|
tc.RecordSection("Copy to gpu");
|
|
for (int i = 0; i < search_count; ++i) {
|
|
search_idx->Search(query_dataset, search_cfg);
|
|
if (i > search_count - 6 || i < 5)
|
|
tc.RecordSection("search once");
|
|
}
|
|
tc.ElapseFromBegin("search all");
|
|
}
|
|
|
|
{
|
|
// Ori gpuivfsq Test
|
|
const char *index_description = "IVF1638,SQ8";
|
|
faiss::Index *ori_index = faiss::index_factory(dim, index_description, faiss::METRIC_L2);
|
|
|
|
faiss::gpu::StandardGpuResources res;
|
|
auto device_index = faiss::gpu::index_cpu_to_gpu(&res, device_id, ori_index);
|
|
device_index->train(nb, xb.data());
|
|
device_index->add(nb, xb.data());
|
|
|
|
auto cpu_index = faiss::gpu::index_gpu_to_cpu(device_index);
|
|
auto idx = dynamic_cast<faiss::IndexIVF *>(cpu_index);
|
|
if (idx != nullptr) {
|
|
idx->to_readonly();
|
|
}
|
|
delete device_index;
|
|
delete ori_index;
|
|
|
|
faiss::gpu::GpuClonerOptions option;
|
|
option.allInGpu = true;
|
|
|
|
TimeRecorder tc("ori GPUSQ8");
|
|
faiss::Index *search_idx = faiss::gpu::index_cpu_to_gpu(&res, device_id, cpu_index, &option);
|
|
tc.RecordSection("Copy to gpu");
|
|
for (int i = 0; i < search_count; ++i) {
|
|
search_idx->search(nq, xq.data(), k, dis, ids);
|
|
if (i > search_count - 6 || i < 5)
|
|
tc.RecordSection("search once");
|
|
}
|
|
tc.ElapseFromBegin("search all");
|
|
delete cpu_index;
|
|
delete search_idx;
|
|
}
|
|
|
|
}
|
|
|
|
TEST_F(GPURESTEST, copyandsearch) {
|
|
printf("==================\n");
|
|
|
|
// search and copy at the same time
|
|
index_type = "GPUIVFSQ";
|
|
//index_type = "GPUIVF";
|
|
index_ = IndexFactory(index_type);
|
|
auto preprocessor = index_->BuildPreprocessor(base_dataset, preprocess_cfg);
|
|
index_->set_preprocessor(preprocessor);
|
|
train_cfg = Config::object{{"gpu_id", device_id}, {"nlist", 1638}, {"nbits", 8}, {"metric_type", "L2"}};
|
|
auto model = index_->Train(base_dataset, train_cfg);
|
|
index_->set_index_model(model);
|
|
index_->Add(base_dataset, add_cfg);
|
|
search_cfg = Config::object{{"k", k}};
|
|
auto result = index_->Search(query_dataset, search_cfg);
|
|
AssertAnns(result, nq, k);
|
|
|
|
auto cpu_idx = CopyGpuToCpu(index_, Config());
|
|
cpu_idx->Seal();
|
|
|
|
auto search_idx = CopyCpuToGpu(cpu_idx, device_id, Config());
|
|
|
|
auto search_func = [&] {
|
|
//TimeRecorder tc("search&load");
|
|
for (int i = 0; i < search_count; ++i) {
|
|
search_idx->Search(query_dataset, search_cfg);
|
|
//if (i > search_count - 6 || i == 0)
|
|
// tc.RecordSection("search once");
|
|
}
|
|
//tc.ElapseFromBegin("search finish");
|
|
};
|
|
auto load_func = [&] {
|
|
//TimeRecorder tc("search&load");
|
|
for (int i = 0; i < load_count; ++i) {
|
|
CopyCpuToGpu(cpu_idx, device_id, Config());
|
|
//if (i > load_count -5 || i < 5)
|
|
//tc.RecordSection("Copy to gpu");
|
|
}
|
|
//tc.ElapseFromBegin("load finish");
|
|
};
|
|
|
|
TimeRecorder tc("basic");
|
|
CopyCpuToGpu(cpu_idx, device_id, Config());
|
|
tc.RecordSection("Copy to gpu once");
|
|
search_idx->Search(query_dataset, search_cfg);
|
|
tc.RecordSection("search once");
|
|
search_func();
|
|
tc.RecordSection("only search total");
|
|
load_func();
|
|
tc.RecordSection("only copy total");
|
|
|
|
std::thread search_thread(search_func);
|
|
std::thread load_thread(load_func);
|
|
search_thread.join();
|
|
load_thread.join();
|
|
tc.RecordSection("Copy&search total");
|
|
}
|
|
|
|
|
|
|
|
// TODO(linxj): Add exception test
|