mirror of
https://gitee.com/milvus-io/milvus.git
synced 2025-12-07 01:28:27 +08:00
https://github.com/milvus-io/milvus/issues/35856 Signed-off-by: junjie.jiang <junjie.jiang@zilliz.com>
155 lines
4.9 KiB
Go
155 lines
4.9 KiB
Go
/*
|
|
* # Licensed to the LF AI & Data foundation under one
|
|
* # or more contributor license agreements. See the NOTICE file
|
|
* # distributed with this work for additional information
|
|
* # regarding copyright ownership. The ASF licenses this file
|
|
* # to you under the Apache License, Version 2.0 (the
|
|
* # "License"); you may not use this file except in compliance
|
|
* # with the License. You may obtain a copy of the License at
|
|
* #
|
|
* # http://www.apache.org/licenses/LICENSE-2.0
|
|
* #
|
|
* # Unless required by applicable law or agreed to in writing, software
|
|
* # distributed under the License is distributed on an "AS IS" BASIS,
|
|
* # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* # See the License for the specific language governing permissions and
|
|
* # limitations under the License.
|
|
*/
|
|
|
|
package rerank
|
|
|
|
import (
|
|
"context"
|
|
"encoding/json"
|
|
"fmt"
|
|
"math"
|
|
"strconv"
|
|
"strings"
|
|
|
|
"github.com/milvus-io/milvus-proto/go-api/v2/schemapb"
|
|
"github.com/milvus-io/milvus/pkg/v2/util/merr"
|
|
"github.com/milvus-io/milvus/pkg/v2/util/metric"
|
|
)
|
|
|
|
const (
|
|
WeightsParamsKey string = "weights"
|
|
NormScoreKey string = "norm_score"
|
|
)
|
|
|
|
type WeightedFunction[T PKType] struct {
|
|
RerankBase
|
|
|
|
weight []float32
|
|
needNorm bool
|
|
}
|
|
|
|
func newWeightedFunction(collSchema *schemapb.CollectionSchema, funcSchema *schemapb.FunctionSchema) (Reranker, error) {
|
|
base, err := newRerankBase(collSchema, funcSchema, weightedName, true)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if len(base.GetInputFieldNames()) != 0 {
|
|
return nil, fmt.Errorf("The weighted function does not support input parameters, but got %s", base.GetInputFieldNames())
|
|
}
|
|
|
|
var weights []float32
|
|
needNorm := false
|
|
for _, param := range funcSchema.Params {
|
|
switch strings.ToLower(param.Key) {
|
|
case WeightsParamsKey:
|
|
if err := json.Unmarshal([]byte(param.Value), &weights); err != nil {
|
|
return nil, fmt.Errorf("Parse %s param failed, weight should be []float, bug got: %s", WeightsParamsKey, param.Value)
|
|
}
|
|
for _, weight := range weights {
|
|
if weight < 0 || weight > 1 {
|
|
return nil, fmt.Errorf("rank param weight should be in range [0, 1]")
|
|
}
|
|
}
|
|
case NormScoreKey:
|
|
if needNorm, err = strconv.ParseBool(param.Value); err != nil {
|
|
return nil, fmt.Errorf("%s params must be true/false, bug got %s", NormScoreKey, param.Value)
|
|
}
|
|
}
|
|
}
|
|
if len(weights) == 0 {
|
|
return nil, fmt.Errorf(WeightsParamsKey + " not found")
|
|
}
|
|
if base.pkType == schemapb.DataType_Int64 {
|
|
return &WeightedFunction[int64]{RerankBase: *base, weight: weights, needNorm: needNorm}, nil
|
|
} else {
|
|
return &WeightedFunction[string]{RerankBase: *base, weight: weights, needNorm: needNorm}, nil
|
|
}
|
|
}
|
|
|
|
func (weighted *WeightedFunction[T]) processOneSearchData(ctx context.Context, searchParams *SearchParams, cols []*columns, idGroup map[any]any) (*IDScores[T], error) {
|
|
if len(cols) != len(weighted.weight) {
|
|
return nil, merr.WrapErrParameterInvalid(fmt.Sprint(len(cols)), fmt.Sprint(len(weighted.weight)), "the length of weights param mismatch with ann search requests")
|
|
}
|
|
weightedScores := map[T]float32{}
|
|
for i, col := range cols {
|
|
if col.size == 0 {
|
|
continue
|
|
}
|
|
normFunc := getNormalizeFunc(weighted.needNorm, searchParams.searchMetrics[i])
|
|
ids := col.ids.([]T)
|
|
for j, id := range ids {
|
|
if score, ok := weightedScores[id]; !ok {
|
|
weightedScores[id] = weighted.weight[i] * normFunc(col.scores[j])
|
|
} else {
|
|
weightedScores[id] = score + weighted.weight[i]*normFunc(col.scores[j])
|
|
}
|
|
}
|
|
}
|
|
if searchParams.isGrouping() {
|
|
return newGroupingIDScores(weightedScores, searchParams, idGroup)
|
|
}
|
|
return newIDScores(weightedScores, searchParams), nil
|
|
}
|
|
|
|
func (weighted *WeightedFunction[T]) Process(ctx context.Context, searchParams *SearchParams, inputs *rerankInputs) (*rerankOutputs, error) {
|
|
outputs := newRerankOutputs(searchParams)
|
|
for _, cols := range inputs.data {
|
|
for i, col := range cols {
|
|
metricType := searchParams.searchMetrics[i]
|
|
for j, score := range col.scores {
|
|
col.scores[j] = toGreaterScore(score, metricType)
|
|
}
|
|
}
|
|
idScore, err := weighted.processOneSearchData(ctx, searchParams, cols, inputs.idGroupValue)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
appendResult(outputs, idScore.ids, idScore.scores)
|
|
}
|
|
return outputs, nil
|
|
}
|
|
|
|
type normalizeFunc func(float32) float32
|
|
|
|
func getNormalizeFunc(normScore bool, metrics string) normalizeFunc {
|
|
if !normScore {
|
|
return func(distance float32) float32 {
|
|
return distance
|
|
}
|
|
}
|
|
switch metrics {
|
|
case metric.COSINE:
|
|
return func(distance float32) float32 {
|
|
return (1 + distance) * 0.5
|
|
}
|
|
case metric.IP:
|
|
return func(distance float32) float32 {
|
|
return 0.5 + float32(math.Atan(float64(distance)))/math.Pi
|
|
}
|
|
case metric.BM25:
|
|
return func(distance float32) float32 {
|
|
return 2 * float32(math.Atan(float64(distance))) / math.Pi
|
|
}
|
|
default:
|
|
return func(distance float32) float32 {
|
|
return 1.0 - 2*float32(math.Atan(float64(distance)))/math.Pi
|
|
}
|
|
}
|
|
}
|