milvus/tests/python_client/testcases/test_collection_20.py
binbin eff75c7701
Replace sdk source and merge tests and tests20 (#7182)
Signed-off-by: Binbin Lv <binbin.lv@zilliz.com>
2021-08-20 11:00:56 +08:00

1244 lines
60 KiB
Python

import numpy
import pandas as pd
import pytest
from pymilvus import DataType
from base.client_base import TestcaseBase
from utils.util_log import test_log as log
from common import common_func as cf
from common import common_type as ct
from common.common_type import CaseLabel, CheckTasks
prefix = "collection"
exp_name = "name"
exp_schema = "schema"
exp_num = "num_entities"
exp_primary = "primary"
default_schema = cf.gen_default_collection_schema()
default_binary_schema = cf.gen_default_binary_collection_schema()
class TestCollectionParams(TestcaseBase):
""" Test case of collection interface """
@pytest.fixture(scope="function", params=ct.get_invalid_strs)
def get_none_removed_invalid_strings(self, request):
if request.param is None:
pytest.skip("None schema is valid")
yield request.param
@pytest.fixture(scope="function", params=ct.get_invalid_strs)
def get_invalid_type_fields(self, request):
if isinstance(request.param, list):
pytest.skip("list is valid fields")
yield request.param
@pytest.fixture(scope="function", params=cf.gen_all_type_fields())
def get_unsupported_primary_field(self, request):
if request.param.dtype == DataType.INT64:
pytest.skip("int64 type is valid primary key")
yield request.param
@pytest.fixture(scope="function", params=ct.get_invalid_strs)
def get_invalid_dim(self, request):
if request.param == 1:
pytest.skip("1 is valid dim")
yield request.param
@pytest.mark.tags(CaseLabel.L0)
def test_collection(self):
"""
target: test collection with default schema
method: create collection with default schema
expected: assert collection property
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
self.collection_wrap.init_collection(c_name, schema=default_schema,
check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: default_schema, exp_num: 0,
exp_primary: ct.default_int64_field_name})
assert c_name, _ in self.utility_wrap.list_collections()
@pytest.mark.tags(CaseLabel.L0)
@pytest.mark.xfail(reason="exception not MilvusException")
def test_collection_empty_name(self):
"""
target: test collection with empty name
method: create collection with a empty name
expected: raise exception
"""
self._connect()
c_name = ""
error = {ct.err_code: 1, ct.err_msg: f'`collection_name` value is illegal'}
self.collection_wrap.init_collection(c_name, schema=default_schema, check_task=CheckTasks.err_res,
check_items=error)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.xfail(reason="exception not MilvusException")
@pytest.mark.parametrize("name", [[], 1, [1, "2", 3], (1,), {1: 1}, None])
def test_collection_illegal_name(self, name):
"""
target: test collection with illegal name
method: create collection with illegal name
expected: raise exception
"""
self._connect()
error = {ct.err_code: 1, ct.err_msg: "`collection_name` value {} is illegal".format(name)}
self.collection_wrap.init_collection(name, schema=default_schema, check_task=CheckTasks.err_res,
check_items=error)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("name", ["12-s", "12 s", "(mn)", "中文", "%$#", "a".join("a" for i in range(256))])
def test_collection_invalid_name(self, name):
"""
target: test collection with invalid name
method: create collection with invalid name
expected: raise exception
"""
self._connect()
error = {ct.err_code: 1, ct.err_msg: "Invalid collection name: {}".format(name)}
self.collection_wrap.init_collection(name, schema=default_schema, check_task=CheckTasks.err_res,
check_items=error)
@pytest.mark.tags(CaseLabel.L0)
def test_collection_dup_name(self):
"""
target: test collection with dup name
method: create collection with dup name and none schema and data
expected: collection properties consistent
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
collection_w = self.init_collection_wrap(name=c_name, check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: default_schema})
self.collection_wrap.init_collection(collection_w.name)
assert collection_w.name == self.collection_wrap.name
assert collection_w.schema == self.collection_wrap.schema
assert collection_w.num_entities == self.collection_wrap.num_entities
assert collection_w.name, _ in self.utility_wrap.list_collections()[0]
@pytest.mark.tags(CaseLabel.L1)
def test_collection_dup_name_with_desc(self):
"""
target: test collection with dup name
method: 1. default schema with desc 2. dup name collection
expected: desc consistent
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
schema = cf.gen_default_collection_schema(description=ct.collection_desc)
collection_w = self.init_collection_wrap(name=c_name, schema=schema,
check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: schema})
self.collection_wrap.init_collection(c_name,
check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: schema})
assert collection_w.description == self.collection_wrap.description
@pytest.mark.tags(CaseLabel.L1)
def test_collection_dup_name_new_schema(self):
"""
target: test collection with dup name and new schema
method: 1.create collection with default schema
2. collection with dup name and new schema
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
self.init_collection_wrap(name=c_name, check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: default_schema})
fields = [cf.gen_int64_field(is_primary=True)]
schema = cf.gen_collection_schema(fields=fields)
error = {ct.err_code: 0, ct.err_msg: "The collection already exist, but the schema is not the same as the "
"schema passed in."}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_dup_name_new_primary(self):
"""
target: test collection with dup name and new primary_field schema
method: 1.collection with default schema
2. collection with same fields and new primary_field schema
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
int_field_one = cf.gen_int64_field()
int_field_two = cf.gen_int64_field(name="int2")
fields = [int_field_one, int_field_two, cf.gen_float_vec_field()]
schema = cf.gen_collection_schema(fields, primary_field=int_field_one.name)
collection_w = self.init_collection_wrap(name=c_name, schema=schema,
check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: schema,
exp_primary: int_field_one.name})
new_schema = cf.gen_collection_schema(fields, primary_field=int_field_two.name)
error = {ct.err_code: 0, ct.err_msg: "The collection already exist, but the schema is not the same as the "
"schema passed in."}
self.collection_wrap.init_collection(c_name, schema=new_schema, check_task=CheckTasks.err_res,
check_items=error)
assert collection_w.primary_field.name == int_field_one.name
@pytest.mark.tags(CaseLabel.L1)
def test_collection_dup_name_new_dim(self):
"""
target: test collection with dup name and new dim schema
method: 1. default schema 2. schema with new dim
expected: raise exception
"""
self._connect()
new_dim = 120
c_name = cf.gen_unique_str(prefix)
collection_w = self.init_collection_wrap(name=c_name, check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: default_schema})
schema = cf.gen_default_collection_schema()
new_fields = cf.gen_float_vec_field(dim=new_dim)
schema.fields[-1] = new_fields
error = {ct.err_code: 0, ct.err_msg: "The collection already exist, but the schema is not the same as the "
"schema passed in."}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
dim = collection_w.schema.fields[-1].params['dim']
assert dim == ct.default_dim
@pytest.mark.tags(CaseLabel.L2)
def test_collection_dup_name_invalid_schema_type(self, get_none_removed_invalid_strings):
"""
target: test collection with dup name and invalid schema
method: 1. default schema 2. invalid schema
expected: raise exception and
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
collection_w = self.init_collection_wrap(name=c_name, check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: default_schema})
error = {ct.err_code: 0, ct.err_msg: "Schema type must be schema.CollectionSchema"}
schema = get_none_removed_invalid_strings
self.collection_wrap.init_collection(collection_w.name, schema=schema,
check_task=CheckTasks.err_res, check_items=error)
assert collection_w.name == c_name
@pytest.mark.tags(CaseLabel.L1)
def test_collection_dup_name_same_schema(self):
"""
target: test collection with dup name and same schema
method: dup name and same schema
expected: two collection object is available
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
collection_w = self.init_collection_wrap(name=c_name, schema=default_schema,
check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: default_schema})
self.collection_wrap.init_collection(name=c_name, schema=default_schema,
check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: default_schema})
assert collection_w.name == self.collection_wrap.name
@pytest.mark.tags(CaseLabel.L0)
def test_collection_none_schema(self):
"""
target: test collection with none schema
method: create collection with none schema
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
error = {ct.err_code: 0, ct.err_msg: "Should be passed into the schema"}
self.collection_wrap.init_collection(c_name, schema=None, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L0)
def test_collection_invalid_type_schema(self, get_none_removed_invalid_strings):
"""
target: test collection with invalid schema
method: create collection with non-CollectionSchema type schema
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
error = {ct.err_code: 0, ct.err_msg: "Schema type must be schema.CollectionSchema"}
self.collection_wrap.init_collection(c_name, schema=get_none_removed_invalid_strings,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_invalid_type_fields(self, get_invalid_type_fields):
"""
target: test collection with invalid fields type, non-list
method: create collection schema with non-list invalid fields
expected: exception
"""
self._connect()
fields = get_invalid_type_fields
error = {ct.err_code: 0, ct.err_msg: "The fields of schema must be type list"}
self.collection_schema_wrap.init_collection_schema(fields=fields,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_with_unknown_type(self):
"""
target: test collection with unknown type
method: create with DataType.UNKNOWN
expected: raise exception
"""
self._connect()
error = {ct.err_code: 0, ct.err_msg: "Field dtype must be of DataType"}
self.field_schema_wrap.init_field_schema(name="unknown", dtype=DataType.UNKNOWN,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.xfail(reason="exception not MilvusException")
@pytest.mark.parametrize("name", [[], 1, (1,), {1: 1}, "12-s"])
def test_collection_invalid_type_field(self, name):
"""
target: test collection with invalid field name
method: invalid string name
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
field, _ = self.field_schema_wrap.init_field_schema(name=name, dtype=5, is_primary=True)
vec_field = cf.gen_float_vec_field()
schema = cf.gen_collection_schema(fields=[field, vec_field])
error = {ct.err_code: 1, ct.err_msg: "expected one of: bytes, unicode"}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("name", ["12-s", "12 s", "(mn)", "中文", "%$#", "a".join("a" for i in range(256))])
def test_collection_invalid_field_name(self, name):
"""
target: test collection with invalid field name
method: invalid string name
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
field, _ = self.field_schema_wrap.init_field_schema(name=name, dtype=DataType.INT64, is_primary=True)
vec_field = cf.gen_float_vec_field()
schema = cf.gen_collection_schema(fields=[field, vec_field])
error = {ct.err_code: 1, ct.err_msg: "Invalid field name"}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.xfail(reason="exception not MilvusException")
def test_collection_none_field_name(self):
"""
target: test field schema with None name
method: None field name
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
field, _ = self.field_schema_wrap.init_field_schema(name=None, dtype=DataType.INT64, is_primary=True)
schema = cf.gen_collection_schema(fields=[field, cf.gen_float_vec_field()])
error = {ct.err_code: 1, ct.err_msg: "You should specify the name of field"}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("dtype", [6, [[]], {}, (), "", "a"])
def test_collection_invalid_field_type(self, dtype):
"""
target: test collection with invalid field type
method: invalid DataType
expected: raise exception
"""
self._connect()
error = {ct.err_code: 0, ct.err_msg: "Field dtype must be of DataType"}
self.field_schema_wrap.init_field_schema(name="test", dtype=dtype, is_primary=True,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.xfail(reason="exception not MilvusException")
def test_collection_field_dtype_float_value(self):
"""
target: test collection with float type
method: create field with float type
expected:
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
field, _ = self.field_schema_wrap.init_field_schema(name=ct.default_int64_field_name, dtype=5.0,
is_primary=True)
schema = cf.gen_collection_schema(fields=[field, cf.gen_float_vec_field()])
error = {ct.err_code: 0, ct.err_msg: "Field type must be of DataType!"}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L0)
def test_collection_empty_fields(self):
"""
target: test collection with empty fields
method: create collection with fields = []
expected: exception
"""
self._connect()
error = {ct.err_code: 0, ct.err_msg: "Primary field must in dataframe."}
self.collection_schema_wrap.init_collection_schema(fields=[], primary_field=ct.default_int64_field_name,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_dup_field(self):
"""
target: test collection with dup field name
method: Two FieldSchema have same name
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
field_one = cf.gen_int64_field(is_primary=True)
field_two = cf.gen_int64_field()
schema = cf.gen_collection_schema(fields=[field_one, field_two, cf.gen_float_vec_field()])
error = {ct.err_code: 1, ct.err_msg: "duplicated field name"}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
assert not self.utility_wrap.has_collection(c_name)[0]
@pytest.mark.tags(CaseLabel.L0)
@pytest.mark.parametrize("field", [cf.gen_float_vec_field(), cf.gen_binary_vec_field()])
def test_collection_only_vector_field(self, field):
"""
target: test collection just with vec field
method: create with float-vec fields
expected: raise exception
"""
self._connect()
error = {ct.err_code: 0, ct.err_msg: "Primary field must in dataframe"}
self.collection_schema_wrap.init_collection_schema([field], check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_multi_float_vectors(self):
"""
target: test collection with multi float vectors
method: create collection with two float-vec fields
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
fields = [cf.gen_int64_field(is_primary=True), cf.gen_float_vec_field(), cf.gen_float_vec_field(name="tmp")]
schema = cf.gen_collection_schema(fields=fields, auto_id=True)
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: schema})
@pytest.mark.tags(CaseLabel.L1)
def test_collection_mix_vectors(self):
"""
target: test collection with mix vectors
method: create with float and binary vec
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
fields = [cf.gen_int64_field(is_primary=True), cf.gen_float_vec_field(), cf.gen_binary_vec_field()]
schema = cf.gen_collection_schema(fields=fields, auto_id=True)
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: schema})
@pytest.mark.tags(CaseLabel.L0)
def test_collection_without_vectors(self):
"""
target: test collection without vectors
method: create collection only with int field
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
schema = cf.gen_collection_schema([cf.gen_int64_field(is_primary=True)])
error = {ct.err_code: 0, ct.err_msg: "No vector field is found."}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_without_primary_field(self):
"""
target: test collection without primary field
method: no primary field specified in collection schema and fields
expected: raise exception
"""
self._connect()
int_fields, _ = self.field_schema_wrap.init_field_schema(name=ct.default_int64_field_name, dtype=DataType.INT64)
vec_fields, _ = self.field_schema_wrap.init_field_schema(name=ct.default_float_vec_field_name,
dtype=DataType.FLOAT_VECTOR, dim=ct.default_dim)
error = {ct.err_code: 0, ct.err_msg: "Primary field must in dataframe."}
self.collection_schema_wrap.init_collection_schema([int_fields, vec_fields],
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_is_primary_false(self):
"""
target: test collection with all is_primary false
method: set all fields if_primary false
expected: raise exception
"""
self._connect()
fields = [cf.gen_int64_field(is_primary=False), cf.gen_float_field(is_primary=False),
cf.gen_float_vec_field(is_primary=False)]
error = {ct.err_code: 0, ct.err_msg: "Primary field must in dataframe."}
self.collection_schema_wrap.init_collection_schema(fields, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("is_primary", ct.get_invalid_strs)
def test_collection_invalid_is_primary(self, is_primary):
"""
target: test collection with invalid primary
method: define field with is_primary=non-bool
expected: raise exception
"""
self._connect()
name = cf.gen_unique_str(prefix)
error = {ct.err_code: 0, ct.err_msg: "Param is_primary must be bool type"}
self.field_schema_wrap.init_field_schema(name=name, dtype=DataType.INT64, is_primary=is_primary,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("primary_field", ["12-s", "12 s", "(mn)", "中文", "%$#", "a".join("a" for i in range(256))])
def test_collection_invalid_primary_field(self, primary_field):
"""
target: test collection with invalid primary_field
method: specify invalid string primary_field in collection schema
expected: raise exception
"""
self._connect()
fields = [cf.gen_int64_field(), cf.gen_float_vec_field()]
error = {ct.err_code: 0, ct.err_msg: "Primary field must in dataframe."}
self.collection_schema_wrap.init_collection_schema(fields=fields, primary_field=primary_field,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("primary_field", [[], 1, [1, "2", 3], (1,), {1: 1}, None])
def test_collection_non_string_primary_field(self, primary_field):
"""
target: test collection with non-string primary_field
method: primary_field type is not string
expected: raise exception
"""
self._connect()
fields = [cf.gen_int64_field(), cf.gen_float_vec_field()]
error = {ct.err_code: 0, ct.err_msg: "Primary field must in dataframe."}
self.collection_schema_wrap.init_collection_schema(fields, primary_field=primary_field,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_not_existed_primary_field(self):
"""
target: test collection with not exist primary field
method: specify not existed field as primary_field
expected: raise exception
"""
self._connect()
fake_field = cf.gen_unique_str()
fields = [cf.gen_int64_field(), cf.gen_float_vec_field()]
error = {ct.err_code: 0, ct.err_msg: "Primary field must in dataframe."}
self.collection_schema_wrap.init_collection_schema(fields, primary_field=fake_field,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L0)
def test_collection_primary_in_schema(self):
"""
target: test collection with primary field
method: specify primary field in CollectionSchema
expected: collection.primary_field
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
schema = cf.gen_default_collection_schema(primary_field=ct.default_int64_field_name)
self.collection_wrap.init_collection(c_name, schema=schema)
assert self.collection_wrap.primary_field.name == ct.default_int64_field_name
@pytest.mark.tags(CaseLabel.L0)
def test_collection_primary_in_field(self):
"""
target: test collection with primary field
method: specify primary field in FieldSchema
expected: collection.primary_field
"""
self._connect()
fields = [cf.gen_int64_field(is_primary=True), cf.gen_float_field(), cf.gen_float_vec_field()]
schema, _ = self.collection_schema_wrap.init_collection_schema(fields)
self.collection_wrap.init_collection(cf.gen_unique_str(prefix), schema=schema)
assert self.collection_wrap.primary_field.name == ct.default_int64_field_name
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.xfail(reason="exception not MilvusException")
def test_collection_unsupported_primary_field(self, get_unsupported_primary_field):
"""
target: test collection with unsupported primary field type
method: specify non-int64 as primary field
expected: raise exception
"""
self._connect()
field = get_unsupported_primary_field
vec_field = cf.gen_float_vec_field(name="vec")
error = {ct.err_code: 1, ct.err_msg: "Primary key type must be DataType.INT64."}
self.collection_schema_wrap.init_collection_schema(fields=[field, vec_field], primary_field=field.name,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_multi_primary_fields(self):
"""
target: test collection with multi primary
method: collection with two primary fields
expected: raise exception
"""
self._connect()
int_field_one = cf.gen_int64_field(is_primary=True)
int_field_two = cf.gen_int64_field(name="int2", is_primary=True)
error = {ct.err_code: 0, ct.err_msg: "Primary key field can only be one."}
self.collection_schema_wrap.init_collection_schema(fields=[int_field_one, int_field_two, cf.gen_float_vec_field()],
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_primary_inconsistent(self):
"""
target: test collection with different primary field setting
method: 1. set A field is_primary 2. set primary_field is B
expected: raise exception
"""
self._connect()
int_field_one = cf.gen_int64_field(is_primary=True)
int_field_two = cf.gen_int64_field(name="int2")
fields = [int_field_one, int_field_two, cf.gen_float_vec_field()]
error = {ct.err_code: 0, ct.err_msg: "Primary key field can only be one"}
self.collection_schema_wrap.init_collection_schema(fields, primary_field=int_field_two.name,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_primary_consistent(self):
"""
target: test collection with both collection schema and field schema
method: 1. set A field is_primary 2.set primary_field is A
expected: verify primary field
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
int_field_one = cf.gen_int64_field(is_primary=True)
schema = cf.gen_collection_schema(fields=[int_field_one, cf.gen_float_vec_field()],
primary_field=int_field_one.name)
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: schema})
@pytest.mark.tags(CaseLabel.L0)
@pytest.mark.parametrize("auto_id", [True, False])
def test_collection_auto_id_in_field_schema(self, auto_id):
"""
target: test collection with auto_id in field schema
method: specify auto_id True in field schema
expected: verify schema's auto_id
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
int_field = cf.gen_int64_field(is_primary=True, auto_id=auto_id)
vec_field = cf.gen_float_vec_field(name='vec')
schema, _ = self.collection_schema_wrap.init_collection_schema([int_field, vec_field])
assert schema.auto_id == auto_id
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: schema})
@pytest.mark.tags(CaseLabel.L0)
@pytest.mark.parametrize("auto_id", [True, False])
def test_collection_auto_id_in_collection_schema(self, auto_id):
"""
target: test collection with auto_id in collection schema
method: specify auto_id True in collection schema
expected: verify schema auto_id and collection schema
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
int_field = cf.gen_int64_field(is_primary=True)
vec_field = cf.gen_float_vec_field(name='vec')
schema, _ = self.collection_schema_wrap.init_collection_schema([int_field, vec_field], auto_id=auto_id)
assert schema.auto_id == auto_id
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: schema})
@pytest.mark.tags(CaseLabel.L0)
def test_collection_auto_id_non_primary_field(self):
"""
target: test collection set auto_id in non-primary field
method: set auto_id=True in non-primary field
expected: raise exception
"""
self._connect()
error = {ct.err_code: 0, ct.err_msg: "auto_id can only be specified on the primary key field"}
self.field_schema_wrap.init_field_schema(name=ct.default_int64_field_name, dtype=DataType.INT64, auto_id=True,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_auto_id_false_non_primary(self):
"""
target: test collection set auto_id in non-primary field
method: set auto_id=True in non-primary field
expected: verify schema auto_id is False
"""
self._connect()
int_field_one = cf.gen_int64_field(is_primary=True)
int_field_two = cf.gen_int64_field(name='int2', auto_id=False)
fields = [int_field_one, int_field_two, cf.gen_float_vec_field()]
schema, _ = self.collection_schema_wrap.init_collection_schema(fields)
assert not schema.auto_id
@pytest.mark.tags(CaseLabel.L1)
def test_collection_auto_id_inconsistent(self):
"""
target: test collection auto_id with both collection schema and field schema
method: 1.set primary field auto_id=True in field schema 2.set auto_id=False in collection schema
expected: raise exception
"""
self._connect()
int_field = cf.gen_int64_field(is_primary=True, auto_id=True)
vec_field = cf.gen_float_vec_field(name='vec')
error = {ct.err_code: 0, ct.err_msg: "The auto_id of the collection is inconsistent with "
"the auto_id of the primary key field"}
self.collection_schema_wrap.init_collection_schema([int_field, vec_field], auto_id=False,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("auto_id", [True, False])
def test_collection_auto_id_consistent(self, auto_id):
"""
target: test collection auto_id with both collection schema and field schema
method: set auto_id=True/False both field and schema
expected: verify auto_id
"""
self._connect()
int_field = cf.gen_int64_field(is_primary=True, auto_id=auto_id)
vec_field = cf.gen_float_vec_field(name='vec')
schema, _ = self.collection_schema_wrap.init_collection_schema([int_field, vec_field], auto_id=auto_id)
assert schema.auto_id == auto_id
@pytest.mark.tags(CaseLabel.L1)
def test_collection_auto_id_none_in_field(self):
"""
target: test collection with auto_id is None
method: set auto_id=None
expected: raise exception
"""
self._connect()
error = {ct.err_code: 0, ct.err_msg: "Param auto_id must be bool type"}
self.field_schema_wrap.init_field_schema(name=ct.default_int64_field_name, dtype=DataType.INT64,
is_primary=True,
auto_id=None, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("auto_id", ct.get_invalid_strs)
def test_collection_invalid_auto_id(self, auto_id):
"""
target: test collection with invalid auto_id
method: define field with auto_id=non-bool
expected: raise exception
"""
self._connect()
int_field = cf.gen_int64_field(is_primary=True)
vec_field = cf.gen_float_vec_field(name='vec')
error = {ct.err_code: 0, ct.err_msg: "Param auto_id must be bool type"}
self.collection_schema_wrap.init_collection_schema([int_field, vec_field], auto_id=auto_id,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_multi_fields_auto_id(self):
"""
target: test collection auto_id with multi fields
method: specify auto_id=True for multi int64 fields
expected: todo raise exception
"""
self._connect()
error = {ct.err_code: 0, ct.err_msg: "auto_id can only be specified on the primary key field"}
cf.gen_int64_field(is_primary=True, auto_id=True)
self.field_schema_wrap.init_field_schema(name="int", dtype=DataType.INT64, auto_id=True,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("dtype", [DataType.FLOAT_VECTOR, DataType.BINARY_VECTOR])
def test_collection_vector_without_dim(self, dtype):
"""
target: test collection without dimension
method: define vector field without dim
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
float_vec_field, _ = self.field_schema_wrap.init_field_schema(name="vec", dtype=dtype)
schema = cf.gen_collection_schema(fields=[cf.gen_int64_field(is_primary=True), float_vec_field])
error = {ct.err_code: 1, ct.err_msg: "dimension is not defined in field type params"}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.xfail(reason="exception not MilvusException")
def test_collection_vector_invalid_dim(self, get_invalid_dim):
"""
target: test collection with invalid dimension
method: define float-vec field with invalid dimension
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
float_vec_field = cf.gen_float_vec_field(dim=get_invalid_dim)
schema = cf.gen_collection_schema(fields=[cf.gen_int64_field(is_primary=True), float_vec_field])
error = {ct.err_code: 1, ct.err_msg: f'invalid dim: {get_invalid_dim}'}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("dim", [-1, 0, 32769])
def test_collection_vector_out_bounds_dim(self, dim):
"""
target: test collection with out of bounds dim
method: invalid dim -1 and 32759
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
float_vec_field = cf.gen_float_vec_field(dim=dim)
schema = cf.gen_collection_schema(fields=[cf.gen_int64_field(is_primary=True), float_vec_field])
error = {ct.err_code: 1, ct.err_msg: "invalid dimension: {}. should be in range 1 ~ 32768".format(dim)}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_non_vector_field_dim(self):
"""
target: test collection with dim for non-vector field
method: define int64 field with dim
expected: no exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
int_field, _ = self.field_schema_wrap.init_field_schema(name=ct.default_int64_field_name, dtype=DataType.INT64,
dim=ct.default_dim)
float_vec_field = cf.gen_float_vec_field()
schema = cf.gen_collection_schema(fields=[int_field, float_vec_field], primary_field=ct.default_int64_field_name)
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: schema})
@pytest.mark.tags(CaseLabel.L1)
def test_collection_desc(self):
"""
target: test collection with description
method: create with description
expected: assert default description
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
schema = cf.gen_default_collection_schema(description=ct.collection_desc)
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: schema})
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.xfail(reason="exception not MilvusException")
def test_collection_none_desc(self):
"""
target: test collection with none description
method: create with none description
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
schema = cf.gen_default_collection_schema(description=None)
error = {ct.err_code: 1, ct.err_msg: "None has type NoneType, but expected one of: bytes, unicode"}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_long_desc(self):
"""
target: test collection with long desc
method: create with long desc
expected:
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
desc = "a".join("a" for _ in range(256))
schema = cf.gen_default_collection_schema(description=desc)
self.collection_wrap.init_collection(c_name, schema=schema,
check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: schema})
@pytest.mark.tags(CaseLabel.L0)
def test_collection_binary(self):
"""
target: test collection with binary-vec
method: create collection with binary field
expected: assert binary field
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
self.collection_wrap.init_collection(c_name, schema=default_binary_schema,
check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: default_binary_schema})
assert c_name, _ in self.utility_wrap.list_collections()
class TestCollectionOperation(TestcaseBase):
"""
******************************************************************
The following cases are used to test collection interface operations
******************************************************************
"""
# def teardown_method(self):
# if self.self.collection_wrap is not None and self.self.collection_wrap.collection is not None:
# self.self.collection_wrap.drop()
@pytest.mark.tags(CaseLabel.L1)
def test_collection_without_connection(self):
"""
target: test collection without connection
method: 1.create collection after connection removed
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
self.connection_wrap.remove_connection(ct.default_alias)
res_list, _ = self.connection_wrap.list_connections()
assert ct.default_alias not in res_list
error = {ct.err_code: 0, ct.err_msg: 'should create connect first'}
self.collection_wrap.init_collection(c_name, schema=default_schema,
check_task=CheckTasks.err_res, check_items=error)
assert self.collection_wrap.collection is None
@pytest.mark.tags(CaseLabel.L2)
def test_collection_multi_create_drop(self):
"""
target: test cycle creation and deletion of multiple collections
method: in a loop, collections are created and deleted sequentially
expected: no exception
"""
self._connect()
c_num = 20
for _ in range(c_num):
c_name = cf.gen_unique_str(prefix)
self.collection_wrap.init_collection(c_name, schema=default_schema,
check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: default_schema})
self.collection_wrap.drop()
assert c_name, _ not in self.utility_wrap.list_collections()
@pytest.mark.tags(CaseLabel.L1)
def test_collection_dup_name_drop(self):
"""
target: test collection with dup name, and drop
method: 1. two dup name collection object
2. one object drop collection
expected: collection dropped
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
collection_w = self.init_collection_wrap(name=c_name, check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: default_schema})
self.collection_wrap.init_collection(c_name, check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: default_schema})
self.collection_wrap.drop()
assert not self.utility_wrap.has_collection(c_name)[0]
error = {ct.err_code: 1, ct.err_msg: f'HasPartition failed: can\'t find collection: {c_name}'}
collection_w.has_partition("p", check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_after_drop(self):
"""
target: test create collection after create and drop
method: 1. create a 2. drop a 3, re-create a
expected: no exception
"""
c_name = cf.gen_unique_str(prefix)
collection_w = self.init_collection_wrap(name=c_name, check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: default_schema})
collection_w.drop()
assert not self.utility_wrap.has_collection(collection_w.name)[0]
self.init_collection_wrap(name=c_name, check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: default_schema})
assert self.utility_wrap.has_collection(c_name)[0]
class TestCollectionDataframe(TestcaseBase):
"""
******************************************************************
The following cases are used to test construct_from_dataframe
******************************************************************
"""
@pytest.fixture(scope="function", params=ct.get_invalid_strs)
def get_non_df(self, request):
if request.param is None:
pytest.skip("skip None")
yield request.param
@pytest.mark.tags(CaseLabel.L0)
def test_construct_from_dataframe(self):
"""
target: test collection with dataframe data
method: create collection and insert with dataframe
expected: collection num entities equal to nb
"""
conn = self._connect()
c_name = cf.gen_unique_str(prefix)
df = cf.gen_default_dataframe_data(ct.default_nb)
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=ct.default_int64_field_name,
check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: default_schema})
conn.flush([c_name])
assert self.collection_wrap.num_entities == ct.default_nb
@pytest.mark.tags(CaseLabel.L0)
def test_construct_from_binary_dataframe(self):
"""
target: test binary collection with dataframe
method: create binary collection with dataframe
expected: collection num entities equal to nb
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
df, _ = cf.gen_default_binary_dataframe_data(nb=ct.default_nb)
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=ct.default_int64_field_name,
check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: default_binary_schema})
assert self.collection_wrap.num_entities == ct.default_nb
@pytest.mark.tags(CaseLabel.L1)
def test_construct_from_none_dataframe(self):
"""
target: test create collection by empty dataframe
method: invalid dataframe type create collection
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
error = {ct.err_code: 0, ct.err_msg: "Dataframe can not be None."}
self.collection_wrap.construct_from_dataframe(c_name, None, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_construct_from_dataframe_only_column(self):
"""
target: test collection with dataframe only columns
method: dataframe only has columns
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
df = pd.DataFrame(columns=[ct.default_int64_field_name, ct.default_float_vec_field_name])
error = {ct.err_code: 0, ct.err_msg: "Cannot infer schema from empty dataframe"}
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=ct.default_int64_field_name,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_construct_from_inconsistent_dataframe(self):
"""
target: test collection with data inconsistent
method: create and insert with inconsistent data
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
# one field different type df
mix_data = [(1, 2., [0.1, 0.2]), (2, 3., 4)]
df = pd.DataFrame(data=mix_data, columns=list("ABC"))
error = {ct.err_code: 0, ct.err_msg: "The data in the same column must be of the same type"}
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field='A', check_task=CheckTasks.err_res,
check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_construct_from_non_dataframe(self, get_non_df):
"""
target: test create collection by invalid dataframe
method: non-dataframe type create collection
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
error = {ct.err_code: 0, ct.err_msg: "Data type must be pandas.DataFrame."}
df = get_non_df
self.collection_wrap.construct_from_dataframe(c_name, df, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_construct_from_data_type_dataframe(self):
"""
target: test collection with invalid dataframe
method: create with invalid dataframe
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
df = pd.DataFrame({"date": pd.date_range('20210101', periods=3), ct.default_int64_field_name: [1, 2, 3]})
error = {ct.err_code: 0, ct.err_msg: "Cannot infer schema from empty dataframe."}
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=ct.default_int64_field_name,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_construct_from_invalid_field_name(self):
"""
target: test collection with invalid field name
method: create with invalid field name dataframe
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
df = pd.DataFrame({'%$#': cf.gen_vectors(3, 2), ct.default_int64_field_name: [1, 2, 3]})
error = {ct.err_code: 1, ct.err_msg: "Invalid field name"}
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=ct.default_int64_field_name,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_construct_none_primary_field(self):
"""
target: test collection with none primary field
method: primary_field is none
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
df = cf.gen_default_dataframe_data(ct.default_nb)
error = {ct.err_code: 0, ct.err_msg: "Schema must have a primary key field."}
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=None,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_construct_not_existed_primary_field(self):
"""
target: test collection with not existed primary field
method: primary field not existed
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
df = cf.gen_default_dataframe_data(ct.default_nb)
error = {ct.err_code: 0, ct.err_msg: "Primary field must in dataframe."}
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=c_name,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_construct_with_none_auto_id(self):
"""
target: test construct with non-int64 as primary field
method: non-int64 as primary field
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
df = cf.gen_default_dataframe_data(ct.default_nb)
error = {ct.err_code: 0, ct.err_msg: "Param auto_id must be bool type"}
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=ct.default_int64_field_name,
auto_id=None, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_construct_auto_id_true_insert(self):
"""
target: test construct with true auto_id
method: auto_id=True and insert values
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
df = cf.gen_default_dataframe_data(nb=100)
error = {ct.err_code: 0, ct.err_msg: "Auto_id is True, primary field should not have data."}
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=ct.default_int64_field_name,
auto_id=True, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_construct_auto_id_true_no_insert(self):
"""
target: test construct with true auto_id
method: auto_id=True and not insert ids(primary fields all values are None)
expected: verify num entities
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
df = cf.gen_default_dataframe_data(ct.default_nb)
# df.drop(ct.default_int64_field_name, axis=1, inplace=True)
df[ct.default_int64_field_name] = None
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=ct.default_int64_field_name,
auto_id=True)
assert self.collection_wrap.num_entities == ct.default_nb
@pytest.mark.tags(CaseLabel.L2)
def test_construct_none_value_auto_id_true(self):
"""
target: test construct with none value, auto_id
method: df primary field with none value, auto_id=true
expected: todo
"""
self._connect()
nb = 100
df = cf.gen_default_dataframe_data(nb)
df.iloc[:, 0] = numpy.NaN
res, _ = self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df,
primary_field=ct.default_int64_field_name, auto_id=True)
mutation_res = res[1]
assert cf._check_primary_keys(mutation_res.primary_keys, 100)
assert self.collection_wrap.num_entities == nb
@pytest.mark.tags(CaseLabel.L1)
def test_construct_auto_id_false(self):
"""
target: test construct with false auto_id
method: auto_id=False, primary_field correct
expected: verify auto_id
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
df = cf.gen_default_dataframe_data(ct.default_nb)
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=ct.default_int64_field_name,
auto_id=False)
assert not self.collection_wrap.schema.auto_id
assert self.collection_wrap.num_entities == ct.default_nb
@pytest.mark.tags(CaseLabel.L1)
def test_construct_none_value_auto_id_false(self):
"""
target: test construct with none value, auto_id
method: df primary field with none value, auto_id=false
expected: raise exception
"""
self._connect()
nb = 100
df = cf.gen_default_dataframe_data(nb)
df.iloc[:, 0] = numpy.NaN
error = {ct.err_code: 0, ct.err_msg: "Primary key type must be DataType.INT64"}
self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df,
primary_field=ct.default_int64_field_name, auto_id=False,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_construct_auto_id_false_same_values(self):
"""
target: test construct with false auto_id and same value
method: auto_id=False, primary field same values
expected: verify num entities
"""
self._connect()
nb = 100
df = cf.gen_default_dataframe_data(nb)
df.iloc[1:, 0] = 1
res, _ = self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df,
primary_field=ct.default_int64_field_name, auto_id=False)
collection_w = res[0]
assert collection_w.num_entities == nb
mutation_res = res[1]
assert mutation_res.primary_keys == df[ct.default_int64_field_name].values.tolist()
@pytest.mark.tags(CaseLabel.L1)
def test_construct_auto_id_false_negative_values(self):
"""
target: test construct with negative values
method: auto_id=False, primary field values is negative
expected: verify num entities
"""
self._connect()
nb = 100
df = cf.gen_default_dataframe_data(nb)
new_values = pd.Series(data=[i for i in range(0, -nb, -1)])
df[ct.default_int64_field_name] = new_values
self.collection_wrap.construct_from_dataframe(cf.gen_unique_str(prefix), df,
primary_field=ct.default_int64_field_name, auto_id=False)
assert self.collection_wrap.num_entities == nb
@pytest.mark.tags(CaseLabel.L1)
def test_construct_from_dataframe_dup_name(self):
"""
target: test collection with dup name and insert dataframe
method: create collection with dup name, none schema, dataframe
expected: two collection object is correct
"""
conn = self._connect()
c_name = cf.gen_unique_str(prefix)
collection_w = self.init_collection_wrap(name=c_name, primary_field=ct.default_int64_field_name,
check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: default_schema})
df = cf.gen_default_dataframe_data(ct.default_nb)
self.collection_wrap.construct_from_dataframe(c_name, df, primary_field=ct.default_int64_field_name,
check_task=CheckTasks.check_collection_property,
check_items={exp_name: c_name, exp_schema: default_schema})
conn.flush([collection_w.name])
assert collection_w.num_entities == ct.default_nb
assert collection_w.num_entities == self.collection_wrap.num_entities