mirror of
https://gitee.com/milvus-io/milvus.git
synced 2025-12-07 17:48:29 +08:00
#31728 --------- Signed-off-by: lixinguo <xinguo.li@zilliz.com> Co-authored-by: lixinguo <xinguo.li@zilliz.com>
825 lines
29 KiB
C++
825 lines
29 KiB
C++
// Licensed to the LF AI & Data foundation under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#pragma once
|
|
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
#include "common/Types.h"
|
|
#include "exec/expression/EvalCtx.h"
|
|
#include "exec/expression/VectorFunction.h"
|
|
#include "exec/expression/Utils.h"
|
|
#include "exec/QueryContext.h"
|
|
#include "expr/ITypeExpr.h"
|
|
#include "query/PlanProto.h"
|
|
|
|
namespace milvus {
|
|
namespace exec {
|
|
|
|
class Expr {
|
|
public:
|
|
Expr(DataType type,
|
|
const std::vector<std::shared_ptr<Expr>>&& inputs,
|
|
const std::string& name)
|
|
: type_(type),
|
|
inputs_(std::move(inputs)),
|
|
name_(name),
|
|
vector_func_(nullptr) {
|
|
}
|
|
|
|
Expr(DataType type,
|
|
const std::vector<std::shared_ptr<Expr>>&& inputs,
|
|
std::shared_ptr<VectorFunction> vec_func,
|
|
const std::string& name)
|
|
: type_(type),
|
|
inputs_(std::move(inputs)),
|
|
name_(name),
|
|
vector_func_(vec_func) {
|
|
}
|
|
virtual ~Expr() = default;
|
|
|
|
const DataType&
|
|
type() const {
|
|
return type_;
|
|
}
|
|
|
|
std::string
|
|
get_name() {
|
|
return name_;
|
|
}
|
|
|
|
virtual void
|
|
Eval(EvalCtx& context, VectorPtr& result) {
|
|
}
|
|
|
|
// Only move cursor to next batch
|
|
// but not do real eval for optimization
|
|
virtual void
|
|
MoveCursor() {
|
|
}
|
|
|
|
protected:
|
|
DataType type_;
|
|
const std::vector<std::shared_ptr<Expr>> inputs_;
|
|
std::string name_;
|
|
std::shared_ptr<VectorFunction> vector_func_;
|
|
};
|
|
|
|
using ExprPtr = std::shared_ptr<milvus::exec::Expr>;
|
|
|
|
using SkipFunc = bool (*)(const milvus::SkipIndex&, FieldId, int);
|
|
|
|
class SegmentExpr : public Expr {
|
|
public:
|
|
SegmentExpr(const std::vector<ExprPtr>&& input,
|
|
const std::string& name,
|
|
const segcore::SegmentInternalInterface* segment,
|
|
const FieldId& field_id,
|
|
int64_t active_count,
|
|
int64_t batch_size)
|
|
: Expr(DataType::BOOL, std::move(input), name),
|
|
segment_(segment),
|
|
field_id_(field_id),
|
|
active_count_(active_count),
|
|
batch_size_(batch_size) {
|
|
size_per_chunk_ = segment_->size_per_chunk();
|
|
AssertInfo(
|
|
batch_size_ > 0,
|
|
fmt::format("expr batch size should greater than zero, but now: {}",
|
|
batch_size_));
|
|
InitSegmentExpr();
|
|
}
|
|
|
|
void
|
|
InitSegmentExpr() {
|
|
auto& schema = segment_->get_schema();
|
|
auto& field_meta = schema[field_id_];
|
|
|
|
if (schema.get_primary_field_id().has_value() &&
|
|
schema.get_primary_field_id().value() == field_id_ &&
|
|
IsPrimaryKeyDataType(field_meta.get_data_type())) {
|
|
is_pk_field_ = true;
|
|
pk_type_ = field_meta.get_data_type();
|
|
}
|
|
|
|
is_index_mode_ = segment_->HasIndex(field_id_);
|
|
if (is_index_mode_) {
|
|
num_index_chunk_ = segment_->num_chunk_index(field_id_);
|
|
}
|
|
// if index not include raw data, also need load data
|
|
if (segment_->HasFieldData(field_id_)) {
|
|
if (segment_->is_chunked()) {
|
|
num_data_chunk_ = segment_->num_chunk_data(field_id_);
|
|
} else {
|
|
num_data_chunk_ = upper_div(active_count_, size_per_chunk_);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
MoveCursorForDataMultipleChunk() {
|
|
int64_t processed_size = 0;
|
|
for (size_t i = current_data_chunk_; i < num_data_chunk_; i++) {
|
|
auto data_pos =
|
|
(i == current_data_chunk_) ? current_data_chunk_pos_ : 0;
|
|
int64_t size = 0;
|
|
if (segment_->type() == SegmentType::Growing) {
|
|
size = (i == (num_data_chunk_ - 1) &&
|
|
active_count_ % size_per_chunk_ != 0)
|
|
? active_count_ % size_per_chunk_ - data_pos
|
|
: size_per_chunk_ - data_pos;
|
|
} else {
|
|
size = segment_->chunk_size(field_id_, i) - data_pos;
|
|
}
|
|
|
|
size = std::min(size, batch_size_ - processed_size);
|
|
|
|
processed_size += size;
|
|
if (processed_size >= batch_size_) {
|
|
current_data_chunk_ = i;
|
|
current_data_chunk_pos_ = data_pos + size;
|
|
break;
|
|
}
|
|
// }
|
|
}
|
|
}
|
|
void
|
|
MoveCursorForDataSingleChunk() {
|
|
if (segment_->type() == SegmentType::Sealed) {
|
|
auto size =
|
|
std::min(active_count_ - current_data_chunk_pos_, batch_size_);
|
|
current_data_chunk_pos_ += size;
|
|
} else {
|
|
int64_t processed_size = 0;
|
|
for (size_t i = current_data_chunk_; i < num_data_chunk_; i++) {
|
|
auto data_pos =
|
|
(i == current_data_chunk_) ? current_data_chunk_pos_ : 0;
|
|
auto size = (i == (num_data_chunk_ - 1) &&
|
|
active_count_ % size_per_chunk_ != 0)
|
|
? active_count_ % size_per_chunk_ - data_pos
|
|
: size_per_chunk_ - data_pos;
|
|
|
|
size = std::min(size, batch_size_ - processed_size);
|
|
|
|
processed_size += size;
|
|
if (processed_size >= batch_size_) {
|
|
current_data_chunk_ = i;
|
|
current_data_chunk_pos_ = data_pos + size;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
MoveCursorForData() {
|
|
if (segment_->is_chunked()) {
|
|
MoveCursorForDataMultipleChunk();
|
|
} else {
|
|
MoveCursorForDataSingleChunk();
|
|
}
|
|
}
|
|
|
|
void
|
|
MoveCursorForIndex() {
|
|
AssertInfo(segment_->type() == SegmentType::Sealed,
|
|
"index mode only for sealed segment");
|
|
auto size =
|
|
std::min(active_count_ - current_index_chunk_pos_, batch_size_);
|
|
|
|
current_index_chunk_pos_ += size;
|
|
}
|
|
|
|
void
|
|
MoveCursor() override {
|
|
if (is_index_mode_) {
|
|
MoveCursorForIndex();
|
|
if (segment_->HasFieldData(field_id_)) {
|
|
MoveCursorForData();
|
|
}
|
|
} else {
|
|
MoveCursorForData();
|
|
}
|
|
}
|
|
|
|
int64_t
|
|
GetNextBatchSize() {
|
|
auto current_chunk = is_index_mode_ && use_index_ ? current_index_chunk_
|
|
: current_data_chunk_;
|
|
auto current_chunk_pos = is_index_mode_ && use_index_
|
|
? current_index_chunk_pos_
|
|
: current_data_chunk_pos_;
|
|
auto current_rows = 0;
|
|
if (segment_->is_chunked()) {
|
|
current_rows =
|
|
is_index_mode_ && use_index_ &&
|
|
segment_->type() == SegmentType::Sealed
|
|
? current_chunk_pos
|
|
: segment_->num_rows_until_chunk(field_id_, current_chunk) +
|
|
current_chunk_pos;
|
|
} else {
|
|
current_rows = current_chunk * size_per_chunk_ + current_chunk_pos;
|
|
}
|
|
return current_rows + batch_size_ >= active_count_
|
|
? active_count_ - current_rows
|
|
: batch_size_;
|
|
}
|
|
|
|
// used for processing raw data expr for sealed segments.
|
|
// now only used for std::string_view && json
|
|
// TODO: support more types
|
|
template <typename T, typename FUNC, typename... ValTypes>
|
|
int64_t
|
|
ProcessChunkForSealedSeg(
|
|
FUNC func,
|
|
std::function<bool(const milvus::SkipIndex&, FieldId, int)> skip_func,
|
|
TargetBitmapView res,
|
|
TargetBitmapView valid_res,
|
|
ValTypes... values) {
|
|
// For sealed segment, only single chunk
|
|
Assert(num_data_chunk_ == 1);
|
|
auto need_size =
|
|
std::min(active_count_ - current_data_chunk_pos_, batch_size_);
|
|
|
|
auto& skip_index = segment_->GetSkipIndex();
|
|
if (!skip_func || !skip_func(skip_index, field_id_, 0)) {
|
|
auto views_info = segment_->get_batch_views<T>(
|
|
field_id_, 0, current_data_chunk_pos_, need_size);
|
|
// first is the raw data, second is valid_data
|
|
// use valid_data to see if raw data is null
|
|
func(views_info.first.data(),
|
|
views_info.second.data(),
|
|
need_size,
|
|
res,
|
|
valid_res,
|
|
values...);
|
|
}
|
|
current_data_chunk_pos_ += need_size;
|
|
return need_size;
|
|
}
|
|
|
|
template <typename T, typename FUNC, typename... ValTypes>
|
|
int64_t
|
|
ProcessDataChunksForSingleChunk(
|
|
FUNC func,
|
|
std::function<bool(const milvus::SkipIndex&, FieldId, int)> skip_func,
|
|
TargetBitmapView res,
|
|
TargetBitmapView valid_res,
|
|
ValTypes... values) {
|
|
int64_t processed_size = 0;
|
|
|
|
if constexpr (std::is_same_v<T, std::string_view> ||
|
|
std::is_same_v<T, Json>) {
|
|
if (segment_->type() == SegmentType::Sealed) {
|
|
return ProcessChunkForSealedSeg<T>(
|
|
func, skip_func, res, valid_res, values...);
|
|
}
|
|
}
|
|
|
|
for (size_t i = current_data_chunk_; i < num_data_chunk_; i++) {
|
|
auto data_pos =
|
|
(i == current_data_chunk_) ? current_data_chunk_pos_ : 0;
|
|
auto size =
|
|
(i == (num_data_chunk_ - 1))
|
|
? (segment_->type() == SegmentType::Growing
|
|
? (active_count_ % size_per_chunk_ == 0
|
|
? size_per_chunk_ - data_pos
|
|
: active_count_ % size_per_chunk_ - data_pos)
|
|
: active_count_ - data_pos)
|
|
: size_per_chunk_ - data_pos;
|
|
|
|
size = std::min(size, batch_size_ - processed_size);
|
|
|
|
auto& skip_index = segment_->GetSkipIndex();
|
|
if (!skip_func || !skip_func(skip_index, field_id_, i)) {
|
|
auto chunk = segment_->chunk_data<T>(field_id_, i);
|
|
const T* data = chunk.data() + data_pos;
|
|
const bool* valid_data = chunk.valid_data();
|
|
if (valid_data != nullptr) {
|
|
valid_data += data_pos;
|
|
}
|
|
func(data,
|
|
valid_data,
|
|
size,
|
|
res + processed_size,
|
|
valid_res + processed_size,
|
|
values...);
|
|
}
|
|
|
|
processed_size += size;
|
|
if (processed_size >= batch_size_) {
|
|
current_data_chunk_ = i;
|
|
current_data_chunk_pos_ = data_pos + size;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return processed_size;
|
|
}
|
|
template <typename T, typename FUNC, typename... ValTypes>
|
|
int64_t
|
|
ProcessDataChunksForMultipleChunk(
|
|
FUNC func,
|
|
std::function<bool(const milvus::SkipIndex&, FieldId, int)> skip_func,
|
|
TargetBitmapView res,
|
|
TargetBitmapView valid_res,
|
|
ValTypes... values) {
|
|
int64_t processed_size = 0;
|
|
|
|
// if constexpr (std::is_same_v<T, std::string_view> ||
|
|
// std::is_same_v<T, Json>) {
|
|
// if (segment_->type() == SegmentType::Sealed) {
|
|
// return ProcessChunkForSealedSeg<T>(
|
|
// func, skip_func, res, values...);
|
|
// }
|
|
// }
|
|
|
|
for (size_t i = current_data_chunk_; i < num_data_chunk_; i++) {
|
|
auto data_pos =
|
|
(i == current_data_chunk_) ? current_data_chunk_pos_ : 0;
|
|
|
|
int64_t size = 0;
|
|
if (segment_->type() == SegmentType::Growing) {
|
|
size = (i == (num_data_chunk_ - 1))
|
|
? (active_count_ % size_per_chunk_ == 0
|
|
? size_per_chunk_ - data_pos
|
|
: active_count_ % size_per_chunk_ - data_pos)
|
|
: size_per_chunk_ - data_pos;
|
|
} else {
|
|
size = segment_->chunk_size(field_id_, i) - data_pos;
|
|
}
|
|
|
|
size = std::min(size, batch_size_ - processed_size);
|
|
|
|
auto& skip_index = segment_->GetSkipIndex();
|
|
if (!skip_func || !skip_func(skip_index, field_id_, i)) {
|
|
bool is_seal = false;
|
|
if constexpr (std::is_same_v<T, std::string_view> ||
|
|
std::is_same_v<T, Json>) {
|
|
if (segment_->type() == SegmentType::Sealed) {
|
|
// first is the raw data, second is valid_data
|
|
// use valid_data to see if raw data is null
|
|
auto data_vec = segment_
|
|
->get_batch_views<T>(
|
|
field_id_, i, data_pos, size)
|
|
.first;
|
|
auto valid_data = segment_
|
|
->get_batch_views<T>(
|
|
field_id_, i, data_pos, size)
|
|
.second;
|
|
func(data_vec.data(),
|
|
valid_data.data(),
|
|
size,
|
|
res + processed_size,
|
|
valid_res + processed_size,
|
|
values...);
|
|
is_seal = true;
|
|
}
|
|
}
|
|
if (!is_seal) {
|
|
auto chunk = segment_->chunk_data<T>(field_id_, i);
|
|
const T* data = chunk.data() + data_pos;
|
|
const bool* valid_data = chunk.valid_data();
|
|
if (valid_data != nullptr) {
|
|
valid_data += data_pos;
|
|
}
|
|
func(data,
|
|
valid_data,
|
|
size,
|
|
res + processed_size,
|
|
valid_res + processed_size,
|
|
values...);
|
|
}
|
|
}
|
|
|
|
processed_size += size;
|
|
if (processed_size >= batch_size_) {
|
|
current_data_chunk_ = i;
|
|
current_data_chunk_pos_ = data_pos + size;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return processed_size;
|
|
}
|
|
|
|
template <typename T, typename FUNC, typename... ValTypes>
|
|
int64_t
|
|
ProcessDataChunks(
|
|
FUNC func,
|
|
std::function<bool(const milvus::SkipIndex&, FieldId, int)> skip_func,
|
|
TargetBitmapView res,
|
|
ValTypes... values) {
|
|
if (segment_->is_chunked()) {
|
|
return ProcessDataChunksForMultipleChunk<T>(
|
|
func, skip_func, res, values...);
|
|
} else {
|
|
return ProcessDataChunksForSingleChunk<T>(
|
|
func, skip_func, res, values...);
|
|
}
|
|
}
|
|
|
|
int
|
|
ProcessIndexOneChunk(TargetBitmap& result,
|
|
TargetBitmap& valid_result,
|
|
size_t chunk_id,
|
|
const TargetBitmap& chunk_res,
|
|
const TargetBitmap& chunk_valid_res,
|
|
int processed_rows) {
|
|
auto data_pos =
|
|
chunk_id == current_index_chunk_ ? current_index_chunk_pos_ : 0;
|
|
auto size = std::min(
|
|
std::min(size_per_chunk_ - data_pos, batch_size_ - processed_rows),
|
|
int64_t(chunk_res.size()));
|
|
|
|
// result.insert(result.end(),
|
|
// chunk_res.begin() + data_pos,
|
|
// chunk_res.begin() + data_pos + size);
|
|
result.append(chunk_res, data_pos, size);
|
|
valid_result.append(chunk_valid_res, data_pos, size);
|
|
return size;
|
|
}
|
|
|
|
template <typename T, typename FUNC, typename... ValTypes>
|
|
VectorPtr
|
|
ProcessIndexChunks(FUNC func, ValTypes... values) {
|
|
typedef std::
|
|
conditional_t<std::is_same_v<T, std::string_view>, std::string, T>
|
|
IndexInnerType;
|
|
using Index = index::ScalarIndex<IndexInnerType>;
|
|
TargetBitmap result;
|
|
TargetBitmap valid_result;
|
|
int processed_rows = 0;
|
|
|
|
for (size_t i = current_index_chunk_; i < num_index_chunk_; i++) {
|
|
// This cache result help getting result for every batch loop.
|
|
// It avoids indexing execute for every batch because indexing
|
|
// executing costs quite much time.
|
|
if (cached_index_chunk_id_ != i) {
|
|
const Index& index =
|
|
segment_->chunk_scalar_index<IndexInnerType>(field_id_, i);
|
|
auto* index_ptr = const_cast<Index*>(&index);
|
|
cached_index_chunk_res_ = std::move(func(index_ptr, values...));
|
|
auto valid_result = index_ptr->IsNotNull();
|
|
cached_index_chunk_valid_res_ = std::move(valid_result);
|
|
cached_index_chunk_id_ = i;
|
|
}
|
|
|
|
auto size = ProcessIndexOneChunk(result,
|
|
valid_result,
|
|
i,
|
|
cached_index_chunk_res_,
|
|
cached_index_chunk_valid_res_,
|
|
processed_rows);
|
|
|
|
if (processed_rows + size >= batch_size_) {
|
|
current_index_chunk_ = i;
|
|
current_index_chunk_pos_ = i == current_index_chunk_
|
|
? current_index_chunk_pos_ + size
|
|
: size;
|
|
break;
|
|
}
|
|
processed_rows += size;
|
|
}
|
|
|
|
return std::make_shared<ColumnVector>(std::move(result),
|
|
std::move(valid_result));
|
|
}
|
|
|
|
template <typename T>
|
|
TargetBitmap
|
|
ProcessChunksForValid(bool use_index) {
|
|
if (use_index) {
|
|
return ProcessIndexChunksForValid<T>();
|
|
} else {
|
|
return ProcessDataChunksForValid<T>();
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
TargetBitmap
|
|
ProcessDataChunksForValid() {
|
|
TargetBitmap valid_result(batch_size_);
|
|
valid_result.set();
|
|
int64_t processed_size = 0;
|
|
for (size_t i = current_data_chunk_; i < num_data_chunk_; i++) {
|
|
auto data_pos =
|
|
(i == current_data_chunk_) ? current_data_chunk_pos_ : 0;
|
|
auto size =
|
|
(i == (num_data_chunk_ - 1))
|
|
? (segment_->type() == SegmentType::Growing
|
|
? (active_count_ % size_per_chunk_ == 0
|
|
? size_per_chunk_ - data_pos
|
|
: active_count_ % size_per_chunk_ - data_pos)
|
|
: active_count_ - data_pos)
|
|
: size_per_chunk_ - data_pos;
|
|
|
|
size = std::min(size, batch_size_ - processed_size);
|
|
|
|
auto chunk = segment_->chunk_data<T>(field_id_, i);
|
|
const bool* valid_data = chunk.valid_data();
|
|
if (valid_data == nullptr) {
|
|
return valid_result;
|
|
}
|
|
valid_data += data_pos;
|
|
for (int i = 0; i < size; i++) {
|
|
if (!valid_data[i]) {
|
|
valid_result[i + data_pos] = false;
|
|
}
|
|
}
|
|
processed_size += size;
|
|
if (processed_size >= batch_size_) {
|
|
current_data_chunk_ = i;
|
|
current_data_chunk_pos_ = data_pos + size;
|
|
break;
|
|
}
|
|
}
|
|
return valid_result;
|
|
}
|
|
|
|
int
|
|
ProcessIndexOneChunkForValid(TargetBitmap& valid_result,
|
|
size_t chunk_id,
|
|
const TargetBitmap& chunk_valid_res,
|
|
int processed_rows) {
|
|
auto data_pos =
|
|
chunk_id == current_index_chunk_ ? current_index_chunk_pos_ : 0;
|
|
auto size = std::min(
|
|
std::min(size_per_chunk_ - data_pos, batch_size_ - processed_rows),
|
|
int64_t(chunk_valid_res.size()));
|
|
|
|
valid_result.append(chunk_valid_res, data_pos, size);
|
|
return size;
|
|
}
|
|
|
|
template <typename T>
|
|
TargetBitmap
|
|
ProcessIndexChunksForValid() {
|
|
typedef std::
|
|
conditional_t<std::is_same_v<T, std::string_view>, std::string, T>
|
|
IndexInnerType;
|
|
using Index = index::ScalarIndex<IndexInnerType>;
|
|
int processed_rows = 0;
|
|
TargetBitmap valid_result;
|
|
valid_result.set();
|
|
|
|
for (size_t i = current_index_chunk_; i < num_index_chunk_; i++) {
|
|
// This cache result help getting result for every batch loop.
|
|
// It avoids indexing execute for every batch because indexing
|
|
// executing costs quite much time.
|
|
if (cached_index_chunk_id_ != i) {
|
|
const Index& index =
|
|
segment_->chunk_scalar_index<IndexInnerType>(field_id_, i);
|
|
auto* index_ptr = const_cast<Index*>(&index);
|
|
auto execute_sub_batch = [](Index* index_ptr) {
|
|
TargetBitmap res = index_ptr->IsNotNull();
|
|
return res;
|
|
};
|
|
cached_index_chunk_valid_res_ = execute_sub_batch(index_ptr);
|
|
cached_index_chunk_id_ = i;
|
|
}
|
|
|
|
auto size = ProcessIndexOneChunkForValid(
|
|
valid_result, i, cached_index_chunk_valid_res_, processed_rows);
|
|
|
|
if (processed_rows + size >= batch_size_) {
|
|
current_index_chunk_ = i;
|
|
current_index_chunk_pos_ = i == current_index_chunk_
|
|
? current_index_chunk_pos_ + size
|
|
: size;
|
|
break;
|
|
}
|
|
processed_rows += size;
|
|
}
|
|
return valid_result;
|
|
}
|
|
|
|
template <typename FUNC, typename... ValTypes>
|
|
VectorPtr
|
|
ProcessTextMatchIndex(FUNC func, ValTypes... values) {
|
|
TargetBitmap result;
|
|
TargetBitmap valid_result;
|
|
|
|
if (cached_match_res_ == nullptr) {
|
|
auto index = segment_->GetTextIndex(field_id_);
|
|
auto res = std::move(func(index, values...));
|
|
auto valid_res = index->IsNotNull();
|
|
cached_match_res_ = std::make_shared<TargetBitmap>(std::move(res));
|
|
cached_index_chunk_valid_res_ = std::move(valid_res);
|
|
if (cached_match_res_->size() < active_count_) {
|
|
// some entities are not visible in inverted index.
|
|
// only happend on growing segment.
|
|
TargetBitmap tail(active_count_ - cached_match_res_->size());
|
|
cached_match_res_->append(tail);
|
|
cached_index_chunk_valid_res_.append(tail);
|
|
}
|
|
}
|
|
|
|
// return batch size, not sure if we should use the data position.
|
|
auto real_batch_size =
|
|
current_data_chunk_pos_ + batch_size_ > active_count_
|
|
? active_count_ - current_data_chunk_pos_
|
|
: batch_size_;
|
|
result.append(
|
|
*cached_match_res_, current_data_chunk_pos_, real_batch_size);
|
|
valid_result.append(cached_index_chunk_valid_res_,
|
|
current_data_chunk_pos_,
|
|
real_batch_size);
|
|
current_data_chunk_pos_ += real_batch_size;
|
|
|
|
return std::make_shared<ColumnVector>(std::move(result),
|
|
std::move(valid_result));
|
|
}
|
|
|
|
template <typename T, typename FUNC, typename... ValTypes>
|
|
void
|
|
ProcessIndexChunksV2(FUNC func, ValTypes... values) {
|
|
typedef std::
|
|
conditional_t<std::is_same_v<T, std::string_view>, std::string, T>
|
|
IndexInnerType;
|
|
using Index = index::ScalarIndex<IndexInnerType>;
|
|
|
|
for (size_t i = current_index_chunk_; i < num_index_chunk_; i++) {
|
|
const Index& index =
|
|
segment_->chunk_scalar_index<IndexInnerType>(field_id_, i);
|
|
auto* index_ptr = const_cast<Index*>(&index);
|
|
func(index_ptr, values...);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
bool
|
|
CanUseIndex(OpType op) const {
|
|
typedef std::
|
|
conditional_t<std::is_same_v<T, std::string_view>, std::string, T>
|
|
IndexInnerType;
|
|
if constexpr (!std::is_same_v<IndexInnerType, std::string>) {
|
|
return true;
|
|
}
|
|
|
|
using Index = index::ScalarIndex<IndexInnerType>;
|
|
if (op == OpType::Match) {
|
|
for (size_t i = current_index_chunk_; i < num_index_chunk_; i++) {
|
|
const Index& index =
|
|
segment_->chunk_scalar_index<IndexInnerType>(field_id_, i);
|
|
// 1, index support regex query, then index handles the query;
|
|
// 2, index has raw data, then call index.Reverse_Lookup to handle the query;
|
|
if (!index.SupportRegexQuery() && !index.HasRawData()) {
|
|
return false;
|
|
}
|
|
// all chunks have same index.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <typename T>
|
|
bool
|
|
IndexHasRawData() const {
|
|
typedef std::
|
|
conditional_t<std::is_same_v<T, std::string_view>, std::string, T>
|
|
IndexInnerType;
|
|
|
|
using Index = index::ScalarIndex<IndexInnerType>;
|
|
for (size_t i = current_index_chunk_; i < num_index_chunk_; i++) {
|
|
const Index& index =
|
|
segment_->chunk_scalar_index<IndexInnerType>(field_id_, i);
|
|
if (!index.HasRawData()) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void
|
|
SetNotUseIndex() {
|
|
use_index_ = false;
|
|
}
|
|
|
|
protected:
|
|
const segcore::SegmentInternalInterface* segment_;
|
|
const FieldId field_id_;
|
|
bool is_pk_field_{false};
|
|
DataType pk_type_;
|
|
int64_t batch_size_;
|
|
|
|
bool is_index_mode_{false};
|
|
bool is_data_mode_{false};
|
|
// sometimes need to skip index and using raw data
|
|
// default true means use index as much as possible
|
|
bool use_index_{true};
|
|
|
|
int64_t active_count_{0};
|
|
int64_t num_data_chunk_{0};
|
|
int64_t num_index_chunk_{0};
|
|
// State indicate position that expr computing at
|
|
// because expr maybe called for every batch.
|
|
int64_t current_data_chunk_{0};
|
|
int64_t current_data_chunk_pos_{0};
|
|
int64_t current_index_chunk_{0};
|
|
int64_t current_index_chunk_pos_{0};
|
|
int64_t size_per_chunk_{0};
|
|
|
|
// Cache for index scan to avoid search index every batch
|
|
int64_t cached_index_chunk_id_{-1};
|
|
TargetBitmap cached_index_chunk_res_{};
|
|
// Cache for chunk valid res.
|
|
TargetBitmap cached_index_chunk_valid_res_{};
|
|
|
|
// Cache for text match.
|
|
std::shared_ptr<TargetBitmap> cached_match_res_{nullptr};
|
|
};
|
|
|
|
void
|
|
OptimizeCompiledExprs(ExecContext* context, const std::vector<ExprPtr>& exprs);
|
|
|
|
std::vector<ExprPtr>
|
|
CompileExpressions(const std::vector<expr::TypedExprPtr>& logical_exprs,
|
|
ExecContext* context,
|
|
const std::unordered_set<std::string>& flatten_cadidates =
|
|
std::unordered_set<std::string>(),
|
|
bool enable_constant_folding = false);
|
|
|
|
std::vector<ExprPtr>
|
|
CompileInputs(const expr::TypedExprPtr& expr,
|
|
QueryContext* config,
|
|
const std::unordered_set<std::string>& flatten_cadidates);
|
|
|
|
ExprPtr
|
|
CompileExpression(const expr::TypedExprPtr& expr,
|
|
QueryContext* context,
|
|
const std::unordered_set<std::string>& flatten_cadidates,
|
|
bool enable_constant_folding);
|
|
|
|
class ExprSet {
|
|
public:
|
|
explicit ExprSet(const std::vector<expr::TypedExprPtr>& logical_exprs,
|
|
ExecContext* exec_ctx) {
|
|
exprs_ = CompileExpressions(logical_exprs, exec_ctx);
|
|
}
|
|
|
|
virtual ~ExprSet() = default;
|
|
|
|
void
|
|
Eval(EvalCtx& ctx, std::vector<VectorPtr>& results) {
|
|
Eval(0, exprs_.size(), true, ctx, results);
|
|
}
|
|
|
|
virtual void
|
|
Eval(int32_t begin,
|
|
int32_t end,
|
|
bool initialize,
|
|
EvalCtx& ctx,
|
|
std::vector<VectorPtr>& result);
|
|
|
|
void
|
|
Clear() {
|
|
exprs_.clear();
|
|
}
|
|
|
|
ExecContext*
|
|
get_exec_context() const {
|
|
return exec_ctx_;
|
|
}
|
|
|
|
size_t
|
|
size() const {
|
|
return exprs_.size();
|
|
}
|
|
|
|
const std::vector<std::shared_ptr<Expr>>&
|
|
exprs() const {
|
|
return exprs_;
|
|
}
|
|
|
|
const std::shared_ptr<Expr>&
|
|
expr(int32_t index) const {
|
|
return exprs_[index];
|
|
}
|
|
|
|
private:
|
|
std::vector<std::shared_ptr<Expr>> exprs_;
|
|
ExecContext* exec_ctx_;
|
|
};
|
|
|
|
} //namespace exec
|
|
} // namespace milvus
|