milvus/internal/core/unittest/test_growing_index.cpp
zhenshan.cao 60e88fb833
fix: Restore the MVCC functionality. (#29749)
When the TimeTravel functionality was previously removed, it
inadvertently affected the MVCC functionality within the system. This PR
aims to reintroduce the internal MVCC functionality as follows:

1. Add MvccTimestamp to the requests of Search/Query and the results of
Search internally.
2. When the delegator receives a Query/Search request and there is no
MVCC timestamp set in the request, set the delegator's current tsafe as
the MVCC timestamp of the request. If the request already has an MVCC
timestamp, do not modify it.
3. When the Proxy handles Search and triggers the second phase ReQuery,
divide the ReQuery into different shards and pass the MVCC timestamp to
the corresponding Query requests.

issue: #29656

Signed-off-by: zhenshan.cao <zhenshan.cao@zilliz.com>
2024-01-09 11:38:48 +08:00

216 lines
8.8 KiB
C++

// Copyright (C) 2019-2020 Zilliz. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under the License
#include <gtest/gtest.h>
#include "pb/plan.pb.h"
#include "segcore/SegmentGrowing.h"
#include "segcore/SegmentGrowingImpl.h"
#include "pb/schema.pb.h"
#include "test_utils/DataGen.h"
#include "query/Plan.h"
using namespace milvus::segcore;
using namespace milvus;
namespace pb = milvus::proto;
TEST(GrowingIndex, Correctness) {
auto schema = std::make_shared<Schema>();
auto pk = schema->AddDebugField("pk", DataType::INT64);
auto random = schema->AddDebugField("random", DataType::DOUBLE);
auto vec = schema->AddDebugField(
"embeddings", DataType::VECTOR_FLOAT, 128, knowhere::metric::L2);
schema->set_primary_field_id(pk);
std::map<std::string, std::string> index_params = {
{"index_type", "IVF_FLAT"}, {"metric_type", "L2"}, {"nlist", "128"}};
std::map<std::string, std::string> type_params = {{"dim", "128"}};
FieldIndexMeta fieldIndexMeta(
vec, std::move(index_params), std::move(type_params));
auto& config = SegcoreConfig::default_config();
config.set_chunk_rows(1024);
config.set_enable_interim_segment_index(true);
std::map<FieldId, FieldIndexMeta> filedMap = {{vec, fieldIndexMeta}};
IndexMetaPtr metaPtr =
std::make_shared<CollectionIndexMeta>(226985, std::move(filedMap));
auto segment = CreateGrowingSegment(schema, metaPtr);
auto segmentImplPtr = dynamic_cast<SegmentGrowingImpl*>(segment.get());
milvus::proto::plan::PlanNode plan_node;
auto vector_anns = plan_node.mutable_vector_anns();
vector_anns->set_vector_type(milvus::proto::plan::VectorType::FloatVector);
vector_anns->set_placeholder_tag("$0");
vector_anns->set_field_id(102);
auto query_info = vector_anns->mutable_query_info();
query_info->set_topk(5);
query_info->set_round_decimal(3);
query_info->set_metric_type("l2");
query_info->set_search_params(R"({"nprobe": 16})");
auto plan_str = plan_node.SerializeAsString();
milvus::proto::plan::PlanNode range_query_plan_node;
auto vector_range_querys = range_query_plan_node.mutable_vector_anns();
vector_range_querys->set_vector_type(
milvus::proto::plan::VectorType::FloatVector);
vector_range_querys->set_placeholder_tag("$0");
vector_range_querys->set_field_id(102);
auto range_query_info = vector_range_querys->mutable_query_info();
range_query_info->set_topk(5);
range_query_info->set_round_decimal(3);
range_query_info->set_metric_type("l2");
range_query_info->set_search_params(
R"({"nprobe": 10, "radius": 600, "range_filter": 500})");
auto range_plan_str = range_query_plan_node.SerializeAsString();
int64_t per_batch = 10000;
int64_t n_batch = 20;
int64_t top_k = 5;
for (int64_t i = 0; i < n_batch; i++) {
auto dataset = DataGen(schema, per_batch);
auto offset = segment->PreInsert(per_batch);
auto pks = dataset.get_col<int64_t>(pk);
segment->Insert(offset,
per_batch,
dataset.row_ids_.data(),
dataset.timestamps_.data(),
dataset.raw_);
auto filed_data = segmentImplPtr->get_insert_record()
.get_field_data<milvus::FloatVector>(vec);
auto inserted = (i + 1) * per_batch;
//once index built, chunk data will be removed
if (i < 2) {
EXPECT_EQ(filed_data->num_chunk(),
upper_div(inserted, filed_data->get_size_per_chunk()));
} else {
EXPECT_EQ(filed_data->num_chunk(), 0);
}
auto num_queries = 5;
auto ph_group_raw = CreatePlaceholderGroup(num_queries, 128, 1024);
auto plan = milvus::query::CreateSearchPlanByExpr(
*schema, plan_str.data(), plan_str.size());
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
Timestamp timestamp = 1000000;
auto sr = segment->Search(plan.get(), ph_group.get(), timestamp);
EXPECT_EQ(sr->total_nq_, num_queries);
EXPECT_EQ(sr->unity_topK_, top_k);
EXPECT_EQ(sr->distances_.size(), num_queries * top_k);
EXPECT_EQ(sr->seg_offsets_.size(), num_queries * top_k);
auto range_plan = milvus::query::CreateSearchPlanByExpr(
*schema, range_plan_str.data(), range_plan_str.size());
auto range_ph_group = ParsePlaceholderGroup(
range_plan.get(), ph_group_raw.SerializeAsString());
auto range_sr =
segment->Search(range_plan.get(), range_ph_group.get(), timestamp);
ASSERT_EQ(range_sr->total_nq_, num_queries);
EXPECT_EQ(sr->unity_topK_, top_k);
EXPECT_EQ(sr->distances_.size(), num_queries * top_k);
EXPECT_EQ(sr->seg_offsets_.size(), num_queries * top_k);
for (int j = 0; j < range_sr->seg_offsets_.size(); j++) {
if (range_sr->seg_offsets_[j] != -1) {
EXPECT_TRUE(sr->distances_[j] >= 500.0 &&
sr->distances_[j] <= 600.0);
}
}
}
}
TEST(GrowingIndex, MissIndexMeta) {
auto schema = std::make_shared<Schema>();
auto pk = schema->AddDebugField("pk", DataType::INT64);
auto random = schema->AddDebugField("random", DataType::DOUBLE);
auto vec = schema->AddDebugField(
"embeddings", DataType::VECTOR_FLOAT, 128, knowhere::metric::L2);
schema->set_primary_field_id(pk);
auto& config = SegcoreConfig::default_config();
config.set_chunk_rows(1024);
config.set_enable_interim_segment_index(true);
auto segment = CreateGrowingSegment(schema, nullptr);
}
using Param = const char*;
class GrowingIndexGetVectorTest : public ::testing::TestWithParam<Param> {
void
SetUp() override {
auto param = GetParam();
metricType = param;
}
protected:
const char* metricType;
};
INSTANTIATE_TEST_CASE_P(IndexTypeParameters,
GrowingIndexGetVectorTest,
::testing::Values(knowhere::metric::L2,
knowhere::metric::COSINE,
knowhere::metric::IP));
TEST_P(GrowingIndexGetVectorTest, GetVector) {
auto schema = std::make_shared<Schema>();
auto pk = schema->AddDebugField("pk", DataType::INT64);
auto random = schema->AddDebugField("random", DataType::DOUBLE);
auto vec = schema->AddDebugField(
"embeddings", DataType::VECTOR_FLOAT, 128, metricType);
schema->set_primary_field_id(pk);
std::map<std::string, std::string> index_params = {
{"index_type", "IVF_FLAT"},
{"metric_type", metricType},
{"nlist", "128"}};
std::map<std::string, std::string> type_params = {{"dim", "128"}};
FieldIndexMeta fieldIndexMeta(
vec, std::move(index_params), std::move(type_params));
auto& config = SegcoreConfig::default_config();
config.set_chunk_rows(1024);
config.set_enable_interim_segment_index(true);
std::map<FieldId, FieldIndexMeta> filedMap = {{vec, fieldIndexMeta}};
IndexMetaPtr metaPtr =
std::make_shared<CollectionIndexMeta>(100000, std::move(filedMap));
auto segment_growing = CreateGrowingSegment(schema, metaPtr);
auto segment = dynamic_cast<SegmentGrowingImpl*>(segment_growing.get());
int64_t per_batch = 5000;
int64_t n_batch = 20;
int64_t dim = 128;
for (int64_t i = 0; i < n_batch; i++) {
auto dataset = DataGen(schema, per_batch);
auto fakevec = dataset.get_col<float>(vec);
auto offset = segment->PreInsert(per_batch);
segment->Insert(offset,
per_batch,
dataset.row_ids_.data(),
dataset.timestamps_.data(),
dataset.raw_);
auto num_inserted = (i + 1) * per_batch;
auto ids_ds = GenRandomIds(num_inserted);
auto result =
segment->bulk_subscript(vec, ids_ds->GetIds(), num_inserted);
auto vector = result.get()->mutable_vectors()->float_vector().data();
EXPECT_TRUE(vector.size() == num_inserted * dim);
for (size_t i = 0; i < num_inserted; ++i) {
auto id = ids_ds->GetIds()[i];
for (size_t j = 0; j < 128; ++j) {
EXPECT_TRUE(vector[i * dim + j] ==
fakevec[(id % per_batch) * dim + j]);
}
}
}
}