Gao df5da9c2b5
enhance: [2.6] support max_connection config for remote storage (#45364)
issue: #45344 
pr: #45225

Signed-off-by: chasingegg <chao.gao@zilliz.com>
2025-11-13 15:41:37 +08:00

1441 lines
54 KiB
C++

// Licensed to the LF AI & Data foundation under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include "arrow/array/builder_binary.h"
#include "arrow/array/builder_nested.h"
#include "arrow/array/builder_primitive.h"
#include "arrow/scalar.h"
#include "arrow/type_fwd.h"
#include "common/type_c.h"
#include "fmt/format.h"
#include "index/Utils.h"
#include "log/Log.h"
#include "common/Consts.h"
#include "common/EasyAssert.h"
#include "common/FieldData.h"
#include "common/FieldDataInterface.h"
#include "pb/common.pb.h"
#include "storage/StorageV2FSCache.h"
#ifdef AZURE_BUILD_DIR
#include "storage/azure/AzureChunkManager.h"
#endif
#ifdef ENABLE_GCP_NATIVE
#include "storage/gcp-native-storage/GcpNativeChunkManager.h"
#endif
#include "storage/ChunkManager.h"
#include "storage/DiskFileManagerImpl.h"
#include "storage/InsertData.h"
#include "storage/LocalChunkManager.h"
#include "storage/MemFileManagerImpl.h"
#include "storage/MinioChunkManager.h"
#ifdef USE_OPENDAL
#include "storage/opendal/OpenDALChunkManager.h"
#endif
#include "storage/Types.h"
#include "storage/Util.h"
#include "common/Common.h"
#include "common/Types.h"
#include "common/VectorArray.h"
#include "storage/ThreadPools.h"
#include "storage/MemFileManagerImpl.h"
#include "storage/DiskFileManagerImpl.h"
#include "storage/KeyRetriever.h"
#include "segcore/memory_planner.h"
#include "mmap/Types.h"
#include "milvus-storage/format/parquet/file_reader.h"
#include "milvus-storage/filesystem/fs.h"
namespace milvus::storage {
constexpr const char* TEMP = "tmp";
std::map<std::string, ChunkManagerType> ChunkManagerType_Map = {
{"local", ChunkManagerType::Local},
{"minio", ChunkManagerType::Minio},
{"remote", ChunkManagerType::Remote},
{"opendal", ChunkManagerType::OpenDAL}};
enum class CloudProviderType : int8_t {
UNKNOWN = 0,
AWS = 1,
GCP = 2,
ALIYUN = 3,
AZURE = 4,
TENCENTCLOUD = 5,
GCPNATIVE = 6,
HUAWEICLOUD = 7,
};
std::map<std::string, CloudProviderType> CloudProviderType_Map = {
{"aws", CloudProviderType::AWS},
{"gcp", CloudProviderType::GCP},
{"aliyun", CloudProviderType::ALIYUN},
{"azure", CloudProviderType::AZURE},
{"tencent", CloudProviderType::TENCENTCLOUD},
{"gcpnative", CloudProviderType::GCPNATIVE},
{"huawei", CloudProviderType::HUAWEICLOUD}};
std::map<std::string, int> ReadAheadPolicy_Map = {
{"normal", MADV_NORMAL},
{"random", MADV_RANDOM},
{"sequential", MADV_SEQUENTIAL},
{"willneed", MADV_WILLNEED},
{"dontneed", MADV_DONTNEED}};
// in arrow, null_bitmap read from the least significant bit
std::vector<uint8_t>
genValidIter(const uint8_t* valid_data, int length) {
std::vector<uint8_t> valid_data_;
valid_data_.reserve(length);
for (size_t i = 0; i < length; ++i) {
auto bit = (valid_data[i >> 3] >> (i & 0x07)) & 1;
valid_data_.push_back(bit);
}
return valid_data_;
}
void
ReadMediumType(BinlogReaderPtr reader) {
AssertInfo(reader->Tell() == 0,
"medium type must be parsed from stream header");
int32_t magic_num;
auto ret = reader->Read(sizeof(magic_num), &magic_num);
AssertInfo(ret.ok(), "read binlog failed: {}", ret.what());
AssertInfo(magic_num == MAGIC_NUM, "invalid magic num: {}", magic_num);
}
void
add_vector_payload(std::shared_ptr<arrow::ArrayBuilder> builder,
uint8_t* values,
int length) {
AssertInfo(builder != nullptr, "empty arrow builder");
auto binary_builder =
std::dynamic_pointer_cast<arrow::FixedSizeBinaryBuilder>(builder);
auto ast = binary_builder->AppendValues(values, length);
AssertInfo(
ast.ok(), "append value to arrow builder failed: {}", ast.ToString());
}
// append values for numeric data
template <typename DT, typename BT>
void
add_numeric_payload(std::shared_ptr<arrow::ArrayBuilder> builder,
DT* start,
const uint8_t* valid_data,
bool nullable,
int length) {
AssertInfo(builder != nullptr, "empty arrow builder");
auto numeric_builder = std::dynamic_pointer_cast<BT>(builder);
arrow::Status ast;
if (nullable) {
// need iter to read valid_data when write
auto iter = genValidIter(valid_data, length);
ast =
numeric_builder->AppendValues(start, start + length, iter.begin());
AssertInfo(ast.ok(), "append value to arrow builder failed");
} else {
ast = numeric_builder->AppendValues(start, start + length);
AssertInfo(ast.ok(), "append value to arrow builder failed");
}
}
void
AddPayloadToArrowBuilder(std::shared_ptr<arrow::ArrayBuilder> builder,
const Payload& payload) {
AssertInfo(builder != nullptr, "empty arrow builder");
auto raw_data = const_cast<uint8_t*>(payload.raw_data);
auto length = payload.rows;
auto data_type = payload.data_type;
auto nullable = payload.nullable;
switch (data_type) {
case DataType::BOOL: {
auto bool_data = reinterpret_cast<bool*>(raw_data);
add_numeric_payload<bool, arrow::BooleanBuilder>(
builder, bool_data, payload.valid_data, nullable, length);
break;
}
case DataType::INT8: {
auto int8_data = reinterpret_cast<int8_t*>(raw_data);
add_numeric_payload<int8_t, arrow::Int8Builder>(
builder, int8_data, payload.valid_data, nullable, length);
break;
}
case DataType::INT16: {
auto int16_data = reinterpret_cast<int16_t*>(raw_data);
add_numeric_payload<int16_t, arrow::Int16Builder>(
builder, int16_data, payload.valid_data, nullable, length);
break;
}
case DataType::INT32: {
auto int32_data = reinterpret_cast<int32_t*>(raw_data);
add_numeric_payload<int32_t, arrow::Int32Builder>(
builder, int32_data, payload.valid_data, nullable, length);
break;
}
case DataType::INT64: {
auto int64_data = reinterpret_cast<int64_t*>(raw_data);
add_numeric_payload<int64_t, arrow::Int64Builder>(
builder, int64_data, payload.valid_data, nullable, length);
break;
}
case DataType::FLOAT: {
auto float_data = reinterpret_cast<float*>(raw_data);
add_numeric_payload<float, arrow::FloatBuilder>(
builder, float_data, payload.valid_data, nullable, length);
break;
}
case DataType::DOUBLE: {
auto double_data = reinterpret_cast<double_t*>(raw_data);
add_numeric_payload<double, arrow::DoubleBuilder>(
builder, double_data, payload.valid_data, nullable, length);
break;
}
case DataType::TIMESTAMPTZ: {
auto timestamptz_data = reinterpret_cast<int64_t*>(raw_data);
add_numeric_payload<int64_t, arrow::Int64Builder>(
builder,
timestamptz_data,
payload.valid_data,
nullable,
length);
break;
}
case DataType::VECTOR_FLOAT16:
case DataType::VECTOR_BFLOAT16:
case DataType::VECTOR_BINARY:
case DataType::VECTOR_INT8:
case DataType::VECTOR_FLOAT: {
add_vector_payload(builder, const_cast<uint8_t*>(raw_data), length);
break;
}
case DataType::VECTOR_SPARSE_U32_F32: {
ThrowInfo(DataTypeInvalid,
"Sparse Float Vector payload should be added by calling "
"add_one_binary_payload",
data_type);
}
case DataType::VECTOR_ARRAY: {
auto list_builder =
std::dynamic_pointer_cast<arrow::ListBuilder>(builder);
AssertInfo(list_builder != nullptr,
"builder must be ListBuilder for VECTOR_ARRAY");
auto vector_arrays = reinterpret_cast<VectorArray*>(raw_data);
if (length > 0) {
auto element_type = vector_arrays[0].get_element_type();
// Validate element type
switch (element_type) {
case DataType::VECTOR_FLOAT:
case DataType::VECTOR_BINARY:
case DataType::VECTOR_FLOAT16:
case DataType::VECTOR_BFLOAT16:
case DataType::VECTOR_INT8:
break;
default:
ThrowInfo(DataTypeInvalid,
"Unsupported element type in VectorArray: {}",
element_type);
}
// All supported vector types use FixedSizeBinaryBuilder
auto value_builder =
static_cast<arrow::FixedSizeBinaryBuilder*>(
list_builder->value_builder());
AssertInfo(value_builder != nullptr,
"value_builder must be FixedSizeBinaryBuilder for "
"VectorArray");
for (int i = 0; i < length; ++i) {
auto status = list_builder->Append();
AssertInfo(status.ok(),
"Failed to append list: {}",
status.ToString());
const auto& array = vector_arrays[i];
AssertInfo(array.get_element_type() == element_type,
"Inconsistent element types in VectorArray");
int num_vectors = array.length();
auto ast = value_builder->AppendValues(
reinterpret_cast<const uint8_t*>(array.data()),
num_vectors);
AssertInfo(ast.ok(),
"Failed to batch append vectors: {}",
ast.ToString());
}
}
break;
}
default: {
ThrowInfo(DataTypeInvalid, "unsupported data type {}", data_type);
}
}
}
void
AddOneStringToArrowBuilder(std::shared_ptr<arrow::ArrayBuilder> builder,
const char* str,
int str_size) {
AssertInfo(builder != nullptr, "empty arrow builder");
auto string_builder =
std::dynamic_pointer_cast<arrow::StringBuilder>(builder);
arrow::Status ast;
if (str == nullptr || str_size < 0) {
ast = string_builder->AppendNull();
} else {
ast = string_builder->Append(str, str_size);
}
AssertInfo(
ast.ok(), "append value to arrow builder failed: {}", ast.ToString());
}
void
AddOneBinaryToArrowBuilder(std::shared_ptr<arrow::ArrayBuilder> builder,
const uint8_t* data,
int length) {
AssertInfo(builder != nullptr, "empty arrow builder");
auto binary_builder =
std::dynamic_pointer_cast<arrow::BinaryBuilder>(builder);
arrow::Status ast;
if (data == nullptr || length < 0) {
ast = binary_builder->AppendNull();
} else {
ast = binary_builder->Append(data, length);
}
AssertInfo(
ast.ok(), "append value to arrow builder failed: {}", ast.ToString());
}
std::shared_ptr<arrow::ArrayBuilder>
CreateArrowBuilder(DataType data_type) {
switch (static_cast<DataType>(data_type)) {
case DataType::BOOL: {
return std::make_shared<arrow::BooleanBuilder>();
}
case DataType::INT8: {
return std::make_shared<arrow::Int8Builder>();
}
case DataType::INT16: {
return std::make_shared<arrow::Int16Builder>();
}
case DataType::INT32: {
return std::make_shared<arrow::Int32Builder>();
}
case DataType::INT64: {
return std::make_shared<arrow::Int64Builder>();
}
case DataType::FLOAT: {
return std::make_shared<arrow::FloatBuilder>();
}
case DataType::DOUBLE: {
return std::make_shared<arrow::DoubleBuilder>();
}
case DataType::TIMESTAMPTZ: {
return std::make_shared<arrow::Int64Builder>();
}
case DataType::VARCHAR:
case DataType::STRING:
case DataType::TEXT: {
return std::make_shared<arrow::StringBuilder>();
}
case DataType::ARRAY:
case DataType::JSON:
case DataType::GEOMETRY: {
return std::make_shared<arrow::BinaryBuilder>();
}
// sparse float vector doesn't require a dim
case DataType::VECTOR_SPARSE_U32_F32: {
return std::make_shared<arrow::BinaryBuilder>();
}
default: {
ThrowInfo(
DataTypeInvalid, "unsupported numeric data type {}", data_type);
}
}
}
std::shared_ptr<arrow::ArrayBuilder>
CreateArrowBuilder(DataType data_type, DataType element_type, int dim) {
switch (static_cast<DataType>(data_type)) {
case DataType::VECTOR_FLOAT: {
AssertInfo(dim > 0, "invalid dim value: {}", dim);
return std::make_shared<arrow::FixedSizeBinaryBuilder>(
arrow::fixed_size_binary(dim * sizeof(float)));
}
case DataType::VECTOR_BINARY: {
AssertInfo(dim % 8 == 0 && dim > 0, "invalid dim value: {}", dim);
return std::make_shared<arrow::FixedSizeBinaryBuilder>(
arrow::fixed_size_binary(dim / 8));
}
case DataType::VECTOR_FLOAT16: {
AssertInfo(dim > 0, "invalid dim value: {}", dim);
return std::make_shared<arrow::FixedSizeBinaryBuilder>(
arrow::fixed_size_binary(dim * sizeof(float16)));
}
case DataType::VECTOR_BFLOAT16: {
AssertInfo(dim > 0, "invalid dim value");
return std::make_shared<arrow::FixedSizeBinaryBuilder>(
arrow::fixed_size_binary(dim * sizeof(bfloat16)));
}
case DataType::VECTOR_INT8: {
AssertInfo(dim > 0, "invalid dim value");
return std::make_shared<arrow::FixedSizeBinaryBuilder>(
arrow::fixed_size_binary(dim * sizeof(int8)));
}
case DataType::VECTOR_ARRAY: {
AssertInfo(dim > 0, "invalid dim value");
AssertInfo(element_type != DataType::NONE,
"element_type must be specified for VECTOR_ARRAY");
std::shared_ptr<arrow::ArrayBuilder> value_builder;
switch (element_type) {
case DataType::VECTOR_FLOAT: {
int byte_width = dim * sizeof(float);
value_builder =
std::make_shared<arrow::FixedSizeBinaryBuilder>(
arrow::fixed_size_binary(byte_width));
break;
}
case DataType::VECTOR_BINARY: {
int byte_width = (dim + 7) / 8;
value_builder =
std::make_shared<arrow::FixedSizeBinaryBuilder>(
arrow::fixed_size_binary(byte_width));
break;
}
case DataType::VECTOR_FLOAT16: {
int byte_width = dim * 2;
value_builder =
std::make_shared<arrow::FixedSizeBinaryBuilder>(
arrow::fixed_size_binary(byte_width));
break;
}
case DataType::VECTOR_BFLOAT16: {
int byte_width = dim * 2;
value_builder =
std::make_shared<arrow::FixedSizeBinaryBuilder>(
arrow::fixed_size_binary(byte_width));
break;
}
case DataType::VECTOR_INT8: {
int byte_width = dim;
value_builder =
std::make_shared<arrow::FixedSizeBinaryBuilder>(
arrow::fixed_size_binary(byte_width));
break;
}
default: {
ThrowInfo(DataTypeInvalid,
"unsupported element type {} for VECTOR_ARRAY",
GetDataTypeName(element_type));
}
}
return std::make_shared<arrow::ListBuilder>(
arrow::default_memory_pool(), value_builder);
}
default: {
ThrowInfo(
DataTypeInvalid, "unsupported vector data type {}", data_type);
}
}
}
std::shared_ptr<arrow::Scalar>
CreateArrowScalarFromDefaultValue(const FieldMeta& field_meta) {
auto default_var = field_meta.default_value();
AssertInfo(default_var.has_value(),
"cannot create Arrow Scalar from empty default value");
auto default_value = default_var.value();
switch (field_meta.get_data_type()) {
case DataType::BOOL:
return std::make_shared<arrow::BooleanScalar>(
default_value.bool_data());
case DataType::INT8:
return std::make_shared<arrow::Int8Scalar>(
default_value.int_data());
case DataType::INT16:
return std::make_shared<arrow::Int16Scalar>(
default_value.int_data());
case DataType::INT32:
return std::make_shared<arrow::Int32Scalar>(
default_value.int_data());
case DataType::INT64:
return std::make_shared<arrow::Int64Scalar>(
default_value.long_data());
case DataType::FLOAT:
return std::make_shared<arrow::FloatScalar>(
default_value.float_data());
case DataType::DOUBLE:
return std::make_shared<arrow::DoubleScalar>(
default_value.double_data());
case DataType::TIMESTAMPTZ:
return std::make_shared<arrow::Int64Scalar>(
default_value.timestamptz_data());
case DataType::VARCHAR:
case DataType::STRING:
case DataType::TEXT:
return std::make_shared<arrow::StringScalar>(
default_value.string_data());
case DataType::JSON:
return std::make_shared<arrow::BinaryScalar>(
default_value.bytes_data());
default:
ThrowInfo(DataTypeInvalid,
"unsupported default value data type {}",
field_meta.get_data_type());
}
}
std::shared_ptr<arrow::Schema>
CreateArrowSchema(DataType data_type, bool nullable) {
switch (static_cast<DataType>(data_type)) {
case DataType::BOOL: {
return arrow::schema(
{arrow::field("val", arrow::boolean(), nullable)});
}
case DataType::INT8: {
return arrow::schema(
{arrow::field("val", arrow::int8(), nullable)});
}
case DataType::INT16: {
return arrow::schema(
{arrow::field("val", arrow::int16(), nullable)});
}
case DataType::INT32: {
return arrow::schema(
{arrow::field("val", arrow::int32(), nullable)});
}
case DataType::INT64: {
return arrow::schema(
{arrow::field("val", arrow::int64(), nullable)});
}
case DataType::FLOAT: {
return arrow::schema(
{arrow::field("val", arrow::float32(), nullable)});
}
case DataType::DOUBLE: {
return arrow::schema(
{arrow::field("val", arrow::float64(), nullable)});
}
case DataType::TIMESTAMPTZ: {
return arrow::schema(
{arrow::field("val", arrow::int64(), nullable)});
}
case DataType::VARCHAR:
case DataType::STRING:
case DataType::TEXT: {
return arrow::schema(
{arrow::field("val", arrow::utf8(), nullable)});
}
case DataType::ARRAY:
case DataType::JSON:
case DataType::GEOMETRY: {
return arrow::schema(
{arrow::field("val", arrow::binary(), nullable)});
}
// sparse float vector doesn't require a dim
case DataType::VECTOR_SPARSE_U32_F32: {
return arrow::schema(
{arrow::field("val", arrow::binary(), nullable)});
}
default: {
ThrowInfo(
DataTypeInvalid, "unsupported numeric data type {}", data_type);
}
}
}
std::shared_ptr<arrow::Schema>
CreateArrowSchema(DataType data_type, int dim, bool nullable) {
switch (static_cast<DataType>(data_type)) {
case DataType::VECTOR_FLOAT: {
AssertInfo(dim > 0, "invalid dim value: {}", dim);
return arrow::schema(
{arrow::field("val",
arrow::fixed_size_binary(dim * sizeof(float)),
nullable)});
}
case DataType::VECTOR_BINARY: {
AssertInfo(dim % 8 == 0 && dim > 0, "invalid dim value: {}", dim);
return arrow::schema({arrow::field(
"val", arrow::fixed_size_binary(dim / 8), nullable)});
}
case DataType::VECTOR_FLOAT16: {
AssertInfo(dim > 0, "invalid dim value: {}", dim);
return arrow::schema(
{arrow::field("val",
arrow::fixed_size_binary(dim * sizeof(float16)),
nullable)});
}
case DataType::VECTOR_BFLOAT16: {
AssertInfo(dim > 0, "invalid dim value");
return arrow::schema(
{arrow::field("val",
arrow::fixed_size_binary(dim * sizeof(bfloat16)),
nullable)});
}
case DataType::VECTOR_SPARSE_U32_F32: {
return arrow::schema(
{arrow::field("val", arrow::binary(), nullable)});
}
case DataType::VECTOR_INT8: {
AssertInfo(dim > 0, "invalid dim value");
return arrow::schema(
{arrow::field("val",
arrow::fixed_size_binary(dim * sizeof(int8)),
nullable)});
}
case DataType::VECTOR_ARRAY: {
// VectorArray should not use this overload - should call the one with element_type
ThrowInfo(
NotImplemented,
"VectorArray requires element_type parameter. Use "
"CreateArrowSchema(data_type, dim, element_type, nullable)");
}
default: {
ThrowInfo(
DataTypeInvalid, "unsupported vector data type {}", data_type);
}
}
}
std::shared_ptr<arrow::Schema>
CreateArrowSchema(DataType data_type, int dim, DataType element_type) {
AssertInfo(data_type == DataType::VECTOR_ARRAY,
"This overload is only for VECTOR_ARRAY type");
AssertInfo(dim > 0, "invalid dim value");
auto value_type = GetArrowDataTypeForVectorArray(element_type, dim);
auto metadata = arrow::KeyValueMetadata::Make(
{ELEMENT_TYPE_KEY_FOR_ARROW, DIM_KEY},
{std::to_string(static_cast<int>(element_type)), std::to_string(dim)});
// VECTOR_ARRAY is not nullable
auto field = arrow::field("val", value_type, false)->WithMetadata(metadata);
return arrow::schema({field});
}
int
GetDimensionFromFileMetaData(const parquet::ColumnDescriptor* schema,
DataType data_type) {
switch (data_type) {
case DataType::VECTOR_FLOAT: {
return schema->type_length() / sizeof(float);
}
case DataType::VECTOR_BINARY: {
return schema->type_length() * 8;
}
case DataType::VECTOR_FLOAT16: {
return schema->type_length() / sizeof(float16);
}
case DataType::VECTOR_BFLOAT16: {
return schema->type_length() / sizeof(bfloat16);
}
case DataType::VECTOR_SPARSE_U32_F32: {
ThrowInfo(DataTypeInvalid,
fmt::format("GetDimensionFromFileMetaData should not be "
"called for sparse vector"));
}
case DataType::VECTOR_INT8: {
return schema->type_length() / sizeof(int8);
}
default:
ThrowInfo(DataTypeInvalid, "unsupported data type {}", data_type);
}
}
std::string
GenIndexPathIdentifier(int64_t build_id,
int64_t index_version,
int64_t segment_id,
int64_t field_id) {
return std::to_string(build_id) + "_" + std::to_string(index_version) +
"_" + std::to_string(segment_id) + "_" + std::to_string(field_id) +
"/";
}
std::string
GenIndexPathPrefix(ChunkManagerPtr cm,
int64_t build_id,
int64_t index_version,
int64_t segment_id,
int64_t field_id,
bool is_temp) {
return GenIndexPathPrefixByType(cm,
build_id,
index_version,
segment_id,
field_id,
INDEX_ROOT_PATH,
is_temp);
}
std::string
GenIndexPathPrefixByType(ChunkManagerPtr cm,
int64_t build_id,
int64_t index_version,
int64_t segment_id,
int64_t field_id,
const std::string& index_type,
bool is_temp) {
boost::filesystem::path prefix = cm->GetRootPath();
if (is_temp) {
prefix = prefix / TEMP;
}
boost::filesystem::path path = std::string(index_type);
boost::filesystem::path path1 =
GenIndexPathIdentifier(build_id, index_version, segment_id, field_id);
return (prefix / path / path1).string();
}
std::string
GenTextIndexPathPrefix(ChunkManagerPtr cm,
int64_t build_id,
int64_t index_version,
int64_t segment_id,
int64_t field_id,
bool is_temp) {
return GenIndexPathPrefixByType(cm,
build_id,
index_version,
segment_id,
field_id,
TEXT_LOG_ROOT_PATH,
is_temp);
}
std::string
GenJsonStatsPathPrefix(ChunkManagerPtr cm,
int64_t build_id,
int64_t index_version,
int64_t segment_id,
int64_t field_id,
bool is_temp) {
boost::filesystem::path prefix = cm->GetRootPath();
if (is_temp) {
prefix = prefix / TEMP;
}
boost::filesystem::path path = std::string(JSON_STATS_ROOT_PATH);
boost::filesystem::path path1 =
GenIndexPathIdentifier(build_id, index_version, segment_id, field_id);
return (prefix / path / path1).string();
}
std::string
GenJsonStatsPathIdentifier(int64_t build_id,
int64_t index_version,
int64_t collection_id,
int64_t partition_id,
int64_t segment_id,
int64_t field_id) {
boost::filesystem::path p =
boost::filesystem::path(std::to_string(build_id)) /
std::to_string(index_version) / std::to_string(collection_id) /
std::to_string(partition_id) / std::to_string(segment_id) /
std::to_string(field_id);
return p.string() + "/";
}
std::string
GenRemoteJsonStatsPathPrefix(ChunkManagerPtr cm,
int64_t build_id,
int64_t index_version,
int64_t collection_id,
int64_t partition_id,
int64_t segment_id,
int64_t field_id) {
boost::filesystem::path p = cm->GetRootPath();
p /= std::string(JSON_STATS_ROOT_PATH);
p /= std::string(JSON_STATS_DATA_FORMAT_VERSION);
p /= GenJsonStatsPathIdentifier(build_id,
index_version,
collection_id,
partition_id,
segment_id,
field_id);
return p.string();
}
std::string
GenNgramIndexPrefix(ChunkManagerPtr cm,
int64_t build_id,
int64_t index_version,
int64_t segment_id,
int64_t field_id,
bool is_temp) {
return GenIndexPathPrefixByType(cm,
build_id,
index_version,
segment_id,
field_id,
NGRAM_LOG_ROOT_PATH,
is_temp);
}
std::string
GenFieldRawDataPathPrefix(ChunkManagerPtr cm,
int64_t segment_id,
int64_t field_id) {
boost::filesystem::path prefix = cm->GetRootPath();
boost::filesystem::path path = std::string(RAWDATA_ROOT_PATH);
boost::filesystem::path path1 =
std::to_string(segment_id) + "/" + std::to_string(field_id) + "/";
return (prefix / path / path1).string();
}
std::string
GetSegmentRawDataPathPrefix(ChunkManagerPtr cm, int64_t segment_id) {
boost::filesystem::path prefix = cm->GetRootPath();
boost::filesystem::path path = std::string(RAWDATA_ROOT_PATH);
boost::filesystem::path path1 = std::to_string(segment_id);
return (prefix / path / path1).string();
}
std::pair<std::string, size_t>
EncodeAndUploadIndexSlice(ChunkManager* chunk_manager,
uint8_t* buf,
int64_t batch_size,
IndexMeta index_meta,
FieldDataMeta field_meta,
std::string object_key,
std::shared_ptr<CPluginContext> plugin_context) {
std::shared_ptr<IndexData> index_data = nullptr;
if (index_meta.index_non_encoding) {
index_data = std::make_shared<IndexData>(buf, batch_size);
// index-build tasks assigned from new milvus-coord nodes to none-encoding
} else {
auto field_data =
CreateFieldData(DataType::INT8, DataType::NONE, false);
field_data->FillFieldData(buf, batch_size);
auto payload_reader = std::make_shared<PayloadReader>(field_data);
index_data = std::make_shared<IndexData>(payload_reader);
// index-build tasks assigned from old milvus-coord nodes, fallback to int8 encoding
}
// index not use valid_data, so no need to set nullable==true
index_data->set_index_meta(index_meta);
index_data->SetFieldDataMeta(field_meta);
auto serialized_index_data =
index_data->serialize_to_remote_file(plugin_context);
auto serialized_index_size = serialized_index_data.size();
chunk_manager->Write(
object_key, serialized_index_data.data(), serialized_index_size);
return std::make_pair(std::move(object_key), serialized_index_size);
}
std::vector<std::future<std::unique_ptr<DataCodec>>>
GetObjectData(ChunkManager* remote_chunk_manager,
const std::vector<std::string>& remote_files,
milvus::ThreadPoolPriority priority,
bool is_field_data) {
auto& pool = ThreadPools::GetThreadPool(priority);
std::vector<std::future<std::unique_ptr<DataCodec>>> futures;
futures.reserve(remote_files.size());
auto DownloadAndDeserialize = [](ChunkManager* chunk_manager,
bool is_field_data,
const std::string file) {
// TODO remove this Size() cost
auto fileSize = chunk_manager->Size(file);
auto buf = std::shared_ptr<uint8_t[]>(new uint8_t[fileSize]);
chunk_manager->Read(file, buf.get(), fileSize);
auto res = DeserializeFileData(buf, fileSize, is_field_data);
return res;
};
for (auto& file : remote_files) {
futures.emplace_back(pool.Submit(
DownloadAndDeserialize, remote_chunk_manager, is_field_data, file));
}
return futures;
}
std::map<std::string, int64_t>
PutIndexData(ChunkManager* remote_chunk_manager,
const std::vector<const uint8_t*>& data_slices,
const std::vector<int64_t>& slice_sizes,
const std::vector<std::string>& slice_names,
FieldDataMeta& field_meta,
IndexMeta& index_meta,
std::shared_ptr<CPluginContext> plugin_context) {
auto& pool = ThreadPools::GetThreadPool(milvus::ThreadPoolPriority::MIDDLE);
std::vector<std::future<std::pair<std::string, size_t>>> futures;
AssertInfo(data_slices.size() == slice_sizes.size(),
"inconsistent data slices size {} with slice sizes {}",
data_slices.size(),
slice_sizes.size());
AssertInfo(data_slices.size() == slice_names.size(),
"inconsistent data slices size {} with slice names size {}",
data_slices.size(),
slice_names.size());
for (int64_t i = 0; i < data_slices.size(); ++i) {
futures.push_back(pool.Submit(EncodeAndUploadIndexSlice,
remote_chunk_manager,
const_cast<uint8_t*>(data_slices[i]),
slice_sizes[i],
index_meta,
field_meta,
slice_names[i],
plugin_context));
}
std::map<std::string, int64_t> remote_paths_to_size;
std::exception_ptr first_exception = nullptr;
for (auto& future : futures) {
try {
auto res = future.get();
remote_paths_to_size[res.first] = res.second;
} catch (...) {
if (!first_exception) {
first_exception = std::current_exception();
}
}
}
ReleaseArrowUnused();
if (first_exception) {
std::rethrow_exception(first_exception);
}
return remote_paths_to_size;
}
int64_t
GetTotalNumRowsForFieldDatas(const std::vector<FieldDataPtr>& field_datas) {
int64_t count = 0;
for (auto& field_data : field_datas) {
count += field_data->get_num_rows();
}
return count;
}
size_t
GetNumRowsForLoadInfo(const LoadFieldDataInfo& load_info) {
if (load_info.field_infos.empty()) {
return 0;
}
auto& field = load_info.field_infos.begin()->second;
return field.row_count;
}
void
ReleaseArrowUnused() {
static std::mutex release_mutex;
// While multiple threads are releasing memory,
// we don't need everyone do releasing,
// just let some of them do this also works well
if (release_mutex.try_lock()) {
arrow::default_memory_pool()->ReleaseUnused();
release_mutex.unlock();
}
}
ChunkManagerPtr
CreateChunkManager(const StorageConfig& storage_config) {
auto storage_type = ChunkManagerType_Map[storage_config.storage_type];
switch (storage_type) {
case ChunkManagerType::Local: {
return std::make_shared<LocalChunkManager>(
storage_config.root_path);
}
case ChunkManagerType::Minio: {
return std::make_shared<MinioChunkManager>(storage_config);
}
case ChunkManagerType::Remote: {
auto cloud_provider_type =
CloudProviderType_Map[storage_config.cloud_provider];
switch (cloud_provider_type) {
case CloudProviderType::AWS: {
return std::make_shared<AwsChunkManager>(storage_config);
}
case CloudProviderType::GCP: {
return std::make_shared<GcpChunkManager>(storage_config);
}
case CloudProviderType::ALIYUN: {
return std::make_shared<AliyunChunkManager>(storage_config);
}
case CloudProviderType::TENCENTCLOUD: {
return std::make_shared<TencentCloudChunkManager>(
storage_config);
}
case CloudProviderType::HUAWEICLOUD: {
return std::make_shared<HuaweiCloudChunkManager>(
storage_config);
}
#ifdef AZURE_BUILD_DIR
case CloudProviderType::AZURE: {
return std::make_shared<AzureChunkManager>(storage_config);
}
#endif
#ifdef ENABLE_GCP_NATIVE
case CloudProviderType::GCPNATIVE: {
return std::make_shared<GcpNativeChunkManager>(
storage_config);
}
#endif
default: {
return std::make_shared<MinioChunkManager>(storage_config);
}
}
}
#ifdef USE_OPENDAL
case ChunkManagerType::OpenDAL: {
return std::make_shared<OpenDALChunkManager>(storage_config);
}
#endif
default: {
ThrowInfo(ConfigInvalid,
"unsupported storage_config.storage_type {}",
fmt::underlying(storage_type));
}
}
}
milvus_storage::ArrowFileSystemPtr
InitArrowFileSystem(milvus::storage::StorageConfig storage_config) {
StorageV2FSCache::Key conf;
if (storage_config.storage_type == "local") {
std::string path(storage_config.root_path);
conf.root_path = path;
conf.storage_type = "local";
} else {
conf.address = std::string(storage_config.address);
conf.bucket_name = std::string(storage_config.bucket_name);
conf.access_key_id = std::string(storage_config.access_key_id);
conf.access_key_value = std::string(storage_config.access_key_value);
conf.root_path = std::string(storage_config.root_path);
conf.storage_type = std::string(storage_config.storage_type);
conf.cloud_provider = std::string(storage_config.cloud_provider);
conf.iam_endpoint = std::string(storage_config.iam_endpoint);
conf.log_level = std::string(storage_config.log_level);
conf.region = std::string(storage_config.region);
conf.useSSL = storage_config.useSSL;
conf.sslCACert = std::string(storage_config.sslCACert);
conf.useIAM = storage_config.useIAM;
conf.useVirtualHost = storage_config.useVirtualHost;
conf.requestTimeoutMs = storage_config.requestTimeoutMs;
conf.gcp_credential_json =
std::string(storage_config.gcp_credential_json);
conf.use_custom_part_upload = true;
conf.max_connections = storage_config.max_connections;
}
return StorageV2FSCache::Instance().Get(conf);
}
FieldDataPtr
CreateFieldData(const DataType& type,
const DataType& element_type,
bool nullable,
int64_t dim,
int64_t total_num_rows) {
switch (type) {
case DataType::BOOL:
return std::make_shared<FieldData<bool>>(
type, nullable, total_num_rows);
case DataType::INT8:
return std::make_shared<FieldData<int8_t>>(
type, nullable, total_num_rows);
case DataType::INT16:
return std::make_shared<FieldData<int16_t>>(
type, nullable, total_num_rows);
case DataType::INT32:
return std::make_shared<FieldData<int32_t>>(
type, nullable, total_num_rows);
case DataType::INT64:
return std::make_shared<FieldData<int64_t>>(
type, nullable, total_num_rows);
case DataType::FLOAT:
return std::make_shared<FieldData<float>>(
type, nullable, total_num_rows);
case DataType::DOUBLE:
return std::make_shared<FieldData<double>>(
type, nullable, total_num_rows);
case DataType::TIMESTAMPTZ:
return std::make_shared<FieldData<int64_t>>(
type, nullable, total_num_rows);
case DataType::STRING:
case DataType::VARCHAR:
case DataType::TEXT:
return std::make_shared<FieldData<std::string>>(
type, nullable, total_num_rows);
case DataType::JSON:
return std::make_shared<FieldData<Json>>(
type, nullable, total_num_rows);
case DataType::GEOMETRY:
return std::make_shared<FieldData<Geometry>>(
type, nullable, total_num_rows);
case DataType::ARRAY:
return std::make_shared<FieldData<Array>>(
type, nullable, total_num_rows);
case DataType::VECTOR_FLOAT:
return std::make_shared<FieldData<FloatVector>>(
dim, type, total_num_rows);
case DataType::VECTOR_BINARY:
return std::make_shared<FieldData<BinaryVector>>(
dim, type, total_num_rows);
case DataType::VECTOR_FLOAT16:
return std::make_shared<FieldData<Float16Vector>>(
dim, type, total_num_rows);
case DataType::VECTOR_BFLOAT16:
return std::make_shared<FieldData<BFloat16Vector>>(
dim, type, total_num_rows);
case DataType::VECTOR_SPARSE_U32_F32:
return std::make_shared<FieldData<SparseFloatVector>>(
type, total_num_rows);
case DataType::VECTOR_INT8:
return std::make_shared<FieldData<Int8Vector>>(
dim, type, total_num_rows);
case DataType::VECTOR_ARRAY:
return std::make_shared<FieldData<VectorArray>>(
dim, element_type, total_num_rows);
default:
ThrowInfo(DataTypeInvalid,
"CreateFieldData not support data type " +
GetDataTypeName(type));
}
}
int64_t
GetByteSizeOfFieldDatas(const std::vector<FieldDataPtr>& field_datas) {
int64_t result = 0;
for (auto& data : field_datas) {
result += data->Size();
}
return result;
}
std::vector<FieldDataPtr>
CollectFieldDataChannel(FieldDataChannelPtr& channel) {
std::vector<FieldDataPtr> result;
FieldDataPtr field_data;
while (channel->pop(field_data)) {
result.push_back(field_data);
}
return result;
}
FieldDataPtr
MergeFieldData(std::vector<FieldDataPtr>& data_array) {
if (data_array.size() == 0) {
return nullptr;
}
if (data_array.size() == 1) {
return data_array[0];
}
size_t total_length = 0;
for (const auto& data : data_array) {
total_length += data->Length();
}
auto element_type = DataType::NONE;
auto vector_array_data =
dynamic_cast<FieldData<VectorArray>*>(data_array[0].get());
if (vector_array_data) {
element_type = vector_array_data->get_element_type();
}
auto merged_data = storage::CreateFieldData(data_array[0]->get_data_type(),
element_type,
data_array[0]->IsNullable());
merged_data->Reserve(total_length);
for (const auto& data : data_array) {
if (merged_data->IsNullable()) {
merged_data->FillFieldData(
data->Data(), data->ValidData(), data->Length(), 0);
} else {
merged_data->FillFieldData(data->Data(), data->Length());
}
}
return merged_data;
}
std::vector<FieldDataPtr>
FetchFieldData(ChunkManager* cm, const std::vector<std::string>& remote_files) {
std::vector<FieldDataPtr> field_datas;
std::vector<std::string> batch_files;
auto FetchRawData = [&]() {
auto fds = GetObjectData(cm, batch_files);
for (size_t i = 0; i < batch_files.size(); ++i) {
auto data = fds[i].get()->GetFieldData();
field_datas.emplace_back(data);
}
};
auto parallel_degree =
uint64_t(DEFAULT_FIELD_MAX_MEMORY_LIMIT / FILE_SLICE_SIZE);
for (auto& file : remote_files) {
if (batch_files.size() >= parallel_degree) {
FetchRawData();
batch_files.clear();
}
batch_files.emplace_back(file);
}
if (batch_files.size() > 0) {
FetchRawData();
}
return field_datas;
}
std::vector<FieldDataPtr>
GetFieldDatasFromStorageV2(std::vector<std::vector<std::string>>& remote_files,
int64_t field_id,
DataType data_type,
DataType element_type,
int64_t dim,
milvus_storage::ArrowFileSystemPtr fs) {
AssertInfo(remote_files.size() > 0, "[StorageV2] remote files size is 0");
std::vector<FieldDataPtr> field_data_list;
// remote files might not followed the sequence of column group id,
// so we need to put into map<column_group_id, remote_chunk_files>
std::unordered_map<int64_t, std::vector<std::string>> column_group_files;
for (auto& remote_chunk_files : remote_files) {
AssertInfo(remote_chunk_files.size() > 0,
"[StorageV2] remote files size is 0");
int64_t group_id = ExtractGroupIdFromPath(remote_chunk_files[0]);
column_group_files[group_id] = remote_chunk_files;
}
std::vector<std::string> remote_chunk_files;
int64_t column_group_id = -1;
size_t col_offset = -1;
if (column_group_files.find(field_id) == column_group_files.end()) {
for (auto& [group_id, files] : column_group_files) {
if (group_id >= START_USER_FIELDID) {
continue;
}
milvus_storage::FieldIDList field_id_list = storage::GetFieldIDList(
FieldId(group_id), files[0], nullptr, fs);
for (size_t i = 0; i < field_id_list.size(); ++i) {
if (field_id_list.Get(i) == field_id) {
remote_chunk_files = files;
column_group_id = group_id;
col_offset = i;
break;
}
}
if (column_group_id != -1) {
break;
}
}
} else {
remote_chunk_files = column_group_files[field_id];
column_group_id = field_id;
}
if (column_group_id == -1) {
LOG_INFO(
"[StorageV2] field {} not found in any column group, return "
"empty result set",
field_id);
return field_data_list;
}
AssertInfo(remote_chunk_files.size() > 0,
"[StorageV2] remote files size is 0");
// find column offset
if (col_offset == -1) {
milvus_storage::FieldIDList field_id_list = storage::GetFieldIDList(
FieldId(column_group_id), remote_chunk_files[0], nullptr, fs);
for (size_t i = 0; i < field_id_list.size(); ++i) {
if (field_id_list.Get(i) == field_id) {
col_offset = i;
break;
}
}
}
// field not found, must be newly added field, return empty resultset
if (col_offset == -1) {
LOG_INFO(
"[StorageV2] field {} not found in column group {}, return empty "
"result set",
field_id,
column_group_id);
return field_data_list;
}
AssertInfo(fs != nullptr,
"[StorageV2] storage v2 arrow file system is not initialized");
// set up channel for arrow reader
auto field_data_info = FieldDataInfo();
auto parallel_degree =
static_cast<uint64_t>(DEFAULT_FIELD_MAX_MEMORY_LIMIT / FILE_SLICE_SIZE);
field_data_info.arrow_reader_channel->set_capacity(parallel_degree);
auto& pool = ThreadPools::GetThreadPool(milvus::ThreadPoolPriority::MIDDLE);
for (auto& column_group_file : remote_chunk_files) {
// get all row groups for each file
std::vector<std::vector<int64_t>> row_group_lists;
auto reader = std::make_shared<milvus_storage::FileRowGroupReader>(
fs,
column_group_file,
milvus_storage::DEFAULT_READ_BUFFER_SIZE,
GetReaderProperties());
auto row_group_num =
reader->file_metadata()->GetRowGroupMetadataVector().size();
std::vector<int64_t> all_row_groups(row_group_num);
std::iota(all_row_groups.begin(), all_row_groups.end(), 0);
row_group_lists.push_back(all_row_groups);
// create a schema with only the field id
auto field_schema = reader->schema()->field(col_offset)->Copy();
auto arrow_schema = arrow::schema({field_schema});
auto status = reader->Close();
AssertInfo(status.ok(),
"[StorageV2] failed to close file reader when get arrow "
"schema from file: " +
column_group_file + " with error: " + status.ToString());
// split row groups for parallel reading
auto strategy = std::make_unique<segcore::ParallelDegreeSplitStrategy>(
parallel_degree);
auto load_future = pool.Submit([&]() {
return LoadWithStrategy(std::vector<std::string>{column_group_file},
field_data_info.arrow_reader_channel,
DEFAULT_FIELD_MAX_MEMORY_LIMIT,
std::move(strategy),
row_group_lists,
fs,
nullptr,
milvus::proto::common::LoadPriority::HIGH);
});
// read field data from channel
std::shared_ptr<milvus::ArrowDataWrapper> r;
while (field_data_info.arrow_reader_channel->pop(r)) {
size_t num_rows = 0;
std::vector<std::shared_ptr<arrow::ChunkedArray>> chunked_arrays;
for (const auto& table_info : r->arrow_tables) {
num_rows += table_info.table->num_rows();
chunked_arrays.push_back(table_info.table->column(col_offset));
}
auto field_data = storage::CreateFieldData(data_type,
element_type,
field_schema->nullable(),
dim,
num_rows);
for (const auto& chunked_array : chunked_arrays) {
field_data->FillFieldData(chunked_array);
}
field_data_list.push_back(field_data);
}
}
return field_data_list;
}
std::vector<FieldDataPtr>
CacheRawDataAndFillMissing(const MemFileManagerImplPtr& file_manager,
const Config& config) {
// download field data
auto field_datas = file_manager->CacheRawDataToMemory(config);
// check storage version
auto storage_version =
index::GetValueFromConfig<int64_t>(config, STORAGE_VERSION_KEY)
.value_or(0);
int64_t lack_binlog_rows =
index::GetValueFromConfig<int64_t>(config, INDEX_NUM_ROWS_KEY)
.value_or(0);
for (auto& field_data : field_datas) {
lack_binlog_rows -= field_data->get_num_rows();
}
if (lack_binlog_rows > 0) {
LOG_INFO("create index lack binlog detected, lack row num: {}",
lack_binlog_rows);
auto field_schema = file_manager->GetFieldDataMeta().field_schema;
auto default_value = [&]() -> std::optional<DefaultValueType> {
if (!field_schema.has_default_value()) {
return std::nullopt;
}
return field_schema.default_value();
}();
auto field_data = storage::CreateFieldData(
static_cast<DataType>(field_schema.data_type()),
static_cast<DataType>(field_schema.element_type()),
true,
1,
lack_binlog_rows);
field_data->FillFieldData(default_value, lack_binlog_rows);
field_datas.insert(field_datas.begin(), field_data);
}
return field_datas;
}
int64_t
ExtractGroupIdFromPath(const std::string& path) {
// find second last of / to get group_id
size_t last_slash = path.find_last_of("/");
size_t second_last_slash = path.find_last_of("/", last_slash - 1);
return std::stol(
path.substr(second_last_slash + 1, last_slash - second_last_slash - 1));
}
// if it is multi-field column group, read field id list from file metadata
// if it is single-field column group, return the column group id
milvus_storage::FieldIDList
GetFieldIDList(FieldId column_group_id,
const std::string& filepath,
const std::shared_ptr<arrow::Schema>& arrow_schema,
milvus_storage::ArrowFileSystemPtr fs) {
milvus_storage::FieldIDList field_id_list;
if (column_group_id >= FieldId(START_USER_FIELDID)) {
field_id_list.Add(column_group_id.get());
return field_id_list;
}
auto file_reader = std::make_shared<milvus_storage::FileRowGroupReader>(
fs,
filepath,
arrow_schema,
milvus_storage::DEFAULT_READ_BUFFER_SIZE,
GetReaderProperties());
field_id_list =
file_reader->file_metadata()->GetGroupFieldIDList().GetFieldIDList(
column_group_id.get());
auto status = file_reader->Close();
AssertInfo(status.ok(),
"failed to close file reader when get field id list from {}",
filepath);
return field_id_list;
}
} // namespace milvus::storage