mirror of
https://gitee.com/milvus-io/milvus.git
synced 2025-12-29 23:15:28 +08:00
* remove disconnect test case Signed-off-by: zw <zw@zilliz.com> * stable case Signed-off-by: zw <zw@zilliz.com> * re-trigger Signed-off-by: zw <zw@zilliz.com>
506 lines
20 KiB
Python
Executable File
506 lines
20 KiB
Python
Executable File
import pdb
|
|
import copy
|
|
import struct
|
|
import pytest
|
|
import threading
|
|
import datetime
|
|
import logging
|
|
from time import sleep
|
|
from multiprocessing import Process
|
|
import numpy
|
|
import sklearn.preprocessing
|
|
from milvus import Milvus, IndexType, MetricType
|
|
from utils import *
|
|
|
|
dim = 128
|
|
collection_id = "test_search_by_ids"
|
|
nb = 6000
|
|
vectors = gen_vectors(nb, dim)
|
|
vectors = sklearn.preprocessing.normalize(vectors, axis=1, norm='l2')
|
|
vectors = vectors.tolist()
|
|
nprobe = 1
|
|
epsilon = 0.001
|
|
tag = "overallpaper"
|
|
top_k = 5
|
|
nq = 10
|
|
nprobe = 1
|
|
non_exist_id = [9527]
|
|
raw_vectors, binary_vectors = gen_binary_vectors(6000, dim)
|
|
|
|
|
|
class TestSearchBase:
|
|
@pytest.fixture(scope="function", autouse=True)
|
|
def skip_check(self, connect):
|
|
if str(connect._cmd("mode")[1]) == "CPU" or str(connect._cmd("mode")[1]) == "GPU":
|
|
reason = "GPU mode not support"
|
|
logging.getLogger().info(reason)
|
|
pytest.skip(reason)
|
|
|
|
def init_data(self, connect, collection, nb=6000):
|
|
'''
|
|
Generate vectors and add it in collection, before search vectors
|
|
'''
|
|
global vectors
|
|
if nb == 6000:
|
|
add_vectors = vectors
|
|
else:
|
|
add_vectors = gen_vectors(nb, dim)
|
|
status, ids = connect.add_vectors(collection, add_vectors)
|
|
connect.flush([collection])
|
|
return add_vectors, ids
|
|
|
|
def init_data_binary(self, connect, collection, nb=6000):
|
|
'''
|
|
Generate vectors and add it in collection, before search vectors
|
|
'''
|
|
global binary_vectors
|
|
if nb == 6000:
|
|
add_vectors = binary_vectors
|
|
else:
|
|
add_vectors = gen_binary_vectors(nb, dim)
|
|
status, ids = connect.add_vectors(collection, add_vectors)
|
|
connect.flush([collection])
|
|
return add_vectors, ids
|
|
|
|
def init_data_no_flush(self, connect, collection, nb=6000):
|
|
global vectors
|
|
if nb == 6000:
|
|
add_vectors = vectors
|
|
else:
|
|
add_vectors = gen_vectors(nb, dim)
|
|
status, ids = connect.add_vectors(collection, add_vectors)
|
|
return add_vectors, ids
|
|
|
|
def init_data_ids(self, connect, collection, nb=6000):
|
|
global vectors
|
|
my_ids = [i for i in range(nb)]
|
|
if nb == 6000:
|
|
add_vectors = vectors
|
|
else:
|
|
add_vectors = gen_vectors(nb, dim)
|
|
status, ids = connect.add_vectors(collection, add_vectors, my_ids)
|
|
connect.flush([collection])
|
|
return add_vectors, ids
|
|
|
|
def check_no_result(self, results):
|
|
if len(results) == 0:
|
|
return True
|
|
flag = True
|
|
for r in results:
|
|
flag = flag and (r.id == -1)
|
|
if not flag:
|
|
return False
|
|
return flag
|
|
|
|
def init_data_partition(self, connect, collection, partition_tag, nb=6000):
|
|
'''
|
|
Generate vectors and add it in collection, before search vectors
|
|
'''
|
|
global vectors
|
|
if nb == 6000:
|
|
add_vectors = vectors
|
|
else:
|
|
add_vectors = gen_vectors(nb, dim)
|
|
add_vectors = sklearn.preprocessing.normalize(add_vectors, axis=1, norm='l2')
|
|
add_vectors = add_vectors.tolist()
|
|
status, ids = connect.add_vectors(collection, add_vectors, partition_tag=partition_tag)
|
|
connect.flush([collection])
|
|
return add_vectors, ids
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_simple_index()
|
|
)
|
|
def get_simple_index(self, request, connect):
|
|
if str(connect._cmd("mode")[1]) == "CPU":
|
|
if request.param["index_type"] == IndexType.IVF_SQ8H:
|
|
pytest.skip("sq8h not support in CPU mode")
|
|
if str(connect._cmd("mode")[1]) == "GPU":
|
|
if request.param["index_type"] == IndexType.IVF_PQ:
|
|
pytest.skip("ivfpq not support in GPU mode")
|
|
return request.param
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_simple_index()
|
|
)
|
|
def get_jaccard_index(self, request, connect):
|
|
logging.getLogger().info(request.param)
|
|
if request.param["index_type"] == IndexType.IVFLAT or request.param["index_type"] == IndexType.FLAT:
|
|
return request.param
|
|
else:
|
|
pytest.skip("Skip index Temporary")
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_simple_index()
|
|
)
|
|
def get_hamming_index(self, request, connect):
|
|
logging.getLogger().info(request.param)
|
|
if request.param["index_type"] == IndexType.IVFLAT or request.param["index_type"] == IndexType.FLAT:
|
|
return request.param
|
|
else:
|
|
pytest.skip("Skip index Temporary")
|
|
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_simple_index()
|
|
)
|
|
def get_structure_index(self, request, connect):
|
|
logging.getLogger().info(request.param)
|
|
if request.param["index_type"] == IndexType.FLAT:
|
|
return request.param
|
|
else:
|
|
pytest.skip("Skip index Temporary")
|
|
|
|
"""
|
|
generate top-k params
|
|
"""
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=[1, 2048]
|
|
)
|
|
def get_top_k(self, request):
|
|
yield request.param
|
|
|
|
def test_search_flat_normal_topk(self, connect, collection, get_top_k):
|
|
'''
|
|
target: test basic search fuction, all the search params is corrent, change top-k value
|
|
method: search with the given vector id, check the result
|
|
expected: search status ok, and the length of the result is top_k
|
|
'''
|
|
top_k = get_top_k
|
|
vectors, ids = self.init_data(connect, collection)
|
|
query_ids = [ids[0]]
|
|
status, result = connect.search_by_ids(collection, query_ids, top_k, params={})
|
|
assert status.OK()
|
|
assert len(result[0]) == min(len(vectors), top_k)
|
|
assert result[0][0].distance <= epsilon
|
|
assert check_result(result[0], ids[0])
|
|
|
|
def test_search_flat_max_topk(self, connect, collection):
|
|
'''
|
|
target: test basic search fuction, all the search params is corrent, change top-k value
|
|
method: search with the given vector id, check the result
|
|
expected: search status ok, and the length of the result is top_k
|
|
'''
|
|
top_k = 2049
|
|
vectors, ids = self.init_data(connect, collection)
|
|
query_ids = ids[0]
|
|
status, result = connect.search_by_ids(collection, query_ids, top_k, params={})
|
|
assert not status.OK()
|
|
|
|
def test_search_id_not_existed(self, connect, collection):
|
|
'''
|
|
target: test basic search fuction, all the search params is corrent, change top-k value
|
|
method: search with the given vector id, check the result
|
|
expected: search status ok, and the length of the result is top_k
|
|
'''
|
|
vectors, ids = self.init_data(connect, collection)
|
|
query_ids = non_exist_id
|
|
status, result = connect.search_by_ids(collection, query_ids, top_k, params={})
|
|
assert status.OK()
|
|
assert len(result[0]) == min(len(vectors), top_k)
|
|
|
|
def test_search_collection_empty(self, connect, collection):
|
|
'''
|
|
target: test basic search fuction, all the search params is corrent, change top-k value
|
|
method: search with the given vector id, check the result
|
|
expected: search status ok, and the length of the result is top_k
|
|
'''
|
|
query_ids = non_exist_id
|
|
status, result = connect.search_by_ids(collection, query_ids, top_k, params={})
|
|
assert status.OK()
|
|
assert len(result) == 0
|
|
|
|
def test_search_index_l2(self, connect, collection, get_simple_index):
|
|
'''
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build
|
|
method: search with the given vectors, check the result
|
|
expected: search status ok, and the length of the result is top_k
|
|
'''
|
|
index_param = get_simple_index["index_param"]
|
|
index_type = get_simple_index["index_type"]
|
|
vectors, ids = self.init_data(connect, collection)
|
|
status = connect.create_index(collection, index_type, index_param)
|
|
query_ids = [ids[0]]
|
|
search_param = get_search_param(index_type)
|
|
status, result = connect.search_by_ids(collection, query_ids, top_k, params=search_param)
|
|
assert status.OK()
|
|
assert len(result[0]) == min(len(vectors), top_k)
|
|
assert result[0][0].distance <= epsilon
|
|
assert check_result(result[0], ids[0])
|
|
|
|
def test_search_index_l2_B(self, connect, collection, get_simple_index):
|
|
'''
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build
|
|
method: search with the given vectors, check the result
|
|
expected: search status ok, and the length of the result is top_k
|
|
'''
|
|
index_param = get_simple_index["index_param"]
|
|
index_type = get_simple_index["index_type"]
|
|
vectors, ids = self.init_data(connect, collection)
|
|
status = connect.create_index(collection, index_type, index_param)
|
|
query_ids = ids[0:nq]
|
|
search_param = get_search_param(index_type)
|
|
status, result = connect.search_by_ids(collection, query_ids, top_k, params=search_param)
|
|
assert status.OK()
|
|
assert len(result) == nq
|
|
for i in nq:
|
|
assert len(result[i]) == min(len(vectors), top_k)
|
|
assert result[i][0].distance <= epsilon
|
|
assert check_result(result[i], ids[i])
|
|
|
|
def test_search_index_l2_C(self, connect, collection, get_simple_index):
|
|
'''
|
|
target: test basic search fuction, all the search params is corrent, one id is not existed
|
|
method: search with the given vectors, check the result
|
|
expected: search status ok, and the length of the result is top_k
|
|
'''
|
|
index_param = get_simple_index["index_param"]
|
|
index_type = get_simple_index["index_type"]
|
|
vectors, ids = self.init_data(connect, collection)
|
|
status = connect.create_index(collection, index_type, index_param)
|
|
query_ids = ids[0:nq]
|
|
query_ids[0] = non_exist_id
|
|
search_param = get_search_param(index_type)
|
|
status, result = connect.search_by_ids(collection, [query_ids], top_k, params=search_param)
|
|
assert status.OK()
|
|
assert len(result) == nq
|
|
for i in nq:
|
|
if i == 0:
|
|
assert result[i].id == -1
|
|
else:
|
|
assert len(result[i]) == min(len(vectors), top_k)
|
|
assert result[i][0].distance <= epsilon
|
|
assert check_result(result[i], ids[i])
|
|
|
|
def test_search_index_delete(self, connect, collection):
|
|
vectors, ids = self.init_data(connect, collection)
|
|
query_ids = ids[0]
|
|
status = connect.delete_by_id(collection, [query_ids])
|
|
assert status.OK()
|
|
status = connect.flush(collection)
|
|
status, result = connect.search_by_ids(collection, [query_ids], top_k, params={})
|
|
assert status.OK()
|
|
assert len(result) == 1
|
|
assert result[0][0].distance <= epsilon
|
|
assert result[0][0].id != ids[0]
|
|
|
|
def test_search_l2_partition_tag_not_existed(self, connect, collection):
|
|
'''
|
|
target: test basic search fuction, all the search params is corrent, test all index params, and build
|
|
method: add vectors into collection, search with the given vectors, check the result
|
|
expected: search status ok, and the length of the result is top_k, search collection with partition tag return empty
|
|
'''
|
|
status = connect.create_partition(collection, tag)
|
|
vectors, ids = self.init_data(connect, collection)
|
|
query_ids = ids[0]
|
|
status, result = connect.search_by_ids(collection, query_ids, top_k, partition_tags=[tag], params=search_param)
|
|
assert status.OK()
|
|
assert len(result) == 0
|
|
|
|
def test_search_l2_partition_other(self, connect, collection):
|
|
tag = gen_unique_str()
|
|
status = connect.create_partition(collection, tag)
|
|
vectors, ids = self.init_data(connect, collection)
|
|
query_ids = ids[0]
|
|
status, result = connect.search_by_ids(collection, query_ids, top_k, partition_tags=[tag], params=search_param)
|
|
assert status.OK()
|
|
assert len(result) == 0
|
|
|
|
def test_search_l2_partition(self, connect, collection):
|
|
vectors, ids = self.init_data_partition(connect, collection, tag)
|
|
query_ids = ids[-1]
|
|
status, result = connect.search_by_ids(collection, query_ids, top_k, partition_tags=[tag])
|
|
assert status.OK()
|
|
assert len(result) == 1
|
|
assert len(result[0]) == min(len(vectors), top_k)
|
|
assert check_result(result[0], query_ids)
|
|
|
|
def test_search_l2_partition_B(self, connect, collection):
|
|
status = connect.create_partition(collection, tag)
|
|
vectors, ids = self.init_data_partition(connect, collection, tag)
|
|
query_ids = ids[0:nq]
|
|
status, result = connect.search_by_ids(collection, query_ids, top_k, partition_tags=[tag])
|
|
assert status.OK()
|
|
assert len(result) == nq
|
|
for i in nq:
|
|
assert len(result[i]) == min(len(vectors), top_k)
|
|
assert result[i][0].distance <= epsilon
|
|
assert check_result(result[i], ids[i])
|
|
|
|
def test_search_l2_index_partitions(self, connect, collection):
|
|
new_tag = "new_tag"
|
|
status = connect.create_partition(collection, tag)
|
|
status = connect.create_partition(collection, new_tag)
|
|
vectors, ids = self.init_data_partition(connect, collection, tag)
|
|
vectors, new_ids = self.init_data_partition(connect, collection, new_tag, nb=nb+1)
|
|
tmp = 2
|
|
query_ids = ids[0:tmp]
|
|
query_ids.extend(new_ids[0:nq-tmp])
|
|
status, result = connect.search_by_ids(collection, query_ids, top_k, partition_tags=[tag, new_tag], params={})
|
|
assert status.OK()
|
|
assert len(result) == nq
|
|
for i in nq:
|
|
assert len(result[i]) == min(len(vectors), top_k)
|
|
assert result[i][0].distance <= epsilon
|
|
assert check_result(result[i], ids[i])
|
|
|
|
def test_search_l2_index_partitions_match_one_tag(self, connect, collection):
|
|
new_tag = "new_tag"
|
|
status = connect.create_partition(collection, tag)
|
|
status = connect.create_partition(collection, new_tag)
|
|
vectors, ids = self.init_data_partition(connect, collection, tag)
|
|
vectors, new_ids = self.init_data_partition(connect, collection, new_tag, nb=nb+1)
|
|
tmp = 2
|
|
query_ids = ids[0:tmp]
|
|
query_ids.extend(new_ids[0:nq-tmp])
|
|
status, result = connect.search_by_ids(collection, query_ids, top_k, partition_tags=[new_tag], params={})
|
|
assert status.OK()
|
|
assert len(result) == nq
|
|
for i in nq:
|
|
if i < tmp:
|
|
assert result[i][0].distance > epsilon
|
|
assert result[i][0].id != ids[i]
|
|
else:
|
|
assert len(result[i]) == min(len(vectors), top_k)
|
|
assert result[i][0].distance <= epsilon
|
|
assert check_result(result[i], ids[i])
|
|
|
|
# def test_search_by_ids_without_connect(self, dis_connect, collection):
|
|
# '''
|
|
# target: test search vectors without connection
|
|
# method: use dis connected instance, call search method and check if search successfully
|
|
# expected: raise exception
|
|
# '''
|
|
# query_ids = [1]
|
|
# with pytest.raises(Exception) as e:
|
|
# status, ids = dis_connect.search_by_ids(collection, query_ids, top_k, params={})
|
|
|
|
def test_search_collection_name_not_existed(self, connect, collection):
|
|
'''
|
|
target: search collection not existed
|
|
method: search with the random collection_name, which is not in db
|
|
expected: status not ok
|
|
'''
|
|
collection_name = gen_unique_str("not_existed_collection")
|
|
query_ids = non_exist_id
|
|
status, result = connect.search_by_ids(collection_name, query_ids, top_k, params={})
|
|
assert not status.OK()
|
|
|
|
def test_search_collection_name_None(self, connect, collection):
|
|
'''
|
|
target: search collection that collection name is None
|
|
method: search with the collection_name: None
|
|
expected: status not ok
|
|
'''
|
|
collection_name = None
|
|
query_ids = non_exist_id
|
|
with pytest.raises(Exception) as e:
|
|
status, result = connect.search_by_ids(collection_name, query_ids, top_k, params={})
|
|
|
|
def test_search_jac(self, connect, jac_collection, get_jaccard_index):
|
|
index_param = get_jaccard_index["index_param"]
|
|
index_type = get_jaccard_index["index_type"]
|
|
vectors, ids = self.init_data_binary(connect, jac_collection)
|
|
status = connect.create_index(jac_collection, index_type, index_param)
|
|
assert status.OK()
|
|
query_ids = ids[0:nq]
|
|
search_param = get_search_param(index_type)
|
|
status, result = connect.search_by_ids(jac_collection, query_ids, top_k, params=search_param)
|
|
assert status.OK()
|
|
assert len(result) == nq
|
|
for i in nq:
|
|
assert len(result[i]) == min(len(vectors), top_k)
|
|
assert result[i][0].distance <= epsilon
|
|
assert check_result(result[i], ids[i])
|
|
|
|
|
|
"""
|
|
******************************************************************
|
|
# The following cases are used to test `search_by_ids` function
|
|
# with invalid collection_name top-k / ids / tags
|
|
******************************************************************
|
|
"""
|
|
|
|
class TestSearchParamsInvalid(object):
|
|
nlist = 16384
|
|
index_param = {"index_type": IndexType.IVF_SQ8, "nlist": nlist}
|
|
|
|
"""
|
|
Test search collection with invalid collection names
|
|
"""
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_invalid_collection_names()
|
|
)
|
|
def get_collection_name(self, request):
|
|
yield request.param
|
|
|
|
@pytest.mark.level(2)
|
|
def test_search_with_invalid_collectionname(self, connect, get_collection_name):
|
|
collection_name = get_collection_name
|
|
query_ids = non_exist_id
|
|
status, result = connect.search_by_ids(collection_name, query_ids, top_k, params={})
|
|
assert not status.OK()
|
|
|
|
@pytest.mark.level(1)
|
|
def test_search_with_invalid_tag_format(self, connect, collection):
|
|
query_ids = non_exist_id
|
|
with pytest.raises(Exception) as e:
|
|
status, result = connect.search_by_ids(collection_name, query_ids, top_k, partition_tags="tag")
|
|
|
|
"""
|
|
Test search collection with invalid top-k
|
|
"""
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_invalid_top_ks()
|
|
)
|
|
def get_top_k(self, request):
|
|
yield request.param
|
|
|
|
@pytest.mark.level(1)
|
|
def test_search_with_invalid_top_k(self, connect, collection, get_top_k):
|
|
top_k = get_top_k
|
|
query_ids = non_exist_id
|
|
if isinstance(top_k, int):
|
|
status, result = connect.search_by_ids(collection, query_ids, top_k)
|
|
assert not status.OK()
|
|
else:
|
|
with pytest.raises(Exception) as e:
|
|
status, result = connect.search_by_ids(collection, query_ids, top_k)
|
|
|
|
"""
|
|
Test search collection with invalid query ids
|
|
"""
|
|
@pytest.fixture(
|
|
scope="function",
|
|
params=gen_invalid_vector_ids()
|
|
)
|
|
def get_ids(self, request):
|
|
yield request.param
|
|
|
|
@pytest.mark.level(1)
|
|
def test_search_with_invalid_ids(self, connect, collection, get_ids):
|
|
id = get_ids
|
|
query_ids = [id]
|
|
if not isinstance(id, int):
|
|
with pytest.raises(Exception) as e:
|
|
status, result = connect.search_by_ids(collection, query_ids, top_k)
|
|
|
|
@pytest.mark.level(2)
|
|
def test_search_with_part_invalid_ids(self, connect, collection, get_ids):
|
|
id = get_ids
|
|
query_ids = [1, id]
|
|
with pytest.raises(Exception) as e:
|
|
status, result = connect.search_by_ids(collection, query_ids, top_k)
|
|
|
|
|
|
def check_result(result, id):
|
|
if len(result) >= 5:
|
|
return id in [x.id for x in result[:5]]
|
|
else:
|
|
return id in (i.id for i in result)
|