mirror of
https://gitee.com/milvus-io/milvus.git
synced 2025-12-08 10:08:42 +08:00
When the TimeTravel functionality was previously removed, it inadvertently affected the MVCC functionality within the system. This PR aims to reintroduce the internal MVCC functionality as follows: 1. Add MvccTimestamp to the requests of Search/Query and the results of Search internally. 2. When the delegator receives a Query/Search request and there is no MVCC timestamp set in the request, set the delegator's current tsafe as the MVCC timestamp of the request. If the request already has an MVCC timestamp, do not modify it. 3. When the Proxy handles Search and triggers the second phase ReQuery, divide the ReQuery into different shards and pass the MVCC timestamp to the corresponding Query requests. issue: #29656 Signed-off-by: zhenshan.cao <zhenshan.cao@zilliz.com>
543 lines
23 KiB
C++
543 lines
23 KiB
C++
// Copyright (C) 2019-2020 Zilliz. All rights reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software distributed under the License
|
|
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
|
|
// or implied. See the License for the specific language governing permissions and limitations under the License
|
|
|
|
//
|
|
// Created by zilliz on 2023/12/1.
|
|
//
|
|
|
|
#include <gtest/gtest.h>
|
|
#include "common/Schema.h"
|
|
#include "segcore/SegmentSealedImpl.h"
|
|
#include "test_utils/DataGen.h"
|
|
#include "query/Plan.h"
|
|
#include "segcore/segment_c.h"
|
|
#include "segcore/reduce_c.h"
|
|
#include "test_utils/c_api_test_utils.h"
|
|
#include "segcore/plan_c.h"
|
|
|
|
using namespace milvus;
|
|
using namespace milvus::segcore;
|
|
using namespace milvus::query;
|
|
using namespace milvus::storage;
|
|
|
|
const char* METRICS_TYPE = "metric_type";
|
|
|
|
void
|
|
prepareSegmentSystemFieldData(const std::unique_ptr<SegmentSealed>& segment,
|
|
size_t row_count,
|
|
GeneratedData& data_set) {
|
|
auto field_data =
|
|
std::make_shared<milvus::FieldData<int64_t>>(DataType::INT64);
|
|
field_data->FillFieldData(data_set.row_ids_.data(), row_count);
|
|
auto field_data_info =
|
|
FieldDataInfo{RowFieldID.get(),
|
|
row_count,
|
|
std::vector<milvus::FieldDataPtr>{field_data}};
|
|
segment->LoadFieldData(RowFieldID, field_data_info);
|
|
|
|
field_data = std::make_shared<milvus::FieldData<int64_t>>(DataType::INT64);
|
|
field_data->FillFieldData(data_set.timestamps_.data(), row_count);
|
|
field_data_info =
|
|
FieldDataInfo{TimestampFieldID.get(),
|
|
row_count,
|
|
std::vector<milvus::FieldDataPtr>{field_data}};
|
|
segment->LoadFieldData(TimestampFieldID, field_data_info);
|
|
}
|
|
|
|
TEST(GroupBY, Normal2) {
|
|
using namespace milvus;
|
|
using namespace milvus::query;
|
|
using namespace milvus::segcore;
|
|
|
|
//0. prepare schema
|
|
int dim = 64;
|
|
auto schema = std::make_shared<Schema>();
|
|
auto vec_fid = schema->AddDebugField(
|
|
"fakevec", DataType::VECTOR_FLOAT, dim, knowhere::metric::L2);
|
|
auto int8_fid = schema->AddDebugField("int8", DataType::INT8);
|
|
auto int16_fid = schema->AddDebugField("int16", DataType::INT16);
|
|
auto int32_fid = schema->AddDebugField("int32", DataType::INT32);
|
|
auto int64_fid = schema->AddDebugField("int64", DataType::INT64);
|
|
auto str_fid = schema->AddDebugField("string1", DataType::VARCHAR);
|
|
auto bool_fid = schema->AddDebugField("bool", DataType::BOOL);
|
|
schema->set_primary_field_id(str_fid);
|
|
auto segment = CreateSealedSegment(schema);
|
|
size_t N = 100;
|
|
|
|
//2. load raw data
|
|
auto raw_data = DataGen(schema, N);
|
|
auto fields = schema->get_fields();
|
|
for (auto field_data : raw_data.raw_->fields_data()) {
|
|
int64_t field_id = field_data.field_id();
|
|
|
|
auto info = FieldDataInfo(field_data.field_id(), N);
|
|
auto field_meta = fields.at(FieldId(field_id));
|
|
info.channel->push(
|
|
CreateFieldDataFromDataArray(N, &field_data, field_meta));
|
|
info.channel->close();
|
|
|
|
segment->LoadFieldData(FieldId(field_id), info);
|
|
}
|
|
prepareSegmentSystemFieldData(segment, N, raw_data);
|
|
|
|
//3. load index
|
|
auto vector_data = raw_data.get_col<float>(vec_fid);
|
|
auto indexing = GenVecIndexing(
|
|
N, dim, vector_data.data(), knowhere::IndexEnum::INDEX_HNSW);
|
|
LoadIndexInfo load_index_info;
|
|
load_index_info.field_id = vec_fid.get();
|
|
load_index_info.index = std::move(indexing);
|
|
load_index_info.index_params[METRICS_TYPE] = knowhere::metric::L2;
|
|
segment->LoadIndex(load_index_info);
|
|
|
|
//4. search group by int8
|
|
{
|
|
const char* raw_plan = R"(vector_anns: <
|
|
field_id: 100
|
|
query_info: <
|
|
topk: 100
|
|
metric_type: "L2"
|
|
search_params: "{\"ef\": 10}"
|
|
group_by_field_id: 101
|
|
>
|
|
placeholder_tag: "$0"
|
|
|
|
>)";
|
|
|
|
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
|
|
auto plan =
|
|
CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size());
|
|
auto num_queries = 1;
|
|
auto seed = 1024;
|
|
auto ph_group_raw = CreatePlaceholderGroup(num_queries, dim, seed);
|
|
auto ph_group =
|
|
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
|
|
auto search_result =
|
|
segment->Search(plan.get(), ph_group.get(), 1L << 63);
|
|
auto& group_by_values = search_result->group_by_values_;
|
|
ASSERT_EQ(search_result->group_by_values_.size(),
|
|
search_result->seg_offsets_.size());
|
|
ASSERT_EQ(search_result->distances_.size(),
|
|
search_result->seg_offsets_.size());
|
|
|
|
int size = group_by_values.size();
|
|
std::unordered_set<int8_t> i8_set;
|
|
float lastDistance = 0.0;
|
|
for (size_t i = 0; i < size; i++) {
|
|
if (std::holds_alternative<int8_t>(group_by_values[i])) {
|
|
int8_t g_val = std::get<int8_t>(group_by_values[i]);
|
|
ASSERT_FALSE(i8_set.count(g_val) >
|
|
0); //no repetition on groupBy field
|
|
i8_set.insert(g_val);
|
|
auto distance = search_result->distances_.at(i);
|
|
ASSERT_TRUE(
|
|
lastDistance <=
|
|
distance); //distance should be decreased as metrics_type is L2
|
|
lastDistance = distance;
|
|
} else {
|
|
//check padding
|
|
ASSERT_EQ(search_result->seg_offsets_[i], INVALID_SEG_OFFSET);
|
|
ASSERT_EQ(search_result->distances_[i], 0.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
//4. search group by int16
|
|
{
|
|
const char* raw_plan = R"(vector_anns: <
|
|
field_id: 100
|
|
query_info: <
|
|
topk: 100
|
|
metric_type: "L2"
|
|
search_params: "{\"ef\": 10}"
|
|
group_by_field_id: 102
|
|
>
|
|
placeholder_tag: "$0"
|
|
|
|
>)";
|
|
|
|
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
|
|
auto plan =
|
|
CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size());
|
|
auto num_queries = 1;
|
|
auto seed = 1024;
|
|
auto ph_group_raw = CreatePlaceholderGroup(num_queries, dim, seed);
|
|
auto ph_group =
|
|
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
|
|
auto search_result =
|
|
segment->Search(plan.get(), ph_group.get(), 1L << 63);
|
|
auto& group_by_values = search_result->group_by_values_;
|
|
ASSERT_EQ(search_result->group_by_values_.size(),
|
|
search_result->seg_offsets_.size());
|
|
ASSERT_EQ(search_result->distances_.size(),
|
|
search_result->seg_offsets_.size());
|
|
|
|
int size = group_by_values.size();
|
|
std::unordered_set<int16_t> i16_set;
|
|
float lastDistance = 0.0;
|
|
for (size_t i = 0; i < size; i++) {
|
|
if (std::holds_alternative<int16_t>(group_by_values[i])) {
|
|
int16_t g_val = std::get<int16_t>(group_by_values[i]);
|
|
ASSERT_FALSE(i16_set.count(g_val) >
|
|
0); //no repetition on groupBy field
|
|
i16_set.insert(g_val);
|
|
auto distance = search_result->distances_.at(i);
|
|
ASSERT_TRUE(
|
|
lastDistance <=
|
|
distance); //distance should be decreased as metrics_type is L2
|
|
lastDistance = distance;
|
|
} else {
|
|
//check padding
|
|
ASSERT_EQ(search_result->seg_offsets_[i], INVALID_SEG_OFFSET);
|
|
ASSERT_EQ(search_result->distances_[i], 0.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
//4. search group by int32
|
|
{
|
|
const char* raw_plan = R"(vector_anns: <
|
|
field_id: 100
|
|
query_info: <
|
|
topk: 100
|
|
metric_type: "L2"
|
|
search_params: "{\"ef\": 10}"
|
|
group_by_field_id: 103
|
|
>
|
|
placeholder_tag: "$0"
|
|
|
|
>)";
|
|
|
|
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
|
|
auto plan =
|
|
CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size());
|
|
auto num_queries = 1;
|
|
auto seed = 1024;
|
|
auto ph_group_raw = CreatePlaceholderGroup(num_queries, dim, seed);
|
|
auto ph_group =
|
|
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
|
|
auto search_result =
|
|
segment->Search(plan.get(), ph_group.get(), 1L << 63);
|
|
auto& group_by_values = search_result->group_by_values_;
|
|
ASSERT_EQ(search_result->group_by_values_.size(),
|
|
search_result->seg_offsets_.size());
|
|
ASSERT_EQ(search_result->distances_.size(),
|
|
search_result->seg_offsets_.size());
|
|
|
|
int size = group_by_values.size();
|
|
std::unordered_set<int32_t> i32_set;
|
|
float lastDistance = 0.0;
|
|
for (size_t i = 0; i < size; i++) {
|
|
if (std::holds_alternative<int32_t>(group_by_values[i])) {
|
|
int16_t g_val = std::get<int32_t>(group_by_values[i]);
|
|
ASSERT_FALSE(i32_set.count(g_val) >
|
|
0); //no repetition on groupBy field
|
|
i32_set.insert(g_val);
|
|
auto distance = search_result->distances_.at(i);
|
|
ASSERT_TRUE(
|
|
lastDistance <=
|
|
distance); //distance should be decreased as metrics_type is L2
|
|
lastDistance = distance;
|
|
} else {
|
|
//check padding
|
|
ASSERT_EQ(search_result->seg_offsets_[i], INVALID_SEG_OFFSET);
|
|
ASSERT_EQ(search_result->distances_[i], 0.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
//4. search group by int64
|
|
{
|
|
const char* raw_plan = R"(vector_anns: <
|
|
field_id: 100
|
|
query_info: <
|
|
topk: 100
|
|
metric_type: "L2"
|
|
search_params: "{\"ef\": 10}"
|
|
group_by_field_id: 104
|
|
>
|
|
placeholder_tag: "$0"
|
|
|
|
>)";
|
|
|
|
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
|
|
auto plan =
|
|
CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size());
|
|
auto num_queries = 1;
|
|
auto seed = 1024;
|
|
auto ph_group_raw = CreatePlaceholderGroup(num_queries, dim, seed);
|
|
auto ph_group =
|
|
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
|
|
auto search_result =
|
|
segment->Search(plan.get(), ph_group.get(), 1L << 63);
|
|
auto& group_by_values = search_result->group_by_values_;
|
|
ASSERT_EQ(search_result->group_by_values_.size(),
|
|
search_result->seg_offsets_.size());
|
|
ASSERT_EQ(search_result->distances_.size(),
|
|
search_result->seg_offsets_.size());
|
|
|
|
int size = group_by_values.size();
|
|
std::unordered_set<int64_t> i64_set;
|
|
float lastDistance = 0.0;
|
|
for (size_t i = 0; i < size; i++) {
|
|
if (std::holds_alternative<int64_t>(group_by_values[i])) {
|
|
int16_t g_val = std::get<int64_t>(group_by_values[i]);
|
|
ASSERT_FALSE(i64_set.count(g_val) >
|
|
0); //no repetition on groupBy field
|
|
i64_set.insert(g_val);
|
|
auto distance = search_result->distances_.at(i);
|
|
ASSERT_TRUE(
|
|
lastDistance <=
|
|
distance); //distance should be decreased as metrics_type is L2
|
|
lastDistance = distance;
|
|
} else {
|
|
//check padding
|
|
ASSERT_EQ(search_result->seg_offsets_[i], INVALID_SEG_OFFSET);
|
|
ASSERT_EQ(search_result->distances_[i], 0.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
//4. search group by string
|
|
{
|
|
const char* raw_plan = R"(vector_anns: <
|
|
field_id: 100
|
|
query_info: <
|
|
topk: 100
|
|
metric_type: "L2"
|
|
search_params: "{\"ef\": 10}"
|
|
group_by_field_id: 105
|
|
>
|
|
placeholder_tag: "$0"
|
|
|
|
>)";
|
|
|
|
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
|
|
auto plan =
|
|
CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size());
|
|
auto num_queries = 1;
|
|
auto seed = 1024;
|
|
auto ph_group_raw = CreatePlaceholderGroup(num_queries, dim, seed);
|
|
auto ph_group =
|
|
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
|
|
auto search_result =
|
|
segment->Search(plan.get(), ph_group.get(), 1L << 63);
|
|
auto& group_by_values = search_result->group_by_values_;
|
|
ASSERT_EQ(search_result->group_by_values_.size(),
|
|
search_result->seg_offsets_.size());
|
|
ASSERT_EQ(search_result->distances_.size(),
|
|
search_result->seg_offsets_.size());
|
|
|
|
int size = group_by_values.size();
|
|
std::unordered_set<std::string_view> strs_set;
|
|
float lastDistance = 0.0;
|
|
for (size_t i = 0; i < size; i++) {
|
|
if (std::holds_alternative<std::string_view>(group_by_values[i])) {
|
|
std::string_view g_val =
|
|
std::get<std::string_view>(group_by_values[i]);
|
|
ASSERT_FALSE(strs_set.count(g_val) >
|
|
0); //no repetition on groupBy field
|
|
strs_set.insert(g_val);
|
|
auto distance = search_result->distances_.at(i);
|
|
ASSERT_TRUE(
|
|
lastDistance <=
|
|
distance); //distance should be decreased as metrics_type is L2
|
|
lastDistance = distance;
|
|
} else {
|
|
//check padding
|
|
ASSERT_EQ(search_result->seg_offsets_[i], INVALID_SEG_OFFSET);
|
|
ASSERT_EQ(search_result->distances_[i], 0.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
//4. search group by bool
|
|
{
|
|
const char* raw_plan = R"(vector_anns: <
|
|
field_id: 100
|
|
query_info: <
|
|
topk: 100
|
|
metric_type: "L2"
|
|
search_params: "{\"ef\": 10}"
|
|
group_by_field_id: 106
|
|
>
|
|
placeholder_tag: "$0"
|
|
|
|
>)";
|
|
|
|
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
|
|
auto plan =
|
|
CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size());
|
|
auto num_queries = 1;
|
|
auto seed = 1024;
|
|
auto ph_group_raw = CreatePlaceholderGroup(num_queries, dim, seed);
|
|
auto ph_group =
|
|
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
|
|
auto search_result =
|
|
segment->Search(plan.get(), ph_group.get(), 1L << 63);
|
|
auto& group_by_values = search_result->group_by_values_;
|
|
ASSERT_EQ(search_result->group_by_values_.size(),
|
|
search_result->seg_offsets_.size());
|
|
ASSERT_EQ(search_result->distances_.size(),
|
|
search_result->seg_offsets_.size());
|
|
|
|
int size = group_by_values.size();
|
|
std::unordered_set<bool> bools_set;
|
|
int boolValCount = 0;
|
|
float lastDistance = 0.0;
|
|
for (size_t i = 0; i < size; i++) {
|
|
if (std::holds_alternative<bool>(group_by_values[i])) {
|
|
bool g_val = std::get<bool>(group_by_values[i]);
|
|
ASSERT_FALSE(bools_set.count(g_val) >
|
|
0); //no repetition on groupBy field
|
|
bools_set.insert(g_val);
|
|
boolValCount += 1;
|
|
auto distance = search_result->distances_.at(i);
|
|
ASSERT_TRUE(
|
|
lastDistance <=
|
|
distance); //distance should be decreased as metrics_type is L2
|
|
lastDistance = distance;
|
|
} else {
|
|
//check padding
|
|
ASSERT_EQ(search_result->seg_offsets_[i], INVALID_SEG_OFFSET);
|
|
ASSERT_EQ(search_result->distances_[i], 0.0);
|
|
}
|
|
ASSERT_TRUE(boolValCount <= 2); //bool values cannot exceed two
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(GroupBY, Reduce) {
|
|
using namespace milvus;
|
|
using namespace milvus::query;
|
|
using namespace milvus::segcore;
|
|
|
|
//0. prepare schema
|
|
int dim = 64;
|
|
auto schema = std::make_shared<Schema>();
|
|
auto vec_fid = schema->AddDebugField(
|
|
"fakevec", DataType::VECTOR_FLOAT, dim, knowhere::metric::L2);
|
|
auto int64_fid = schema->AddDebugField("int64", DataType::INT64);
|
|
schema->set_primary_field_id(int64_fid);
|
|
auto segment1 = CreateSealedSegment(schema);
|
|
auto segment2 = CreateSealedSegment(schema);
|
|
|
|
//1. load raw data
|
|
size_t N = 100;
|
|
uint64_t seed = 512;
|
|
uint64_t ts_offset = 0;
|
|
int repeat_count_1 = 2;
|
|
int repeat_count_2 = 5;
|
|
auto raw_data1 = DataGen(schema, N, seed, ts_offset, repeat_count_1);
|
|
auto raw_data2 = DataGen(schema, N, seed, ts_offset, repeat_count_2);
|
|
|
|
auto fields = schema->get_fields();
|
|
//load segment1 raw data
|
|
for (auto field_data : raw_data1.raw_->fields_data()) {
|
|
int64_t field_id = field_data.field_id();
|
|
auto info = FieldDataInfo(field_data.field_id(), N);
|
|
auto field_meta = fields.at(FieldId(field_id));
|
|
info.channel->push(
|
|
CreateFieldDataFromDataArray(N, &field_data, field_meta));
|
|
info.channel->close();
|
|
segment1->LoadFieldData(FieldId(field_id), info);
|
|
}
|
|
prepareSegmentSystemFieldData(segment1, N, raw_data1);
|
|
|
|
//load segment2 raw data
|
|
for (auto field_data : raw_data2.raw_->fields_data()) {
|
|
int64_t field_id = field_data.field_id();
|
|
auto info = FieldDataInfo(field_data.field_id(), N);
|
|
auto field_meta = fields.at(FieldId(field_id));
|
|
info.channel->push(
|
|
CreateFieldDataFromDataArray(N, &field_data, field_meta));
|
|
info.channel->close();
|
|
segment2->LoadFieldData(FieldId(field_id), info);
|
|
}
|
|
prepareSegmentSystemFieldData(segment2, N, raw_data2);
|
|
|
|
//3. load index
|
|
auto vector_data_1 = raw_data1.get_col<float>(vec_fid);
|
|
auto indexing_1 = GenVecIndexing(
|
|
N, dim, vector_data_1.data(), knowhere::IndexEnum::INDEX_HNSW);
|
|
LoadIndexInfo load_index_info_1;
|
|
load_index_info_1.field_id = vec_fid.get();
|
|
load_index_info_1.index = std::move(indexing_1);
|
|
load_index_info_1.index_params[METRICS_TYPE] = knowhere::metric::L2;
|
|
segment1->LoadIndex(load_index_info_1);
|
|
|
|
auto vector_data_2 = raw_data2.get_col<float>(vec_fid);
|
|
auto indexing_2 = GenVecIndexing(
|
|
N, dim, vector_data_2.data(), knowhere::IndexEnum::INDEX_HNSW);
|
|
LoadIndexInfo load_index_info_2;
|
|
load_index_info_2.field_id = vec_fid.get();
|
|
load_index_info_2.index = std::move(indexing_2);
|
|
load_index_info_2.index_params[METRICS_TYPE] = knowhere::metric::L2;
|
|
segment2->LoadIndex(load_index_info_2);
|
|
|
|
//4. search group by respectively
|
|
const char* raw_plan = R"(vector_anns: <
|
|
field_id: 100
|
|
query_info: <
|
|
topk: 100
|
|
metric_type: "L2"
|
|
search_params: "{\"ef\": 10}"
|
|
group_by_field_id: 101
|
|
>
|
|
placeholder_tag: "$0"
|
|
|
|
>)";
|
|
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
|
|
auto plan =
|
|
CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size());
|
|
auto num_queries = 10;
|
|
auto topK = 100;
|
|
auto ph_group_raw = CreatePlaceholderGroup(num_queries, dim, seed);
|
|
auto ph_group =
|
|
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
|
|
CPlaceholderGroup c_ph_group = ph_group.release();
|
|
CSearchPlan c_plan = plan.release();
|
|
|
|
CSegmentInterface c_segment_1 = segment1.release();
|
|
CSegmentInterface c_segment_2 = segment2.release();
|
|
CSearchResult c_search_res_1;
|
|
CSearchResult c_search_res_2;
|
|
auto status =
|
|
Search(c_segment_1, c_plan, c_ph_group, {}, 1L << 63, &c_search_res_1);
|
|
ASSERT_EQ(status.error_code, Success);
|
|
status =
|
|
Search(c_segment_2, c_plan, c_ph_group, {}, 1L << 63, &c_search_res_2);
|
|
ASSERT_EQ(status.error_code, Success);
|
|
std::vector<CSearchResult> results;
|
|
results.push_back(c_search_res_1);
|
|
results.push_back(c_search_res_2);
|
|
|
|
auto slice_nqs = std::vector<int64_t>{num_queries / 2, num_queries / 2};
|
|
auto slice_topKs = std::vector<int64_t>{topK / 2, topK};
|
|
CSearchResultDataBlobs cSearchResultData;
|
|
status = ReduceSearchResultsAndFillData(&cSearchResultData,
|
|
c_plan,
|
|
results.data(),
|
|
results.size(),
|
|
slice_nqs.data(),
|
|
slice_topKs.data(),
|
|
slice_nqs.size());
|
|
CheckSearchResultDuplicate(results);
|
|
DeleteSearchResult(c_search_res_1);
|
|
DeleteSearchResult(c_search_res_2);
|
|
DeleteSearchResultDataBlobs(cSearchResultData);
|
|
|
|
DeleteSearchPlan(c_plan);
|
|
DeletePlaceholderGroup(c_ph_group);
|
|
DeleteSegment(c_segment_1);
|
|
DeleteSegment(c_segment_2);
|
|
}
|