milvus/internal/core/unittest/test_group_by.cpp
zhenshan.cao 60e88fb833
fix: Restore the MVCC functionality. (#29749)
When the TimeTravel functionality was previously removed, it
inadvertently affected the MVCC functionality within the system. This PR
aims to reintroduce the internal MVCC functionality as follows:

1. Add MvccTimestamp to the requests of Search/Query and the results of
Search internally.
2. When the delegator receives a Query/Search request and there is no
MVCC timestamp set in the request, set the delegator's current tsafe as
the MVCC timestamp of the request. If the request already has an MVCC
timestamp, do not modify it.
3. When the Proxy handles Search and triggers the second phase ReQuery,
divide the ReQuery into different shards and pass the MVCC timestamp to
the corresponding Query requests.

issue: #29656

Signed-off-by: zhenshan.cao <zhenshan.cao@zilliz.com>
2024-01-09 11:38:48 +08:00

543 lines
23 KiB
C++

// Copyright (C) 2019-2020 Zilliz. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under the License
//
// Created by zilliz on 2023/12/1.
//
#include <gtest/gtest.h>
#include "common/Schema.h"
#include "segcore/SegmentSealedImpl.h"
#include "test_utils/DataGen.h"
#include "query/Plan.h"
#include "segcore/segment_c.h"
#include "segcore/reduce_c.h"
#include "test_utils/c_api_test_utils.h"
#include "segcore/plan_c.h"
using namespace milvus;
using namespace milvus::segcore;
using namespace milvus::query;
using namespace milvus::storage;
const char* METRICS_TYPE = "metric_type";
void
prepareSegmentSystemFieldData(const std::unique_ptr<SegmentSealed>& segment,
size_t row_count,
GeneratedData& data_set) {
auto field_data =
std::make_shared<milvus::FieldData<int64_t>>(DataType::INT64);
field_data->FillFieldData(data_set.row_ids_.data(), row_count);
auto field_data_info =
FieldDataInfo{RowFieldID.get(),
row_count,
std::vector<milvus::FieldDataPtr>{field_data}};
segment->LoadFieldData(RowFieldID, field_data_info);
field_data = std::make_shared<milvus::FieldData<int64_t>>(DataType::INT64);
field_data->FillFieldData(data_set.timestamps_.data(), row_count);
field_data_info =
FieldDataInfo{TimestampFieldID.get(),
row_count,
std::vector<milvus::FieldDataPtr>{field_data}};
segment->LoadFieldData(TimestampFieldID, field_data_info);
}
TEST(GroupBY, Normal2) {
using namespace milvus;
using namespace milvus::query;
using namespace milvus::segcore;
//0. prepare schema
int dim = 64;
auto schema = std::make_shared<Schema>();
auto vec_fid = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, dim, knowhere::metric::L2);
auto int8_fid = schema->AddDebugField("int8", DataType::INT8);
auto int16_fid = schema->AddDebugField("int16", DataType::INT16);
auto int32_fid = schema->AddDebugField("int32", DataType::INT32);
auto int64_fid = schema->AddDebugField("int64", DataType::INT64);
auto str_fid = schema->AddDebugField("string1", DataType::VARCHAR);
auto bool_fid = schema->AddDebugField("bool", DataType::BOOL);
schema->set_primary_field_id(str_fid);
auto segment = CreateSealedSegment(schema);
size_t N = 100;
//2. load raw data
auto raw_data = DataGen(schema, N);
auto fields = schema->get_fields();
for (auto field_data : raw_data.raw_->fields_data()) {
int64_t field_id = field_data.field_id();
auto info = FieldDataInfo(field_data.field_id(), N);
auto field_meta = fields.at(FieldId(field_id));
info.channel->push(
CreateFieldDataFromDataArray(N, &field_data, field_meta));
info.channel->close();
segment->LoadFieldData(FieldId(field_id), info);
}
prepareSegmentSystemFieldData(segment, N, raw_data);
//3. load index
auto vector_data = raw_data.get_col<float>(vec_fid);
auto indexing = GenVecIndexing(
N, dim, vector_data.data(), knowhere::IndexEnum::INDEX_HNSW);
LoadIndexInfo load_index_info;
load_index_info.field_id = vec_fid.get();
load_index_info.index = std::move(indexing);
load_index_info.index_params[METRICS_TYPE] = knowhere::metric::L2;
segment->LoadIndex(load_index_info);
//4. search group by int8
{
const char* raw_plan = R"(vector_anns: <
field_id: 100
query_info: <
topk: 100
metric_type: "L2"
search_params: "{\"ef\": 10}"
group_by_field_id: 101
>
placeholder_tag: "$0"
>)";
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
auto plan =
CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size());
auto num_queries = 1;
auto seed = 1024;
auto ph_group_raw = CreatePlaceholderGroup(num_queries, dim, seed);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
auto search_result =
segment->Search(plan.get(), ph_group.get(), 1L << 63);
auto& group_by_values = search_result->group_by_values_;
ASSERT_EQ(search_result->group_by_values_.size(),
search_result->seg_offsets_.size());
ASSERT_EQ(search_result->distances_.size(),
search_result->seg_offsets_.size());
int size = group_by_values.size();
std::unordered_set<int8_t> i8_set;
float lastDistance = 0.0;
for (size_t i = 0; i < size; i++) {
if (std::holds_alternative<int8_t>(group_by_values[i])) {
int8_t g_val = std::get<int8_t>(group_by_values[i]);
ASSERT_FALSE(i8_set.count(g_val) >
0); //no repetition on groupBy field
i8_set.insert(g_val);
auto distance = search_result->distances_.at(i);
ASSERT_TRUE(
lastDistance <=
distance); //distance should be decreased as metrics_type is L2
lastDistance = distance;
} else {
//check padding
ASSERT_EQ(search_result->seg_offsets_[i], INVALID_SEG_OFFSET);
ASSERT_EQ(search_result->distances_[i], 0.0);
}
}
}
//4. search group by int16
{
const char* raw_plan = R"(vector_anns: <
field_id: 100
query_info: <
topk: 100
metric_type: "L2"
search_params: "{\"ef\": 10}"
group_by_field_id: 102
>
placeholder_tag: "$0"
>)";
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
auto plan =
CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size());
auto num_queries = 1;
auto seed = 1024;
auto ph_group_raw = CreatePlaceholderGroup(num_queries, dim, seed);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
auto search_result =
segment->Search(plan.get(), ph_group.get(), 1L << 63);
auto& group_by_values = search_result->group_by_values_;
ASSERT_EQ(search_result->group_by_values_.size(),
search_result->seg_offsets_.size());
ASSERT_EQ(search_result->distances_.size(),
search_result->seg_offsets_.size());
int size = group_by_values.size();
std::unordered_set<int16_t> i16_set;
float lastDistance = 0.0;
for (size_t i = 0; i < size; i++) {
if (std::holds_alternative<int16_t>(group_by_values[i])) {
int16_t g_val = std::get<int16_t>(group_by_values[i]);
ASSERT_FALSE(i16_set.count(g_val) >
0); //no repetition on groupBy field
i16_set.insert(g_val);
auto distance = search_result->distances_.at(i);
ASSERT_TRUE(
lastDistance <=
distance); //distance should be decreased as metrics_type is L2
lastDistance = distance;
} else {
//check padding
ASSERT_EQ(search_result->seg_offsets_[i], INVALID_SEG_OFFSET);
ASSERT_EQ(search_result->distances_[i], 0.0);
}
}
}
//4. search group by int32
{
const char* raw_plan = R"(vector_anns: <
field_id: 100
query_info: <
topk: 100
metric_type: "L2"
search_params: "{\"ef\": 10}"
group_by_field_id: 103
>
placeholder_tag: "$0"
>)";
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
auto plan =
CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size());
auto num_queries = 1;
auto seed = 1024;
auto ph_group_raw = CreatePlaceholderGroup(num_queries, dim, seed);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
auto search_result =
segment->Search(plan.get(), ph_group.get(), 1L << 63);
auto& group_by_values = search_result->group_by_values_;
ASSERT_EQ(search_result->group_by_values_.size(),
search_result->seg_offsets_.size());
ASSERT_EQ(search_result->distances_.size(),
search_result->seg_offsets_.size());
int size = group_by_values.size();
std::unordered_set<int32_t> i32_set;
float lastDistance = 0.0;
for (size_t i = 0; i < size; i++) {
if (std::holds_alternative<int32_t>(group_by_values[i])) {
int16_t g_val = std::get<int32_t>(group_by_values[i]);
ASSERT_FALSE(i32_set.count(g_val) >
0); //no repetition on groupBy field
i32_set.insert(g_val);
auto distance = search_result->distances_.at(i);
ASSERT_TRUE(
lastDistance <=
distance); //distance should be decreased as metrics_type is L2
lastDistance = distance;
} else {
//check padding
ASSERT_EQ(search_result->seg_offsets_[i], INVALID_SEG_OFFSET);
ASSERT_EQ(search_result->distances_[i], 0.0);
}
}
}
//4. search group by int64
{
const char* raw_plan = R"(vector_anns: <
field_id: 100
query_info: <
topk: 100
metric_type: "L2"
search_params: "{\"ef\": 10}"
group_by_field_id: 104
>
placeholder_tag: "$0"
>)";
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
auto plan =
CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size());
auto num_queries = 1;
auto seed = 1024;
auto ph_group_raw = CreatePlaceholderGroup(num_queries, dim, seed);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
auto search_result =
segment->Search(plan.get(), ph_group.get(), 1L << 63);
auto& group_by_values = search_result->group_by_values_;
ASSERT_EQ(search_result->group_by_values_.size(),
search_result->seg_offsets_.size());
ASSERT_EQ(search_result->distances_.size(),
search_result->seg_offsets_.size());
int size = group_by_values.size();
std::unordered_set<int64_t> i64_set;
float lastDistance = 0.0;
for (size_t i = 0; i < size; i++) {
if (std::holds_alternative<int64_t>(group_by_values[i])) {
int16_t g_val = std::get<int64_t>(group_by_values[i]);
ASSERT_FALSE(i64_set.count(g_val) >
0); //no repetition on groupBy field
i64_set.insert(g_val);
auto distance = search_result->distances_.at(i);
ASSERT_TRUE(
lastDistance <=
distance); //distance should be decreased as metrics_type is L2
lastDistance = distance;
} else {
//check padding
ASSERT_EQ(search_result->seg_offsets_[i], INVALID_SEG_OFFSET);
ASSERT_EQ(search_result->distances_[i], 0.0);
}
}
}
//4. search group by string
{
const char* raw_plan = R"(vector_anns: <
field_id: 100
query_info: <
topk: 100
metric_type: "L2"
search_params: "{\"ef\": 10}"
group_by_field_id: 105
>
placeholder_tag: "$0"
>)";
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
auto plan =
CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size());
auto num_queries = 1;
auto seed = 1024;
auto ph_group_raw = CreatePlaceholderGroup(num_queries, dim, seed);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
auto search_result =
segment->Search(plan.get(), ph_group.get(), 1L << 63);
auto& group_by_values = search_result->group_by_values_;
ASSERT_EQ(search_result->group_by_values_.size(),
search_result->seg_offsets_.size());
ASSERT_EQ(search_result->distances_.size(),
search_result->seg_offsets_.size());
int size = group_by_values.size();
std::unordered_set<std::string_view> strs_set;
float lastDistance = 0.0;
for (size_t i = 0; i < size; i++) {
if (std::holds_alternative<std::string_view>(group_by_values[i])) {
std::string_view g_val =
std::get<std::string_view>(group_by_values[i]);
ASSERT_FALSE(strs_set.count(g_val) >
0); //no repetition on groupBy field
strs_set.insert(g_val);
auto distance = search_result->distances_.at(i);
ASSERT_TRUE(
lastDistance <=
distance); //distance should be decreased as metrics_type is L2
lastDistance = distance;
} else {
//check padding
ASSERT_EQ(search_result->seg_offsets_[i], INVALID_SEG_OFFSET);
ASSERT_EQ(search_result->distances_[i], 0.0);
}
}
}
//4. search group by bool
{
const char* raw_plan = R"(vector_anns: <
field_id: 100
query_info: <
topk: 100
metric_type: "L2"
search_params: "{\"ef\": 10}"
group_by_field_id: 106
>
placeholder_tag: "$0"
>)";
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
auto plan =
CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size());
auto num_queries = 1;
auto seed = 1024;
auto ph_group_raw = CreatePlaceholderGroup(num_queries, dim, seed);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
auto search_result =
segment->Search(plan.get(), ph_group.get(), 1L << 63);
auto& group_by_values = search_result->group_by_values_;
ASSERT_EQ(search_result->group_by_values_.size(),
search_result->seg_offsets_.size());
ASSERT_EQ(search_result->distances_.size(),
search_result->seg_offsets_.size());
int size = group_by_values.size();
std::unordered_set<bool> bools_set;
int boolValCount = 0;
float lastDistance = 0.0;
for (size_t i = 0; i < size; i++) {
if (std::holds_alternative<bool>(group_by_values[i])) {
bool g_val = std::get<bool>(group_by_values[i]);
ASSERT_FALSE(bools_set.count(g_val) >
0); //no repetition on groupBy field
bools_set.insert(g_val);
boolValCount += 1;
auto distance = search_result->distances_.at(i);
ASSERT_TRUE(
lastDistance <=
distance); //distance should be decreased as metrics_type is L2
lastDistance = distance;
} else {
//check padding
ASSERT_EQ(search_result->seg_offsets_[i], INVALID_SEG_OFFSET);
ASSERT_EQ(search_result->distances_[i], 0.0);
}
ASSERT_TRUE(boolValCount <= 2); //bool values cannot exceed two
}
}
}
TEST(GroupBY, Reduce) {
using namespace milvus;
using namespace milvus::query;
using namespace milvus::segcore;
//0. prepare schema
int dim = 64;
auto schema = std::make_shared<Schema>();
auto vec_fid = schema->AddDebugField(
"fakevec", DataType::VECTOR_FLOAT, dim, knowhere::metric::L2);
auto int64_fid = schema->AddDebugField("int64", DataType::INT64);
schema->set_primary_field_id(int64_fid);
auto segment1 = CreateSealedSegment(schema);
auto segment2 = CreateSealedSegment(schema);
//1. load raw data
size_t N = 100;
uint64_t seed = 512;
uint64_t ts_offset = 0;
int repeat_count_1 = 2;
int repeat_count_2 = 5;
auto raw_data1 = DataGen(schema, N, seed, ts_offset, repeat_count_1);
auto raw_data2 = DataGen(schema, N, seed, ts_offset, repeat_count_2);
auto fields = schema->get_fields();
//load segment1 raw data
for (auto field_data : raw_data1.raw_->fields_data()) {
int64_t field_id = field_data.field_id();
auto info = FieldDataInfo(field_data.field_id(), N);
auto field_meta = fields.at(FieldId(field_id));
info.channel->push(
CreateFieldDataFromDataArray(N, &field_data, field_meta));
info.channel->close();
segment1->LoadFieldData(FieldId(field_id), info);
}
prepareSegmentSystemFieldData(segment1, N, raw_data1);
//load segment2 raw data
for (auto field_data : raw_data2.raw_->fields_data()) {
int64_t field_id = field_data.field_id();
auto info = FieldDataInfo(field_data.field_id(), N);
auto field_meta = fields.at(FieldId(field_id));
info.channel->push(
CreateFieldDataFromDataArray(N, &field_data, field_meta));
info.channel->close();
segment2->LoadFieldData(FieldId(field_id), info);
}
prepareSegmentSystemFieldData(segment2, N, raw_data2);
//3. load index
auto vector_data_1 = raw_data1.get_col<float>(vec_fid);
auto indexing_1 = GenVecIndexing(
N, dim, vector_data_1.data(), knowhere::IndexEnum::INDEX_HNSW);
LoadIndexInfo load_index_info_1;
load_index_info_1.field_id = vec_fid.get();
load_index_info_1.index = std::move(indexing_1);
load_index_info_1.index_params[METRICS_TYPE] = knowhere::metric::L2;
segment1->LoadIndex(load_index_info_1);
auto vector_data_2 = raw_data2.get_col<float>(vec_fid);
auto indexing_2 = GenVecIndexing(
N, dim, vector_data_2.data(), knowhere::IndexEnum::INDEX_HNSW);
LoadIndexInfo load_index_info_2;
load_index_info_2.field_id = vec_fid.get();
load_index_info_2.index = std::move(indexing_2);
load_index_info_2.index_params[METRICS_TYPE] = knowhere::metric::L2;
segment2->LoadIndex(load_index_info_2);
//4. search group by respectively
const char* raw_plan = R"(vector_anns: <
field_id: 100
query_info: <
topk: 100
metric_type: "L2"
search_params: "{\"ef\": 10}"
group_by_field_id: 101
>
placeholder_tag: "$0"
>)";
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
auto plan =
CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size());
auto num_queries = 10;
auto topK = 100;
auto ph_group_raw = CreatePlaceholderGroup(num_queries, dim, seed);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
CPlaceholderGroup c_ph_group = ph_group.release();
CSearchPlan c_plan = plan.release();
CSegmentInterface c_segment_1 = segment1.release();
CSegmentInterface c_segment_2 = segment2.release();
CSearchResult c_search_res_1;
CSearchResult c_search_res_2;
auto status =
Search(c_segment_1, c_plan, c_ph_group, {}, 1L << 63, &c_search_res_1);
ASSERT_EQ(status.error_code, Success);
status =
Search(c_segment_2, c_plan, c_ph_group, {}, 1L << 63, &c_search_res_2);
ASSERT_EQ(status.error_code, Success);
std::vector<CSearchResult> results;
results.push_back(c_search_res_1);
results.push_back(c_search_res_2);
auto slice_nqs = std::vector<int64_t>{num_queries / 2, num_queries / 2};
auto slice_topKs = std::vector<int64_t>{topK / 2, topK};
CSearchResultDataBlobs cSearchResultData;
status = ReduceSearchResultsAndFillData(&cSearchResultData,
c_plan,
results.data(),
results.size(),
slice_nqs.data(),
slice_topKs.data(),
slice_nqs.size());
CheckSearchResultDuplicate(results);
DeleteSearchResult(c_search_res_1);
DeleteSearchResult(c_search_res_2);
DeleteSearchResultDataBlobs(cSearchResultData);
DeleteSearchPlan(c_plan);
DeletePlaceholderGroup(c_ph_group);
DeleteSegment(c_segment_1);
DeleteSegment(c_segment_2);
}