yanliang567 d475d93a3d
test: Add ivf_rabitq index tests (#41914)
related issue: #41760

---------

Signed-off-by: yanliang567 <yanliang.qiao@zilliz.com>
2025-05-20 19:28:24 +08:00

316 lines
14 KiB
Python

import logging
from utils.util_pymilvus import *
from common.common_type import CaseLabel, CheckTasks
from common import common_type as ct
from common import common_func as cf
from base.client_v2_base import TestMilvusClientV2Base
import pytest
from idx_ivf_rabitq import IVF_RABITQ
index_type = "IVF_RABITQ"
success = "success"
pk_field_name = 'id'
vector_field_name = 'vector'
dim = ct.default_dim
default_nb = 2000
default_build_params = {"nlist": 128, "refine": 'true', "refine_type": "SQ8"}
default_search_params = {"nprobe": 8, "rbq_bits_query": 6, "refine_k": 1.0}
class TestIvfRabitqBuildParams(TestMilvusClientV2Base):
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("params", IVF_RABITQ.build_params)
def test_ivf_rabitq_build_params(self, params):
"""
Test the build params of IVF_RABITQ index
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
schema, _ = self.create_schema(client)
schema.add_field(pk_field_name, datatype=DataType.INT64, is_primary=True, auto_id=False)
schema.add_field(vector_field_name, datatype=DataType.FLOAT_VECTOR, dim=dim)
self.create_collection(client, collection_name, schema=schema)
# Insert data in 3 batches with unique primary keys using a loop
insert_times = 2
random_vectors = list(cf.gen_vectors(default_nb * insert_times, dim, vector_data_type=DataType.FLOAT_VECTOR))
for j in range(insert_times):
start_pk = j * default_nb
rows = [{
pk_field_name: i + start_pk,
vector_field_name: random_vectors[i + start_pk]
} for i in range(default_nb)]
self.insert(client, collection_name, rows)
self.flush(client, collection_name)
# create index
build_params = params.get("params", None)
index_params = self.prepare_index_params(client)[0]
index_params.add_index(field_name=vector_field_name,
metric_type=cf.get_default_metric_for_vector_type(vector_type=DataType.FLOAT_VECTOR),
index_type=index_type,
params=build_params)
# build index
if params.get("expected", None) != success:
self.create_index(client, collection_name, index_params,
check_task=CheckTasks.err_res,
check_items=params.get("expected"))
else:
self.create_index(client, collection_name, index_params)
self.wait_for_index_ready(client, collection_name, index_name=vector_field_name)
# load collection
self.load_collection(client, collection_name)
# search
nq = 2
search_vectors = cf.gen_vectors(nq, dim=dim, vector_data_type=DataType.FLOAT_VECTOR)
self.search(client, collection_name, search_vectors,
search_params=default_search_params,
limit=ct.default_limit,
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": nq,
"limit": ct.default_limit,
"pk_name": pk_field_name})
# verify the index params are persisted
idx_info = client.describe_index(collection_name, vector_field_name)
# check every key and value in build_params exists in idx_info
if build_params is not None:
for key, value in build_params.items():
if value is not None:
assert key in idx_info.keys()
# assert value in idx_info.values() # TODO: uncommented after #41783 fixed
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.parametrize("vector_data_type", ct.all_vector_types)
def test_ivf_rabitq_on_all_vector_types(self, vector_data_type):
"""
Test ivf_rabitq index on all the vector types and metrics
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
schema, _ = self.create_schema(client)
schema.add_field(pk_field_name, datatype=DataType.INT64, is_primary=True, auto_id=False)
if vector_data_type == DataType.SPARSE_FLOAT_VECTOR:
schema.add_field(vector_field_name, datatype=vector_data_type)
else:
schema.add_field(vector_field_name, datatype=vector_data_type, dim=dim)
self.create_collection(client, collection_name, schema=schema)
# Insert data in 3 batches with unique primary keys using a loop
insert_times = 2
random_vectors = list(cf.gen_vectors(default_nb*insert_times, default_dim, vector_data_type=vector_data_type)) \
if vector_data_type == DataType.FLOAT_VECTOR \
else cf.gen_vectors(default_nb*insert_times, default_dim, vector_data_type=vector_data_type)
for j in range(insert_times):
start_pk = j * default_nb
rows = [{
pk_field_name: i + start_pk,
vector_field_name: random_vectors[i + start_pk]
} for i in range(default_nb)]
self.insert(client, collection_name, rows)
self.flush(client, collection_name)
# create index
index_params = self.prepare_index_params(client)[0]
metric_type = cf.get_default_metric_for_vector_type(vector_data_type)
index_params.add_index(field_name=vector_field_name,
metric_type=metric_type,
index_type=index_type,
nlist=128, # flatten the params
refine=True,
refine_type="SQ8")
if vector_data_type not in IVF_RABITQ.supported_vector_types:
self.create_index(client, collection_name, index_params,
check_task=CheckTasks.err_res,
check_items={"err_code": 999,
"err_msg": f"can't build with this index IVF_RABITQ: invalid parameter"})
else:
self.create_index(client, collection_name, index_params)
self.wait_for_index_ready(client, collection_name, index_name=vector_field_name)
# load collection
self.load_collection(client, collection_name)
# search
nq = 2
search_vectors = cf.gen_vectors(nq, dim=dim, vector_data_type=vector_data_type)
self.search(client, collection_name, search_vectors,
search_params=default_search_params,
limit=ct.default_limit,
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": nq,
"limit": ct.default_limit,
"pk_name": pk_field_name})
@pytest.mark.tags(CaseLabel.L2)
@pytest.mark.parametrize("metric", IVF_RABITQ.supported_metrics)
def test_ivf_rabitq_on_all_metrics(self, metric):
"""
Test the search params of IVF_RABITQ index
"""
client = self._client()
collection_name = cf.gen_collection_name_by_testcase_name()
schema, _ = self.create_schema(client)
schema.add_field(pk_field_name, datatype=DataType.INT64, is_primary=True, auto_id=False)
schema.add_field(vector_field_name, datatype=DataType.FLOAT_VECTOR, dim=dim)
self.create_collection(client, collection_name, schema=schema)
# insert data
insert_times = 2
random_vectors = list(cf.gen_vectors(default_nb*insert_times, default_dim, vector_data_type=DataType.FLOAT_VECTOR))
for j in range(insert_times):
start_pk = j * default_nb
rows = [{
pk_field_name: i + start_pk,
vector_field_name: random_vectors[i + start_pk]
} for i in range(default_nb)]
self.insert(client, collection_name, rows)
self.flush(client, collection_name)
# create index
index_params = self.prepare_index_params(client)[0]
index_params.add_index(field_name=vector_field_name,
metric_type=metric,
index_type=index_type,
nlist=128,
refine=True,
refine_type="SQ8")
self.create_index(client, collection_name, index_params)
self.wait_for_index_ready(client, collection_name, index_name=vector_field_name)
# load collection
self.load_collection(client, collection_name)
# search
nq = 2
search_vectors = cf.gen_vectors(nq, dim=dim, vector_data_type=DataType.FLOAT_VECTOR)
self.search(client, collection_name, search_vectors,
search_params=default_search_params,
limit=ct.default_limit,
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": nq,
"limit": ct.default_limit,
"pk_name": pk_field_name})
@pytest.mark.xdist_group("TestIvfRabitqSearchParams")
class TestIvfRabitqSearchParams(TestMilvusClientV2Base):
"""Test search with pagination functionality"""
def setup_class(self):
super().setup_class(self)
self.collection_name = "TestIvfRabitqSearchParams" + cf.gen_unique_str("_")
self.float_vector_field_name = vector_field_name
self.float_vector_dim = dim
self.primary_keys = []
self.enable_dynamic_field = False
self.datas = []
@pytest.fixture(scope="class", autouse=True)
def prepare_collection(self, request):
"""
Initialize collection before test class runs
"""
# Get client connection
client = self._client()
# Create collection
collection_schema = self.create_schema(client)[0]
collection_schema.add_field(pk_field_name, DataType.INT64, is_primary=True, auto_id=False)
collection_schema.add_field(self.float_vector_field_name, DataType.FLOAT_VECTOR, dim=128)
self.create_collection(client, self.collection_name, schema=collection_schema,
enable_dynamic_field=self.enable_dynamic_field, force_teardown=False)
# Define number of insert iterations
insert_times = 2
# Generate vectors for each type and store in self
float_vectors = cf.gen_vectors(default_nb * insert_times, dim=self.float_vector_dim,
vector_data_type=DataType.FLOAT_VECTOR)
# Insert data multiple times with non-duplicated primary keys
for j in range(insert_times):
# Group rows by partition based on primary key mod 3
rows = []
for i in range(default_nb):
pk = i + j * default_nb
row = {
pk_field_name: pk,
self.float_vector_field_name: list(float_vectors[pk])
}
self.datas.append(row)
rows.append(row)
# Insert into respective partitions
self.insert(client, self.collection_name, data=rows)
# Track all inserted data and primary keys
self.primary_keys.extend([i + j * default_nb for i in range(default_nb)])
self.flush(client, self.collection_name)
# Create index
index_params = self.prepare_index_params(client)[0]
index_params.add_index(field_name=self.float_vector_field_name,
metric_type="COSINE",
index_type="IVF_RABITQ",
params={"nlist": 128, "refine": 'true', "refine_type": "SQ8"})
self.create_index(client, self.collection_name, index_params=index_params)
self.wait_for_index_ready(client, self.collection_name, index_name=self.float_vector_field_name)
# Load collection
self.load_collection(client, self.collection_name)
def teardown():
self.drop_collection(self._client(), self.collection_name)
request.addfinalizer(teardown)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("params", IVF_RABITQ.search_params)
def test_ivf_rabitq_search_params(self, params):
"""
Test the search params of IVF_RABITQ index
"""
client = self._client()
collection_name = self.collection_name
# search
nq = 2
search_vectors = cf.gen_vectors(nq, dim=self.float_vector_dim, vector_data_type=DataType.FLOAT_VECTOR)
search_params = params.get("params", None)
if params.get("expected", None) != success:
self.search(client, collection_name, search_vectors,
search_params=search_params,
limit=ct.default_limit,
check_task=CheckTasks.err_res,
check_items=params.get("expected"))
else:
self.search(client, collection_name, search_vectors,
search_params=search_params,
limit=ct.default_limit,
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": nq,
"limit": ct.default_limit,
"pk_name": pk_field_name})
if len(search_params.keys()) == 3:
# try to search again with flattened params
search_params = {
"nprobe": search_params["nprobe"],
"rbq_bits_query": search_params["rbq_bits_query"],
"refine_k": search_params["refine_k"]
}
self.search(client, collection_name, search_vectors,
search_params=search_params,
limit=ct.default_limit,
check_task=CheckTasks.check_search_results,
check_items={"enable_milvus_client_api": True,
"nq": nq,
"limit": ct.default_limit,
"pk_name": pk_field_name})