milvus/internal/util/function/embedding/siliconflow_embedding_provider.go
junjiejiangjjj d3164e8030
feat: add configurable batch factor and runtime check bypass for embedding functions (#45592)
https://github.com/milvus-io/milvus/issues/45544
- Add batch_factor configuration parameter (default: 5) to control
embedding provider batch sizes
- Add disable_func_runtime_check property to bypass function validation
during collection creation
- Add database interceptor support for AddCollectionFunction,
AlterCollectionFunction, and DropCollectionFunction requests

Signed-off-by: junjie.jiang <junjie.jiang@zilliz.com>
2025-11-20 19:55:04 +08:00

119 lines
3.6 KiB
Go

/*
* # Licensed to the LF AI & Data foundation under one
* # or more contributor license agreements. See the NOTICE file
* # distributed with this work for additional information
* # regarding copyright ownership. The ASF licenses this file
* # to you under the Apache License, Version 2.0 (the
* # "License"); you may not use this file except in compliance
* # with the License. You may obtain a copy of the License at
* #
* # http://www.apache.org/licenses/LICENSE-2.0
* #
* # Unless required by applicable law or agreed to in writing, software
* # distributed under the License is distributed on an "AS IS" BASIS,
* # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* # See the License for the specific language governing permissions and
* # limitations under the License.
*/
package embedding
import (
"context"
"fmt"
"strings"
"github.com/milvus-io/milvus-proto/go-api/v2/schemapb"
"github.com/milvus-io/milvus/internal/util/credentials"
"github.com/milvus-io/milvus/internal/util/function/models"
"github.com/milvus-io/milvus/internal/util/function/models/siliconflow"
"github.com/milvus-io/milvus/pkg/v2/util/typeutil"
)
type SiliconflowEmbeddingProvider struct {
fieldDim int64
client *siliconflow.SiliconflowClient
url string
modelName string
embedDimParam int64
maxBatch int
timeoutSec int64
extraInfo *models.ModelExtraInfo
}
func NewSiliconflowEmbeddingProvider(fieldSchema *schemapb.FieldSchema, functionSchema *schemapb.FunctionSchema, params map[string]string, credentials *credentials.Credentials, extraInfo *models.ModelExtraInfo) (*SiliconflowEmbeddingProvider, error) {
fieldDim, err := typeutil.GetDim(fieldSchema)
if err != nil {
return nil, err
}
apiKey, url, err := models.ParseAKAndURL(credentials, functionSchema.Params, params, models.SiliconflowAKEnvStr, extraInfo)
if err != nil {
return nil, err
}
var modelName string
for _, param := range functionSchema.Params {
switch strings.ToLower(param.Key) {
case models.ModelNameParamKey:
modelName = param.Value
default:
}
}
c, err := siliconflow.NewSiliconflowClient(apiKey)
if err != nil {
return nil, err
}
if url == "" {
url = "https://api.siliconflow.cn/v1/embeddings"
}
provider := SiliconflowEmbeddingProvider{
client: c,
url: url,
fieldDim: fieldDim,
modelName: modelName,
maxBatch: 32,
timeoutSec: 30,
extraInfo: extraInfo,
}
return &provider, nil
}
func (provider *SiliconflowEmbeddingProvider) MaxBatch() int {
return provider.extraInfo.BatchFactor * provider.maxBatch
}
func (provider *SiliconflowEmbeddingProvider) FieldDim() int64 {
return provider.fieldDim
}
func (provider *SiliconflowEmbeddingProvider) CallEmbedding(ctx context.Context, texts []string, _ models.TextEmbeddingMode) (any, error) {
numRows := len(texts)
data := make([][]float32, 0, numRows)
for i := 0; i < numRows; i += provider.maxBatch {
end := i + provider.maxBatch
if end > numRows {
end = numRows
}
resp, err := provider.client.Embedding(provider.url, provider.modelName, texts[i:end], "float", provider.timeoutSec)
if err != nil {
return nil, err
}
if end-i != len(resp.Data) {
return nil, fmt.Errorf("Get embedding failed. The number of texts and embeddings does not match text:[%d], embedding:[%d]", end-i, len(resp.Data))
}
for _, item := range resp.Data {
if len(item.Embedding) != int(provider.fieldDim) {
return nil, fmt.Errorf("The required embedding dim is [%d], but the embedding obtained from the model is [%d]",
provider.fieldDim, len(item.Embedding))
}
data = append(data, item.Embedding)
}
}
return data, nil
}