milvus/internal/util/function/embedding/cohere_embedding_provider.go
junjiejiangjjj d3164e8030
feat: add configurable batch factor and runtime check bypass for embedding functions (#45592)
https://github.com/milvus-io/milvus/issues/45544
- Add batch_factor configuration parameter (default: 5) to control
embedding provider batch sizes
- Add disable_func_runtime_check property to bypass function validation
during collection creation
- Add database interceptor support for AddCollectionFunction,
AlterCollectionFunction, and DropCollectionFunction requests

Signed-off-by: junjie.jiang <junjie.jiang@zilliz.com>
2025-11-20 19:55:04 +08:00

172 lines
5.5 KiB
Go

/*
* # Licensed to the LF AI & Data foundation under one
* # or more contributor license agreements. See the NOTICE file
* # distributed with this work for additional information
* # regarding copyright ownership. The ASF licenses this file
* # to you under the Apache License, Version 2.0 (the
* # "License"); you may not use this file except in compliance
* # with the License. You may obtain a copy of the License at
* #
* # http://www.apache.org/licenses/LICENSE-2.0
* #
* # Unless required by applicable law or agreed to in writing, software
* # distributed under the License is distributed on an "AS IS" BASIS,
* # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* # See the License for the specific language governing permissions and
* # limitations under the License.
*/
package embedding
import (
"context"
"fmt"
"strings"
"github.com/milvus-io/milvus-proto/go-api/v2/schemapb"
"github.com/milvus-io/milvus/internal/util/credentials"
"github.com/milvus-io/milvus/internal/util/function/models"
"github.com/milvus-io/milvus/internal/util/function/models/cohere"
"github.com/milvus-io/milvus/pkg/v2/util/typeutil"
)
type CohereEmbeddingProvider struct {
fieldDim int64
client *cohere.CohereClient
url string
modelName string
truncate string
embdType models.EmbeddingType
outputType string
maxBatch int
timeoutSec int64
extraInfo *models.ModelExtraInfo
}
func NewCohereEmbeddingProvider(fieldSchema *schemapb.FieldSchema, functionSchema *schemapb.FunctionSchema, params map[string]string, credentials *credentials.Credentials, extraInfo *models.ModelExtraInfo) (*CohereEmbeddingProvider, error) {
fieldDim, err := typeutil.GetDim(fieldSchema)
if err != nil {
return nil, err
}
apiKey, url, err := models.ParseAKAndURL(credentials, functionSchema.Params, params, models.CohereAIAKEnvStr, extraInfo)
if err != nil {
return nil, err
}
var modelName string
truncate := "END"
for _, param := range functionSchema.Params {
switch strings.ToLower(param.Key) {
case models.ModelNameParamKey:
modelName = param.Value
case models.TruncateParamKey:
if param.Value != "NONE" && param.Value != "START" && param.Value != "END" {
return nil, fmt.Errorf("Illegal parameters, %s only supports [NONE, START, END]", models.TruncateParamKey)
}
truncate = param.Value
default:
}
}
c, err := cohere.NewCohereClient(apiKey)
if err != nil {
return nil, err
}
if url == "" {
url = "https://api.cohere.com/v2/embed"
}
embdType := models.GetEmbdType(fieldSchema.DataType)
if embdType == models.UnsupportEmbd {
return nil, fmt.Errorf("Unsupport output type: %s", fieldSchema.DataType)
}
outputType := func() string {
if embdType == models.Float32Embd {
return "float"
}
return "int8"
}()
provider := CohereEmbeddingProvider{
client: c,
url: url,
fieldDim: fieldDim,
modelName: modelName,
truncate: truncate,
embdType: embdType,
outputType: outputType,
maxBatch: 96,
timeoutSec: 30,
extraInfo: extraInfo,
}
return &provider, nil
}
func (provider *CohereEmbeddingProvider) MaxBatch() int {
return provider.extraInfo.BatchFactor * provider.maxBatch
}
func (provider *CohereEmbeddingProvider) FieldDim() int64 {
return provider.fieldDim
}
// Specifies the type of input passed to the model. Required for embedding models v3 and higher.
func (provider *CohereEmbeddingProvider) getInputType(mode models.TextEmbeddingMode) string {
// v2 models not support instructor
if strings.HasSuffix(provider.modelName, "v2.0") {
return ""
}
if mode == models.InsertMode {
return "search_document" // Used for embeddings stored in a vector database for search use-cases.
}
return "search_query" // Used for embeddings of search queries run against a vector DB to find relevant documents.
}
func (provider *CohereEmbeddingProvider) CallEmbedding(ctx context.Context, texts []string, mode models.TextEmbeddingMode) (any, error) {
numRows := len(texts)
inputType := provider.getInputType(mode)
embRet := models.NewEmbdResult(numRows, provider.embdType)
for i := 0; i < numRows; i += provider.maxBatch {
end := i + provider.maxBatch
if end > numRows {
end = numRows
}
resp, err := provider.client.Embedding(provider.url, provider.modelName, texts[i:end], inputType, provider.outputType, provider.truncate, provider.timeoutSec)
if err != nil {
return nil, err
}
if provider.embdType == models.Float32Embd {
if end-i != len(resp.Embeddings.Float) {
return nil, fmt.Errorf("Get embedding failed. The number of texts and embeddings does not match text:[%d], embedding:[%d]", end-i, len(resp.Embeddings.Float))
}
for _, item := range resp.Embeddings.Float {
if len(item) != int(provider.fieldDim) {
return nil, fmt.Errorf("The required embedding dim is [%d], but the embedding obtained from the model is [%d]",
provider.fieldDim, len(item))
}
}
embRet.Append(resp.Embeddings.Float)
} else {
if end-i != len(resp.Embeddings.Int8) {
return nil, fmt.Errorf("Get embedding failed. The number of texts and embeddings does not match text:[%d], embedding:[%d]", end-i, len(resp.Embeddings.Int8))
}
for _, item := range resp.Embeddings.Int8 {
if len(item) != int(provider.fieldDim) {
return nil, fmt.Errorf("The required embedding dim is [%d], but the embedding obtained from the model is [%d]",
provider.fieldDim, len(item))
}
}
embRet.Append(resp.Embeddings.Int8)
}
}
if embRet.EmbdType == models.Float32Embd {
return embRet.FloatEmbds, nil
}
return embRet.Int8Embds, nil
}