milvus/pyengine/engine/controller/tests/test_scheduler.py
2019-03-27 10:56:15 +08:00

66 lines
1.7 KiB
Python

from ..scheduler import *
import unittest
import faiss
import numpy as np
class TestScheduler(unittest.TestCase):
def test_schedule(self):
d = 64
nb = 10000
nq = 2
nt = 5000
xt, xb, xq = get_dataset(d, nb, nt, nq)
file_name = "/tmp/tempfile_1"
index = faiss.IndexFlatL2(d)
print(index.is_trained)
index.add(xb)
faiss.write_index(index, file_name)
Dref, Iref = index.search(xq, 5)
index2 = faiss.read_index(file_name)
scheduler_instance = Scheduler()
# query args 1
query_index = dict()
query_index['index'] = [file_name]
vectors = scheduler_instance.Search(query_index, vectors=xq, k=5)
assert np.all(vectors == Iref)
# query args 2
query_index = dict()
query_index['raw'] = xt
# Xiaojun TODO: 'raw_id' part
# query_index['raw_id'] =
query_index['dimension'] = d
query_index['index'] = [file_name]
# Xiaojun TODO: once 'raw_id' part added, open below
# vectors = scheduler_instance.Search(query_index, vectors=xq, k=5)
# print("success")
def get_dataset(d, nb, nt, nq):
"""A dataset that is not completely random but still challenging to
index
"""
d1 = 10 # intrinsic dimension (more or less)
n = nb + nt + nq
rs = np.random.RandomState(1338)
x = rs.normal(size=(n, d1))
x = np.dot(x, rs.rand(d1, d))
# now we have a d1-dim ellipsoid in d-dimensional space
# higher factor (>4) -> higher frequency -> less linear
x = x * (rs.rand(d) * 4 + 0.1)
x = np.sin(x)
x = x.astype('float32')
return x[:nt], x[nt:-nq], x[-nq:]
if __name__ == "__main__":
unittest.main()