milvus/tests20/python_client/testcases/test_collection.py
ThreadDao cf8f52ee87
Update collection case for error check (#5677)
* add schema wrapper

Signed-off-by: ThreadDao <yufen.zong@zilliz.com>

* update collection error check

Signed-off-by: ThreadDao <yufen.zong@zilliz.com>

* [skip ci] skip

Signed-off-by: ThreadDao <yufen.zong@zilliz.com>
2021-06-09 09:21:35 +08:00

957 lines
42 KiB
Python

import pandas as pd
import pytest
from pymilvus import DataType
from base.client_base import TestcaseBase
# from utils.util_log import test_log as log
from common import common_func as cf
from common import common_type as ct
from common.common_type import CaseLabel, CheckTasks
prefix = "collection"
default_schema = cf.gen_default_collection_schema()
default_binary_schema = cf.gen_default_binary_collection_schema()
def assert_default_collection(collection_w, exp_name=None, exp_schema=default_schema, exp_num=0, exp_primary=None):
if exp_name:
assert collection_w.name == exp_name
assert collection_w.description == exp_schema.description
assert collection_w.schema == exp_schema
if exp_num == 0:
assert collection_w.is_empty
assert collection_w.num_entities == exp_num
if exp_primary is None:
assert collection_w.primary_field is None
else:
assert collection_w.primary_field == exp_primary
class TestCollectionParams(TestcaseBase):
""" Test case of collection interface """
'''
def teardown_method(self):
if self.self.collection_wrap is not None and self.self.collection_wrap.collection is not None:
self.self.collection_wrap.drop()
'''
@pytest.fixture(scope="function", params=ct.get_invalid_strs)
def get_invalid_type_schema(self, request):
if request.param is None:
pytest.skip("None schema is valid")
yield request.param
@pytest.fixture(scope="function", params=ct.get_invalid_strs)
def get_invalid_type_fields(self, request):
if isinstance(request.param, list):
pytest.skip("list is valid fields")
yield request.param
@pytest.fixture(scope="function", params=cf.gen_all_type_fields())
def get_unsupported_primary_field(self, request):
if request.param.dtype == DataType.INT64:
pytest.skip("int64 type is valid primary key")
yield request.param
@pytest.fixture(scope="function", params=ct.get_invalid_strs)
def get_invalid_dim(self, request):
if request.param == 1:
request.param = 0
yield request.param
@pytest.mark.tags(CaseLabel.L0)
def test_collection(self):
"""
target: test collection with default schema
method: create collection with default schema
expected: assert collection property
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
collection, _ = self.collection_wrap.init_collection(c_name, data=None, schema=default_schema)
assert_default_collection(collection, c_name)
assert c_name, _ in self.utility_wrap.list_collections()[0]
@pytest.mark.tags(CaseLabel.L0)
def test_collection_empty_name(self):
"""
target: test collection with empty name
method: create collection with a empty name
expected: raise exception
"""
self._connect()
c_name = ""
error = {ct.err_code: 1, ct.err_msg: "value is illegal"}
self.collection_wrap.init_collection(c_name, schema=default_schema, check_task=CheckTasks.err_res,
check_items=error)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("name", [[], 1, [1, "2", 3], (1,), {1: 1}, None])
def test_collection_illegal_name(self, name):
"""
target: test collection with illegal name
method: create collection with illegal name
expected: raise exception
"""
self._connect()
error = {ct.err_code: 1, ct.err_msg: "`collection_name` value {} is illegal".format(name)}
self.collection_wrap.init_collection(name, schema=default_schema, check_task=CheckTasks.err_res,
check_items=error)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("name", ["12-s", "12 s", "(mn)", "中文", "%$#", "a".join("a" for i in range(256))])
def test_collection_invalid_name(self, name):
"""
target: test collection with invalid name
method: create collection with invalid name
expected: raise exception
"""
self._connect()
error = {ct.err_code: 1, ct.err_msg: "Invalid collection name: {}".format(name)}
self.collection_wrap.init_collection(name, schema=default_schema, check_task=CheckTasks.err_res,
check_items=error)
@pytest.mark.tags(CaseLabel.L0)
def test_collection_dup_name(self):
"""
target: test collection with dup name
method: create collection with dup name and none schema and data
expected: collection properties consistent
"""
self._connect()
collection_w = self.init_collection_wrap()
assert_default_collection(collection_w)
self.collection_wrap.init_collection(collection_w.name)
assert collection_w.name == self.collection_wrap.name
assert collection_w.schema == self.collection_wrap.schema
assert collection_w.num_entities == self.collection_wrap.num_entities
assert collection_w.name, _ in self.utility_wrap.list_collections()[0]
@pytest.mark.tags(CaseLabel.L1)
def test_collection_dup_name_with_desc(self):
"""
target: test collection with dup name
method: 1. default schema with desc 2. dup name collection
expected: desc consistent
"""
self._connect()
schema = cf.gen_default_collection_schema(description=ct.collection_desc)
collection_w = self.init_collection_wrap(schema=schema)
assert_default_collection(collection_w, exp_schema=schema)
self.collection_wrap.init_collection(collection_w.name)
assert_default_collection(self.collection_wrap, collection_w.name, exp_schema=schema)
assert collection_w.description == self.collection_wrap.description
@pytest.mark.tags(CaseLabel.L1)
def test_collection_dup_name_new_schema(self):
"""
target: test collection with dup name and new schema
method: 1.create collection with default schema
2. collection with dup name and new schema
expected: raise exception
"""
self._connect()
collection_w = self.init_collection_wrap()
c_name = collection_w.name
assert_default_collection(collection_w)
fields = [cf.gen_int64_field()]
schema = cf.gen_collection_schema(fields=fields)
error = {ct.err_code: 1, ct.err_msg: "The collection already exist, but the schema isnot the same as the "
"passed in"}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_dup_name_new_primary(self):
"""
target: test collection with dup name and new primary_field schema
method: 1.collection with default schema
2. collection with same fields and new primary_field schema
expected: raise exception
"""
self._connect()
collection_w = self.init_collection_wrap()
c_name = collection_w.name
assert_default_collection(collection_w)
schema = cf.gen_default_collection_schema(primary_field=ct.default_int64_field_name)
error = {ct.err_code: 1, ct.err_msg: "The collection already exist, but the schema isnot the same as the "
"passed in"}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
assert collection_w.primary_field is None
@pytest.mark.tags(CaseLabel.L1)
def test_collection_dup_name_new_dim(self):
"""
target: test collection with dup name and new dim schema
method: 1. default schema 2. schema with new dim
expected: raise exception
"""
self._connect()
new_dim = 120
collection_w = self.init_collection_wrap()
c_name = collection_w.name
assert_default_collection(collection_w)
schema = cf.gen_default_collection_schema()
new_fields = cf.gen_float_vec_field(dim=new_dim)
schema.fields[-1] = new_fields
error = {ct.err_code: 1, ct.err_msg: "The collection already exist, but the schema isnot the same as the "
"passed in"}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
assert collection_w.primary_field is None
@pytest.mark.tags(CaseLabel.L1)
def test_collection_dup_name_invalid_schema_type(self, get_invalid_type_schema):
"""
target: test collection with dup name and invalid schema
method: 1. default schema 2. invalid schema
expected: raise exception and
"""
self._connect()
collection_w = self.init_collection_wrap()
assert_default_collection(collection_w)
error = {ct.err_code: 1, ct.err_msg: "schema type must be schema.CollectionSchema"}
schema = get_invalid_type_schema
self.collection_wrap.init_collection(collection_w.name, schema=schema,
check_task=CheckTasks.err_res, check_items=error)
assert_default_collection(collection_w, collection_w.name)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_dup_name_same_schema(self):
"""
target: test collection with dup name and same schema
method: dup name and same schema
expected: two collection object is available
"""
self._connect()
collection_w = self.init_collection_wrap(schema=default_schema)
assert_default_collection(collection_w)
self.collection_wrap.init_collection(collection_w.name, schema=default_schema)
assert_default_collection(self.collection_wrap, self.collection_wrap.name)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_dup_name_none_schema_dataframe(self):
"""
target: test collection with dup name and insert dataframe
method: create collection with dup name, none schema, dataframe
expected: two collection object is correct
"""
conn = self._connect()
nb = ct.default_nb
collection_w = self.init_collection_wrap()
assert_default_collection(collection_w)
df = cf.gen_default_dataframe_data(nb)
self.collection_wrap.init_collection(collection_w.name, schema=None, data=df)
conn.flush([collection_w.name])
assert_default_collection(self.collection_wrap, collection_w.name, exp_num=nb)
assert collection_w.num_entities == nb
@pytest.mark.tags(CaseLabel.L1)
def test_collection_dup_name_none_schema_data_list(self):
"""
target: test collection with dup name and insert data (list-like)
method: create collection with dup name, none schema, data (list-like)
expected: two collection object is correct
"""
conn = self._connect()
nb = ct.default_nb
collection_w = self.init_collection_wrap()
assert_default_collection(collection_w)
data = cf.gen_default_dataframe_data(nb)
self.collection_wrap.init_collection(collection_w.name, schema=None, data=data)
conn.flush([collection_w.name])
assert_default_collection(self.collection_wrap, collection_w.name, exp_num=nb)
assert collection_w.num_entities == nb
@pytest.mark.tags(CaseLabel.L0)
def test_collection_none_schema(self):
"""
target: test collection with none schema
method: create collection with none schema
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
error = {ct.err_code: 1, ct.err_msg: "Collection missing schema"}
self.collection_wrap.init_collection(c_name, schema=None, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L0)
def test_collection_invalid_type_schema(self, get_invalid_type_schema):
"""
target: test collection with invalid schema
method: create collection with non-CollectionSchema type schema
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
error = {ct.err_code: 1, ct.err_msg: "schema type must be schema.CollectionSchema"}
self.collection_wrap.init_collection(c_name, schema=get_invalid_type_schema,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_invalid_type_fields(self, get_invalid_type_fields):
"""
target: test collection with invalid fields type, non-list
method: create collection schema with non-list invalid fields
expected: exception
"""
self._connect()
fields = get_invalid_type_fields
error = {ct.err_code: 1, ct.err_msg: "The fields of schema must be type list"}
self.collection_schema_wrap.init_collection_schema(fields=fields,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_with_unknown_type(self):
"""
target: test collection with unknown type
method: create with DataType.UNKNOWN
expected: raise exception
"""
self._connect()
error = {ct.err_code: 0, ct.err_msg: "Field type not support <DataType.UNKNOWN: 999"}
self.field_schema_wrap.init_field_schema(name="unknown", dtype=DataType.UNKNOWN,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("name", [[], 1, (1,), {1: 1}, "12-s"])
def test_collection_invalid_type_field(self, name):
"""
target: test collection with invalid field name
method: invalid string name
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
field, _ = self.field_schema_wrap.init_field_schema(name=name, dtype=5)
vec_field = cf.gen_float_vec_field()
schema = cf.gen_collection_schema(fields=[field, vec_field])
error = {ct.err_code: 1, ct.err_msg: "expected one of: bytes, unicode"}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("name", ["12-s", "12 s", "(mn)", "中文", "%$#", "a".join("a" for i in range(256))])
def test_collection_invalid_field_name(self, name):
"""
target: test collection with invalid field name
method: invalid string name
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
field, _ = self.field_schema_wrap.init_field_schema(name=name, dtype=5)
vec_field = cf.gen_float_vec_field()
schema = cf.gen_collection_schema(fields=[field, vec_field])
error = {ct.err_code: 1, ct.err_msg: "Invalid field name"}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_none_field_name(self):
"""
target: test field schema with None name
method: None field name
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
field, _ = self.field_schema_wrap.init_field_schema(name=None, dtype=5)
schema = cf.gen_collection_schema(fields=[field, cf.gen_float_vec_field()])
error = {ct.err_code: 1, ct.err_msg: "You should specify the name of field"}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("dtype", [6, [[]], {}, (), "", "a"])
def test_collection_invalid_field_type(self, dtype):
"""
target: test collection with invalid field type
method: invalid DataType
expected: raise exception
"""
self._connect()
error = {ct.err_code: 0, ct.err_msg: "Field type must be of DataType"}
self.field_schema_wrap.init_field_schema(name="test", dtype=dtype,
check_task=CheckTasks.err_res, check_items=error)
def test_collection_field_float_type(self):
"""
target: test collection with float type
method: create field with float type
expected:
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
field, _ = self.field_schema_wrap.init_field_schema(name=ct.default_int64_field_name, dtype=5.0)
schema = cf.gen_collection_schema(fields=[field, cf.gen_float_vec_field()])
error = {ct.err_code: 0, ct.err_msg: "Field type must be of DataType"}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L0)
def test_collection_empty_fields(self):
"""
target: test collection with empty fields
method: create collection with fields = []
expected: exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
schema = cf.gen_collection_schema(fields=[])
error = {ct.err_code: 0, ct.err_msg: "The field of the schema cannot be empty"}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_dup_field(self):
"""
target: test collection with dup field name
method: Two FieldSchema have same name
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
field_one = cf.gen_int64_field()
field_two = cf.gen_int64_field()
schema = cf.gen_collection_schema(fields=[field_one, field_two])
error = {ct.err_code: 0, ct.err_msg: "duplicated field name"}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
assert not self.utility_wrap.has_collection(c_name)[0]
@pytest.mark.tags(CaseLabel.L0)
@pytest.mark.parametrize("field", [cf.gen_float_vec_field(), cf.gen_binary_vec_field()])
def test_collection_only_vector(self, field):
"""
target: test collection just with vec field
method: create with float-vec fields
expected: no exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
schema = cf.gen_collection_schema(fields=[field])
self.collection_wrap.init_collection(c_name, schema=schema)
assert_default_collection(self.collection_wrap, c_name, exp_schema=schema)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_multi_float_vectors(self):
"""
target: test collection with multi float vectors
method: create collection with two float-vec fields
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
fields = [cf.gen_float_vec_field(), cf.gen_float_vec_field(name="tmp")]
schema = cf.gen_collection_schema(fields=fields)
self.collection_wrap.init_collection(c_name, schema=schema)
assert_default_collection(self.collection_wrap, c_name, exp_schema=schema)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_mix_vectors(self):
"""
target: test collection with mix vectors
method: create with float and binary vec
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
fields = [cf.gen_float_vec_field(), cf.gen_binary_vec_field()]
schema = cf.gen_collection_schema(fields=fields)
self.collection_wrap.init_collection(c_name, schema=schema)
assert_default_collection(self.collection_wrap, c_name, exp_schema=schema)
@pytest.mark.tags(CaseLabel.L0)
def test_collection_without_vectors(self):
"""
target: test collection without vectors
method: create collection only with int field
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
schema = cf.gen_collection_schema([cf.gen_int64_field()])
error = {ct.err_code: 0, ct.err_msg: "The schema must have vector column"}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L0)
def test_collection_primary_field(self):
"""
target: test collection with primary field
method: specify primary field
expected: collection.primary_field
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
schema = cf.gen_default_collection_schema(primary_field=ct.default_int64_field_name)
self.collection_wrap.init_collection(c_name, schema=schema)
assert self.collection_wrap.primary_field.name == ct.default_int64_field_name
@pytest.mark.tags(CaseLabel.L1)
def test_collection_unsupported_primary_field(self, get_unsupported_primary_field):
"""
target: test collection with unsupported primary field type
method: specify non-int64 as primary field
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
field = get_unsupported_primary_field
vec_field = cf.gen_float_vec_field(name="vec")
schema = cf.gen_collection_schema(fields=[field, vec_field], primary_field=field.name)
error = {ct.err_code: 1, ct.err_msg: "the data type of primary key should be int64"}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_multi_primary_fields(self):
"""
target: test collection with multi primary
method: collection with two primary fields
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
int_field = cf.gen_int64_field(is_primary=True)
float_vec_field = cf.gen_float_vec_field(is_primary=True)
schema = cf.gen_collection_schema(fields=[int_field, float_vec_field])
error = {ct.err_code: 0, ct.err_msg: "there are more than one primary key"}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_primary_inconsistent(self):
"""
target: test collection with different primary field setting
method: 1. set A field is_primary 2. set primary_field is B
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
int_field = cf.gen_int64_field(name="int", is_primary=True)
float_vec_field = cf.gen_float_vec_field(name="vec")
schema = cf.gen_collection_schema(fields=[int_field, float_vec_field], primary_field="vec")
error = {ct.err_code: 0, ct.err_msg: "there are more than one primary key"}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_field_primary_false(self):
"""
target: test collection with primary false
method: define field with is_primary false
expected: no exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
int_field = cf.gen_int64_field(name="int")
float_vec_field = cf.gen_float_vec_field()
schema = cf.gen_collection_schema(fields=[int_field, float_vec_field])
self.collection_wrap.init_collection(c_name, schema=schema)
assert self.collection_wrap.primary_field is None
assert self.collection_wrap.schema.auto_id
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("is_primary", ct.get_invalid_strs)
def test_collection_field_invalid_primary(self, is_primary):
"""
target: test collection with invalid primary
method: define field with is_primary=non-bool
expected: raise exception
"""
self._connect()
name = cf.gen_unique_str(prefix)
error = {ct.err_code: 0, ct.err_msg: "Param is_primary must be bool type"}
self.field_schema_wrap.init_field_schema(name=name, dtype=DataType.INT64, is_primary=is_primary,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L0)
@pytest.mark.parametrize("dtype", [DataType.FLOAT_VECTOR, DataType.BINARY_VECTOR])
def test_collection_vector_without_dim(self, dtype):
"""
target: test collection without dimension
method: define vector field without dim
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
float_vec_field, _ = self.field_schema_wrap.init_field_schema(name="vec", dtype=dtype)
schema = cf.gen_collection_schema(fields=[float_vec_field])
error = {ct.err_code: 0, ct.err_msg: "dimension is not defined in field type params"}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_vector_invalid_dim(self, get_invalid_dim):
"""
target: test collection with invalid dimension
method: define float-vec field with invalid dimension
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
float_vec_field = cf.gen_float_vec_field(dim=get_invalid_dim)
schema = cf.gen_collection_schema(fields=[float_vec_field])
error = {ct.err_code: 0, ct.err_msg: "dim must be of int"}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("dim", [-1, 32769])
def test_collection_vector_out_bounds_dim(self, dim):
"""
target: test collection with out of bounds dim
method: invalid dim -1 and 32759
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
float_vec_field = cf.gen_float_vec_field(dim=dim)
schema = cf.gen_collection_schema(fields=[float_vec_field])
error = {ct.err_code: 0, ct.err_msg: "invalid dimension: {}. should be in range 1 ~ 32768".format(dim)}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_non_vector_field_dim(self):
"""
target: test collection with dim for non-vector field
method: define int64 field with dim
expected: no exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
int_field, _ = self.field_schema_wrap.init_field_schema(name="int", dtype=DataType.INT64, dim=ct.default_dim)
float_vec_field = cf.gen_float_vec_field()
schema = cf.gen_collection_schema(fields=[int_field, float_vec_field])
self.collection_wrap.init_collection(c_name, schema=schema)
assert_default_collection(self.collection_wrap, c_name, exp_schema=schema)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_desc(self):
"""
target: test collection with description
method: create with description
expected: assert default description
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
schema = cf.gen_default_collection_schema(description=ct.collection_desc)
self.collection_wrap.init_collection(c_name, schema=schema)
assert_default_collection(self.collection_wrap, c_name, exp_schema=schema)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_none_desc(self):
"""
target: test collection with none description
method: create with none description
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
schema = cf.gen_default_collection_schema(description=None)
error = {ct.err_code: 0, ct.err_msg: "expected one of: bytes, unicode"}
self.collection_wrap.init_collection(c_name, schema=schema, check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_long_desc(self):
"""
target: test collection with long desc
method: create with long desc
expected:
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
desc = "a".join("a" for _ in range(256))
schema = cf.gen_default_collection_schema(description=desc)
collection, _ = self.self.collection_wrap.init_collection(c_name, schema=schema)
assert_default_collection(collection, c_name, exp_schema=schema)
@pytest.mark.tags(CaseLabel.L0)
def test_collection_with_dataframe(self):
"""
target: test collection with dataframe data
method: create collection and insert with dataframe
expected: collection num entities equal to nb
"""
conn = self._connect()
c_name = cf.gen_unique_str(prefix)
data = cf.gen_default_dataframe_data(ct.default_nb)
self.collection_wrap.init_collection(c_name, schema=default_schema, data=data)
conn.flush([c_name])
assert_default_collection(self.collection_wrap, c_name, exp_num=ct.default_nb)
@pytest.mark.tags(CaseLabel.L0)
def test_collection_with_data_list(self):
"""
target: test collection with data (list-like)
method: create collection with data (list-like)
expected: collection num entities equal to nb
"""
conn = self._connect()
c_name = cf.gen_unique_str(prefix)
data = cf.gen_default_list_data(ct.default_nb)
self.collection_wrap.init_collection(c_name, schema=default_schema, data=data)
conn.flush([c_name])
assert_default_collection(self.collection_wrap, c_name, exp_num=ct.default_nb)
@pytest.mark.tags(CaseLabel.L0)
@pytest.mark.xfail(reason="issue #5667")
def test_collection_binary(self):
"""
target: test collection with binary-vec
method: create collection with binary field
expected: assert binary field
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
self.collection_wrap.init_collection(c_name, data=None, schema=default_binary_schema)
assert_default_collection(self.collection_wrap, c_name, exp_schema=default_binary_schema)
assert c_name in self.utility_wrap.list_collections()[0]
@pytest.mark.tags(CaseLabel.L0)
def test_collection_binary_with_dataframe(self):
"""
target: test binary collection with dataframe
method: create binary collection with dataframe
expected: collection num entities equal to nb
"""
conn = self._connect()
c_name = cf.gen_unique_str(prefix)
df, _ = cf.gen_default_binary_dataframe_data(nb=ct.default_nb)
self.collection_wrap.init_collection(c_name, schema=default_binary_schema, data=df)
conn.flush([c_name])
assert_default_collection(self.collection_wrap, c_name, exp_schema=default_binary_schema, exp_num=ct.default_nb)
@pytest.mark.tags(CaseLabel.L0)
def test_collection_binary_with_data_list(self):
"""
target: test collection with data (list-like)
method: create binary collection with data (list-like)
expected: collection num entities equal to nb
"""
conn = self._connect()
c_name = cf.gen_unique_str(prefix)
data, _ = cf.gen_default_binary_list_data(ct.default_nb)
self.collection_wrap.init_collection(c_name, schema=default_binary_schema, data=data)
conn.flush([c_name])
assert_default_collection(self.collection_wrap, c_name, exp_schema=default_binary_schema, exp_num=ct.default_nb)
class TestCollectionOperation(TestcaseBase):
"""
******************************************************************
The following cases are used to test collection interface operations
******************************************************************
"""
# def teardown_method(self):
# if self.self.collection_wrap is not None and self.self.collection_wrap.collection is not None:
# self.self.collection_wrap.drop()
@pytest.fixture(scope="function", params=ct.get_invalid_strs)
def get_non_df(self, request):
if request.param is None:
pytest.skip("skip None")
yield request.param
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.xfail(reason="issue #5671")
def test_collection_without_connection(self):
"""
target: test collection without connection
method: 1.create collection after connection removed
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
self.connection_wrap.remove_connection(ct.default_alias)
res_list, _ = self.connection_wrap.list_connections()
assert ct.default_alias not in res_list
error = {ct.err_code: 0, ct.err_msg: "There is no connection with alias '{}'".format(ct.default_alias)}
self.collection_wrap.init_collection(c_name, schema=default_schema,
check_task=CheckTasks.err_res, check_items=error)
assert self.collection_wrap.collection is None
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.xfail(reason="issue #5667")
def test_collection_multi_create_drop(self):
"""
target: test cycle creation and deletion of multiple collections
method: in a loop, collections are created and deleted sequentially
expected: no exception
"""
self._connect()
c_num = 20
for _ in range(c_num):
c_name = cf.gen_unique_str(prefix)
self.collection_wrap.init_collection(c_name, schema=default_schema)
assert_default_collection(self.collection_wrap, c_name)
self.collection_wrap.drop()
assert c_name not in self.utility_wrap.list_collections()[0]
@pytest.mark.tags(CaseLabel.L1)
def test_collection_dup_name_drop(self):
"""
target: test collection with dup name, and drop
method: 1. two dup name collection object
2. one object drop collection
expected: collection dropped
"""
self._connect()
collection_w = self.init_collection_wrap()
assert_default_collection(collection_w)
self.collection_wrap.init_collection(collection_w.name)
assert_default_collection(self.collection_wrap, collection_w.name)
self.collection_wrap.drop()
assert not self.utility_wrap.has_collection(collection_w.name)[0]
error = {ct.err_code: 0, ct.err_msg: "can't find collection"}
self.collection_wrap.has_partition("p", check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_created_by_dataframe(self):
"""
target: test collection with dataframe
method: create collection with dataframe
expected: create successfully
"""
conn = self._connect()
c_name = cf.gen_unique_str(prefix)
df = cf.gen_default_dataframe_data(nb=ct.default_nb)
schema = cf.gen_default_collection_schema()
self.collection_wrap.init_collection(name=c_name, data=df)
conn.flush([c_name])
assert_default_collection(self.collection_wrap, exp_name=c_name, exp_num=ct.default_nb, exp_schema=schema)
@pytest.mark.tags(CaseLabel.L0)
def test_collection_created_by_empty_dataframe(self):
"""
target: test create collection by empty dataframe
method: invalid dataframe type create collection
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
data = pd.DataFrame()
error = {ct.err_code: 0, ct.err_msg: "The field of the schema cannot be empty"}
self.collection_wrap.init_collection(name=c_name, schema=None, data=data,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.parametrize("df", [pd.DataFrame({"date": pd.date_range('20210101', periods=3)}),
pd.DataFrame({'%$#': cf.gen_vectors(3, 2)})])
def test_collection_created_by_invalid_dataframe(self, df):
"""
target: test collection with invalid dataframe
method: create with invalid dataframe
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
error = {ct.err_code: 0, ct.err_msg: "Invalid field name"}
self.collection_wrap.init_collection(name=c_name, schema=None, data=df,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_construct_only_column_dataframe(self):
"""
target: test collection with dataframe only columns
method: dataframe only has columns
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
df = pd.DataFrame(columns=[ct.default_int64_field_name, ct.default_float_vec_field_name])
error = {ct.err_code: 0, ct.err_msg: "Cannot infer schema from empty dataframe"}
self.collection_wrap.init_collection(name=c_name, schema=None, data=df,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_construct_no_column_dataframe(self):
"""
target: test collection with dataframe without columns
method: dataframe without columns
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
df = pd.DataFrame({' ': cf.gen_vectors(3, 2)})
error = {ct.err_code: 0, ct.err_msg: "Field name should not be empty"}
self.collection_wrap.init_collection(name=c_name, schema=None, data=df,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_created_by_inconsistent_dataframe(self):
"""
target: test collection with data inconsistent
method: create and insert with inconsistent data
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
# one field different type df
mix_data = [(1, 2., [0.1, 0.2]), (2, 3., 4)]
df = pd.DataFrame(data=mix_data, columns=list("ABC"))
error = {ct.err_code: 0, ct.err_msg: "The data in the same column must be of the same type"}
self.collection_wrap.init_collection(name=c_name, schema=None, data=df,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L0)
def test_collection_created_by_non_dataframe(self, get_non_df):
"""
target: test create collection by invalid dataframe
method: non-dataframe type create collection
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
error = {ct.err_code: 0, ct.err_msg: "Data of not pandas.DataFrame type should bepassed into the schema"}
self.collection_wrap.init_collection(name=c_name, schema=None, data=get_non_df,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L0)
def test_collection_created_by_data_list(self):
"""
target: test create collection by data list
method: data type is list-like
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
data = cf.gen_default_list_data(nb=100)
error = {ct.err_code: 0, ct.err_msg: "Data of not pandas.DataFrame type should bepassed into the schema"}
self.collection_wrap.init_collection(name=c_name, schema=None, data=data,
check_task=CheckTasks.err_res, check_items=error)
@pytest.mark.tags(CaseLabel.L1)
def test_collection_after_drop(self):
"""
target: test create collection after create and drop
method: 1. create a 2. drop a 3, re-create a
expected: no exception
"""
collection_w = self.init_collection_wrap()
assert_default_collection(collection_w)
collection_w.drop()
assert not self.utility_wrap.has_collection(collection_w.name)[0]
collection_w2 = self.init_collection_wrap(name=collection_w.name)
assert_default_collection(collection_w2, collection_w.name)
assert self.utility_wrap.has_collection(collection_w.name)[0]
@pytest.mark.tags(CaseLabel.L1)
@pytest.mark.xfail(reason="issue #5675")
def test_collection_binary_created_by_dataframe(self):
"""
target: test collection with dataframe
method: create collection with dataframe
expected: create successfully
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
df, _ = cf.gen_default_binary_dataframe_data(ct.default_nb)
schema = cf.gen_default_binary_collection_schema()
self.collection_wrap.init_collection(name=c_name, data=df)
assert_default_collection(self.collection_wrap, exp_name=c_name, exp_num=ct.default_nb, exp_schema=schema)
@pytest.mark.tags(CaseLabel.L0)
def test_collection_binary_created_by_data_list(self):
"""
target: test create collection by data list
method: data type is list-like
expected: raise exception
"""
self._connect()
c_name = cf.gen_unique_str(prefix)
data, _ = cf.gen_default_binary_list_data(nb=100)
error = {ct.err_code: 0, ct.err_msg: "Data of not pandas.DataFrame type should bepassed into the schema"}
self.collection_wrap.init_collection(name=c_name, schema=None, data=data,
check_task=CheckTasks.err_res, check_items=error)