smellthemoon cb1e86e17c
enhance: support add field (#39800)
after the pr merged, we can support to insert, upsert, build index,
query, search in the added field.
can only do the above operates in added field after add field request
complete, which is a sync operate.

compact will be supported in the next pr.
#39718

---------

Signed-off-by: lixinguo <xinguo.li@zilliz.com>
Co-authored-by: lixinguo <xinguo.li@zilliz.com>
2025-04-02 14:24:31 +08:00

308 lines
7.6 KiB
Go

// Licensed to the LF AI & Data foundation under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package storage
import (
"container/heap"
"io"
"sort"
"strconv"
"github.com/apache/arrow/go/v17/arrow"
"github.com/apache/arrow/go/v17/arrow/array"
"github.com/apache/arrow/go/v17/arrow/memory"
"github.com/milvus-io/milvus-proto/go-api/v2/schemapb"
"github.com/milvus-io/milvus/pkg/v2/util/typeutil"
)
func Sort(schema *schemapb.CollectionSchema, rr []RecordReader,
rw RecordWriter, predicate func(r Record, ri, i int) bool,
) (int, error) {
records := make([]Record, 0)
type index struct {
ri int
i int
}
indices := make([]*index, 0)
defer func() {
for _, r := range records {
r.Release()
}
}()
for _, r := range rr {
for {
rec, err := r.Next()
if err == nil {
rec.Retain()
ri := len(records)
records = append(records, rec)
for i := 0; i < rec.Len(); i++ {
if predicate(rec, ri, i) {
indices = append(indices, &index{ri, i})
}
}
} else if err == io.EOF {
break
} else {
return 0, err
}
}
}
if len(records) == 0 {
return 0, nil
}
pkField, err := typeutil.GetPrimaryFieldSchema(schema)
if err != nil {
return 0, err
}
pkFieldId := pkField.FieldID
switch records[0].Column(pkFieldId).(type) {
case *array.Int64:
sort.Slice(indices, func(i, j int) bool {
pki := records[indices[i].ri].Column(pkFieldId).(*array.Int64).Value(indices[i].i)
pkj := records[indices[j].ri].Column(pkFieldId).(*array.Int64).Value(indices[j].i)
return pki < pkj
})
case *array.String:
sort.Slice(indices, func(i, j int) bool {
pki := records[indices[i].ri].Column(pkFieldId).(*array.String).Value(indices[i].i)
pkj := records[indices[j].ri].Column(pkFieldId).(*array.String).Value(indices[j].i)
return pki < pkj
})
}
// Due to current arrow impl (v12), the write performance is largely dependent on the batch size,
// small batch size will cause write performance degradation. To work around this issue, we accumulate
// records and write them in batches. This requires additional memory copy.
batchSize := 100000
builders := make([]array.Builder, len(schema.Fields))
for i, f := range schema.Fields {
// will change later, to do
var b array.Builder
if records[0].Column(f.FieldID) == nil {
b = array.NewBuilder(memory.DefaultAllocator, MilvusDataTypeToArrowType(f.GetDataType(), 1))
} else {
b = array.NewBuilder(memory.DefaultAllocator, records[0].Column(f.FieldID).DataType())
}
b.Reserve(batchSize)
builders[i] = b
}
writeRecord := func(rowNum int64) error {
arrays := make([]arrow.Array, len(builders))
fields := make([]arrow.Field, len(builders))
field2Col := make(map[FieldID]int, len(builders))
for c, builder := range builders {
arrays[c] = builder.NewArray()
fid := schema.Fields[c].FieldID
fields[c] = arrow.Field{
Name: strconv.Itoa(int(fid)),
Type: arrays[c].DataType(),
Nullable: true, // No nullable check here.
}
field2Col[fid] = c
}
rec := NewSimpleArrowRecord(array.NewRecord(arrow.NewSchema(fields, nil), arrays, rowNum), field2Col)
defer rec.Release()
return rw.Write(rec)
}
for i, idx := range indices {
for c, builder := range builders {
fid := schema.Fields[c].FieldID
defaultValue := schema.Fields[c].GetDefaultValue()
if err := appendValueAt(builder, records[idx.ri].Column(fid), idx.i, defaultValue); err != nil {
return 0, err
}
}
if (i+1)%batchSize == 0 {
if err := writeRecord(int64(batchSize)); err != nil {
return 0, err
}
}
}
// write the last batch
if len(indices)%batchSize != 0 {
if err := writeRecord(int64(len(indices) % batchSize)); err != nil {
return 0, err
}
}
return len(indices), nil
}
// A PriorityQueue implements heap.Interface and holds Items.
type PriorityQueue[T any] struct {
items []*T
less func(x, y *T) bool
}
var _ heap.Interface = (*PriorityQueue[any])(nil)
func (pq PriorityQueue[T]) Len() int { return len(pq.items) }
func (pq PriorityQueue[T]) Less(i, j int) bool {
return pq.less(pq.items[i], pq.items[j])
}
func (pq PriorityQueue[T]) Swap(i, j int) {
pq.items[i], pq.items[j] = pq.items[j], pq.items[i]
}
func (pq *PriorityQueue[T]) Push(x any) {
pq.items = append(pq.items, x.(*T))
}
func (pq *PriorityQueue[T]) Pop() any {
old := pq.items
n := len(old)
x := old[n-1]
old[n-1] = nil
pq.items = old[0 : n-1]
return x
}
func (pq *PriorityQueue[T]) Enqueue(x *T) {
heap.Push(pq, x)
}
func (pq *PriorityQueue[T]) Dequeue() *T {
return heap.Pop(pq).(*T)
}
func NewPriorityQueue[T any](less func(x, y *T) bool) *PriorityQueue[T] {
pq := PriorityQueue[T]{
items: make([]*T, 0),
less: less,
}
heap.Init(&pq)
return &pq
}
func MergeSort(schema *schemapb.CollectionSchema, rr []RecordReader,
rw RecordWriter, predicate func(r Record, ri, i int) bool,
) (numRows int, err error) {
type index struct {
ri int
i int
}
recs := make([]Record, len(rr))
advanceRecord := func(i int) error {
rec, err := rr[i].Next()
recs[i] = rec // assign nil if err
if err != nil {
return err
}
return nil
}
for i := range rr {
err := advanceRecord(i)
if err == io.EOF {
continue
}
if err != nil {
return 0, err
}
}
pkField, err := typeutil.GetPrimaryFieldSchema(schema)
if err != nil {
return 0, err
}
pkFieldId := pkField.FieldID
var pq *PriorityQueue[index]
switch recs[0].Column(pkFieldId).(type) {
case *array.Int64:
pq = NewPriorityQueue(func(x, y *index) bool {
return recs[x.ri].Column(pkFieldId).(*array.Int64).Value(x.i) < recs[y.ri].Column(pkFieldId).(*array.Int64).Value(y.i)
})
case *array.String:
pq = NewPriorityQueue(func(x, y *index) bool {
return recs[x.ri].Column(pkFieldId).(*array.String).Value(x.i) < recs[y.ri].Column(pkFieldId).(*array.String).Value(y.i)
})
}
enqueueAll := func(ri int) {
r := recs[ri]
for j := 0; j < r.Len(); j++ {
if predicate(r, ri, j) {
pq.Enqueue(&index{
ri: ri,
i: j,
})
numRows++
}
}
}
for i, v := range recs {
if v != nil {
enqueueAll(i)
}
}
// Due to current arrow impl (v12), the write performance is largely dependent on the batch size,
// small batch size will cause write performance degradation. To work around this issue, we accumulate
// records and write them in batches. This requires additional memory copy.
batchSize := 100000
rb := NewRecordBuilder(schema)
for pq.Len() > 0 {
idx := pq.Dequeue()
rb.Append(recs[idx.ri], idx.i, idx.i+1)
if rb.GetRowNum()%batchSize == 0 {
if err := rw.Write(rb.Build()); err != nil {
return 0, err
}
}
// If poped idx reaches end of segment, invalidate cache and advance to next segment
if idx.i == recs[idx.ri].Len()-1 {
err := advanceRecord(idx.ri)
if err == io.EOF {
continue
}
if err != nil {
return 0, err
}
enqueueAll(idx.ri)
}
}
// write the last batch
if rb.GetRowNum() > 0 {
if err := rw.Write(rb.Build()); err != nil {
return 0, err
}
}
return numRows, nil
}