liliu-z cb0f984155
enhance: Revert "separate for index completed (#40873)" (#41152)
This reverts commit 23e579e3240a30397f05f5b308be687f6f16b013. #40873

issue: #39519

Signed-off-by: Li Liu <li.liu@zilliz.com>
2025-04-08 17:36:30 +08:00

928 lines
33 KiB
C++

// Licensed to the LF AI & Data foundation under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include "arrow/array/builder_binary.h"
#include "arrow/type_fwd.h"
#include "fmt/format.h"
#include "log/Log.h"
#include "common/Consts.h"
#include "common/EasyAssert.h"
#include "common/FieldData.h"
#include "common/FieldDataInterface.h"
#ifdef AZURE_BUILD_DIR
#include "storage/azure/AzureChunkManager.h"
#endif
#ifdef ENABLE_GCP_NATIVE
#include "storage/gcp-native-storage/GcpNativeChunkManager.h"
#endif
#include "storage/ChunkManager.h"
#include "storage/DiskFileManagerImpl.h"
#include "storage/InsertData.h"
#include "storage/LocalChunkManager.h"
#include "storage/MemFileManagerImpl.h"
#include "storage/MinioChunkManager.h"
#ifdef USE_OPENDAL
#include "storage/opendal/OpenDALChunkManager.h"
#endif
#include "storage/Types.h"
#include "storage/Util.h"
#include "storage/ThreadPools.h"
#include "storage/MemFileManagerImpl.h"
#include "storage/DiskFileManagerImpl.h"
namespace milvus::storage {
std::map<std::string, ChunkManagerType> ChunkManagerType_Map = {
{"local", ChunkManagerType::Local},
{"minio", ChunkManagerType::Minio},
{"remote", ChunkManagerType::Remote},
{"opendal", ChunkManagerType::OpenDAL}};
enum class CloudProviderType : int8_t {
UNKNOWN = 0,
AWS = 1,
GCP = 2,
ALIYUN = 3,
AZURE = 4,
TENCENTCLOUD = 5,
GCPNATIVE = 6,
};
std::map<std::string, CloudProviderType> CloudProviderType_Map = {
{"aws", CloudProviderType::AWS},
{"gcp", CloudProviderType::GCP},
{"aliyun", CloudProviderType::ALIYUN},
{"azure", CloudProviderType::AZURE},
{"tencent", CloudProviderType::TENCENTCLOUD},
{"gcpnative", CloudProviderType::GCPNATIVE}};
std::map<std::string, int> ReadAheadPolicy_Map = {
{"normal", MADV_NORMAL},
{"random", MADV_RANDOM},
{"sequential", MADV_SEQUENTIAL},
{"willneed", MADV_WILLNEED},
{"dontneed", MADV_DONTNEED}};
// in arrow, null_bitmap read from the least significant bit
std::vector<uint8_t>
genValidIter(const uint8_t* valid_data, int length) {
std::vector<uint8_t> valid_data_;
valid_data_.reserve(length);
for (size_t i = 0; i < length; ++i) {
auto bit = (valid_data[i >> 3] >> (i & 0x07)) & 1;
valid_data_.push_back(bit);
}
return valid_data_;
}
StorageType
ReadMediumType(BinlogReaderPtr reader) {
AssertInfo(reader->Tell() == 0,
"medium type must be parsed from stream header");
int32_t magic_num;
auto ret = reader->Read(sizeof(magic_num), &magic_num);
AssertInfo(ret.ok(), "read binlog failed: {}", ret.what());
if (magic_num == MAGIC_NUM) {
return StorageType::Remote;
}
return StorageType::LocalDisk;
}
void
add_vector_payload(std::shared_ptr<arrow::ArrayBuilder> builder,
uint8_t* values,
int length) {
AssertInfo(builder != nullptr, "empty arrow builder");
auto binary_builder =
std::dynamic_pointer_cast<arrow::FixedSizeBinaryBuilder>(builder);
auto ast = binary_builder->AppendValues(values, length);
AssertInfo(
ast.ok(), "append value to arrow builder failed: {}", ast.ToString());
}
// append values for numeric data
template <typename DT, typename BT>
void
add_numeric_payload(std::shared_ptr<arrow::ArrayBuilder> builder,
DT* start,
const uint8_t* valid_data,
bool nullable,
int length) {
AssertInfo(builder != nullptr, "empty arrow builder");
auto numeric_builder = std::dynamic_pointer_cast<BT>(builder);
arrow::Status ast;
if (nullable) {
// need iter to read valid_data when write
auto iter = genValidIter(valid_data, length);
ast =
numeric_builder->AppendValues(start, start + length, iter.begin());
AssertInfo(ast.ok(), "append value to arrow builder failed");
} else {
ast = numeric_builder->AppendValues(start, start + length);
AssertInfo(ast.ok(), "append value to arrow builder failed");
}
}
void
AddPayloadToArrowBuilder(std::shared_ptr<arrow::ArrayBuilder> builder,
const Payload& payload) {
AssertInfo(builder != nullptr, "empty arrow builder");
auto raw_data = const_cast<uint8_t*>(payload.raw_data);
auto length = payload.rows;
auto data_type = payload.data_type;
auto nullable = payload.nullable;
switch (data_type) {
case DataType::BOOL: {
auto bool_data = reinterpret_cast<bool*>(raw_data);
add_numeric_payload<bool, arrow::BooleanBuilder>(
builder, bool_data, payload.valid_data, nullable, length);
break;
}
case DataType::INT8: {
auto int8_data = reinterpret_cast<int8_t*>(raw_data);
add_numeric_payload<int8_t, arrow::Int8Builder>(
builder, int8_data, payload.valid_data, nullable, length);
break;
}
case DataType::INT16: {
auto int16_data = reinterpret_cast<int16_t*>(raw_data);
add_numeric_payload<int16_t, arrow::Int16Builder>(
builder, int16_data, payload.valid_data, nullable, length);
break;
}
case DataType::INT32: {
auto int32_data = reinterpret_cast<int32_t*>(raw_data);
add_numeric_payload<int32_t, arrow::Int32Builder>(
builder, int32_data, payload.valid_data, nullable, length);
break;
}
case DataType::INT64: {
auto int64_data = reinterpret_cast<int64_t*>(raw_data);
add_numeric_payload<int64_t, arrow::Int64Builder>(
builder, int64_data, payload.valid_data, nullable, length);
break;
}
case DataType::FLOAT: {
auto float_data = reinterpret_cast<float*>(raw_data);
add_numeric_payload<float, arrow::FloatBuilder>(
builder, float_data, payload.valid_data, nullable, length);
break;
}
case DataType::DOUBLE: {
auto double_data = reinterpret_cast<double_t*>(raw_data);
add_numeric_payload<double, arrow::DoubleBuilder>(
builder, double_data, payload.valid_data, nullable, length);
break;
}
case DataType::VECTOR_FLOAT16:
case DataType::VECTOR_BFLOAT16:
case DataType::VECTOR_BINARY:
case DataType::VECTOR_FLOAT: {
add_vector_payload(builder, const_cast<uint8_t*>(raw_data), length);
break;
}
case DataType::VECTOR_SPARSE_FLOAT: {
PanicInfo(DataTypeInvalid,
"Sparse Float Vector payload should be added by calling "
"add_one_binary_payload",
data_type);
}
default: {
PanicInfo(DataTypeInvalid, "unsupported data type {}", data_type);
}
}
}
void
AddOneStringToArrowBuilder(std::shared_ptr<arrow::ArrayBuilder> builder,
const char* str,
int str_size) {
AssertInfo(builder != nullptr, "empty arrow builder");
auto string_builder =
std::dynamic_pointer_cast<arrow::StringBuilder>(builder);
arrow::Status ast;
if (str == nullptr || str_size < 0) {
ast = string_builder->AppendNull();
} else {
ast = string_builder->Append(str, str_size);
}
AssertInfo(
ast.ok(), "append value to arrow builder failed: {}", ast.ToString());
}
void
AddOneBinaryToArrowBuilder(std::shared_ptr<arrow::ArrayBuilder> builder,
const uint8_t* data,
int length) {
AssertInfo(builder != nullptr, "empty arrow builder");
auto binary_builder =
std::dynamic_pointer_cast<arrow::BinaryBuilder>(builder);
arrow::Status ast;
if (data == nullptr || length < 0) {
ast = binary_builder->AppendNull();
} else {
ast = binary_builder->Append(data, length);
}
AssertInfo(
ast.ok(), "append value to arrow builder failed: {}", ast.ToString());
}
std::shared_ptr<arrow::ArrayBuilder>
CreateArrowBuilder(DataType data_type) {
switch (static_cast<DataType>(data_type)) {
case DataType::BOOL: {
return std::make_shared<arrow::BooleanBuilder>();
}
case DataType::INT8: {
return std::make_shared<arrow::Int8Builder>();
}
case DataType::INT16: {
return std::make_shared<arrow::Int16Builder>();
}
case DataType::INT32: {
return std::make_shared<arrow::Int32Builder>();
}
case DataType::INT64: {
return std::make_shared<arrow::Int64Builder>();
}
case DataType::FLOAT: {
return std::make_shared<arrow::FloatBuilder>();
}
case DataType::DOUBLE: {
return std::make_shared<arrow::DoubleBuilder>();
}
case DataType::VARCHAR:
case DataType::STRING: {
return std::make_shared<arrow::StringBuilder>();
}
case DataType::ARRAY:
case DataType::JSON: {
return std::make_shared<arrow::BinaryBuilder>();
}
// sparse float vector doesn't require a dim
case DataType::VECTOR_SPARSE_FLOAT: {
return std::make_shared<arrow::BinaryBuilder>();
}
default: {
PanicInfo(
DataTypeInvalid, "unsupported numeric data type {}", data_type);
}
}
}
std::shared_ptr<arrow::ArrayBuilder>
CreateArrowBuilder(DataType data_type, int dim) {
switch (static_cast<DataType>(data_type)) {
case DataType::VECTOR_FLOAT: {
AssertInfo(dim > 0, "invalid dim value: {}", dim);
return std::make_shared<arrow::FixedSizeBinaryBuilder>(
arrow::fixed_size_binary(dim * sizeof(float)));
}
case DataType::VECTOR_BINARY: {
AssertInfo(dim % 8 == 0 && dim > 0, "invalid dim value: {}", dim);
return std::make_shared<arrow::FixedSizeBinaryBuilder>(
arrow::fixed_size_binary(dim / 8));
}
case DataType::VECTOR_FLOAT16: {
AssertInfo(dim > 0, "invalid dim value: {}", dim);
return std::make_shared<arrow::FixedSizeBinaryBuilder>(
arrow::fixed_size_binary(dim * sizeof(float16)));
}
case DataType::VECTOR_BFLOAT16: {
AssertInfo(dim > 0, "invalid dim value");
return std::make_shared<arrow::FixedSizeBinaryBuilder>(
arrow::fixed_size_binary(dim * sizeof(bfloat16)));
}
default: {
PanicInfo(
DataTypeInvalid, "unsupported vector data type {}", data_type);
}
}
}
std::shared_ptr<arrow::Schema>
CreateArrowSchema(DataType data_type, bool nullable) {
switch (static_cast<DataType>(data_type)) {
case DataType::BOOL: {
return arrow::schema(
{arrow::field("val", arrow::boolean(), nullable)});
}
case DataType::INT8: {
return arrow::schema(
{arrow::field("val", arrow::int8(), nullable)});
}
case DataType::INT16: {
return arrow::schema(
{arrow::field("val", arrow::int16(), nullable)});
}
case DataType::INT32: {
return arrow::schema(
{arrow::field("val", arrow::int32(), nullable)});
}
case DataType::INT64: {
return arrow::schema(
{arrow::field("val", arrow::int64(), nullable)});
}
case DataType::FLOAT: {
return arrow::schema(
{arrow::field("val", arrow::float32(), nullable)});
}
case DataType::DOUBLE: {
return arrow::schema(
{arrow::field("val", arrow::float64(), nullable)});
}
case DataType::VARCHAR:
case DataType::STRING: {
return arrow::schema(
{arrow::field("val", arrow::utf8(), nullable)});
}
case DataType::ARRAY:
case DataType::JSON: {
return arrow::schema(
{arrow::field("val", arrow::binary(), nullable)});
}
// sparse float vector doesn't require a dim
case DataType::VECTOR_SPARSE_FLOAT: {
return arrow::schema(
{arrow::field("val", arrow::binary(), nullable)});
}
default: {
PanicInfo(
DataTypeInvalid, "unsupported numeric data type {}", data_type);
}
}
}
std::shared_ptr<arrow::Schema>
CreateArrowSchema(DataType data_type, int dim, bool nullable) {
switch (static_cast<DataType>(data_type)) {
case DataType::VECTOR_FLOAT: {
AssertInfo(dim > 0, "invalid dim value: {}", dim);
return arrow::schema(
{arrow::field("val",
arrow::fixed_size_binary(dim * sizeof(float)),
nullable)});
}
case DataType::VECTOR_BINARY: {
AssertInfo(dim % 8 == 0 && dim > 0, "invalid dim value: {}", dim);
return arrow::schema({arrow::field(
"val", arrow::fixed_size_binary(dim / 8), nullable)});
}
case DataType::VECTOR_FLOAT16: {
AssertInfo(dim > 0, "invalid dim value: {}", dim);
return arrow::schema(
{arrow::field("val",
arrow::fixed_size_binary(dim * sizeof(float16)),
nullable)});
}
case DataType::VECTOR_BFLOAT16: {
AssertInfo(dim > 0, "invalid dim value");
return arrow::schema(
{arrow::field("val",
arrow::fixed_size_binary(dim * sizeof(bfloat16)),
nullable)});
}
case DataType::VECTOR_SPARSE_FLOAT: {
return arrow::schema(
{arrow::field("val", arrow::binary(), nullable)});
}
default: {
PanicInfo(
DataTypeInvalid, "unsupported vector data type {}", data_type);
}
}
}
int
GetDimensionFromFileMetaData(const parquet::ColumnDescriptor* schema,
DataType data_type) {
switch (data_type) {
case DataType::VECTOR_FLOAT: {
return schema->type_length() / sizeof(float);
}
case DataType::VECTOR_BINARY: {
return schema->type_length() * 8;
}
case DataType::VECTOR_FLOAT16: {
return schema->type_length() / sizeof(float16);
}
case DataType::VECTOR_BFLOAT16: {
return schema->type_length() / sizeof(bfloat16);
}
case DataType::VECTOR_SPARSE_FLOAT: {
PanicInfo(DataTypeInvalid,
fmt::format("GetDimensionFromFileMetaData should not be "
"called for sparse vector"));
}
default:
PanicInfo(DataTypeInvalid, "unsupported data type {}", data_type);
}
}
int
GetDimensionFromArrowArray(std::shared_ptr<arrow::Array> data,
DataType data_type) {
switch (data_type) {
case DataType::VECTOR_FLOAT: {
AssertInfo(
data->type()->id() == arrow::Type::type::FIXED_SIZE_BINARY,
"inconsistent data type: {}",
data->type_id());
auto array =
std::dynamic_pointer_cast<arrow::FixedSizeBinaryArray>(data);
return array->byte_width() / sizeof(float);
}
case DataType::VECTOR_BINARY: {
AssertInfo(
data->type()->id() == arrow::Type::type::FIXED_SIZE_BINARY,
"inconsistent data type: {}",
data->type_id());
auto array =
std::dynamic_pointer_cast<arrow::FixedSizeBinaryArray>(data);
return array->byte_width() * 8;
}
case DataType::VECTOR_FLOAT16: {
AssertInfo(
data->type()->id() == arrow::Type::type::FIXED_SIZE_BINARY,
"inconsistent data type: {}",
data->type_id());
auto array =
std::dynamic_pointer_cast<arrow::FixedSizeBinaryArray>(data);
return array->byte_width() / sizeof(float16);
}
case DataType::VECTOR_BFLOAT16: {
AssertInfo(
data->type()->id() == arrow::Type::type::FIXED_SIZE_BINARY,
"inconsistent data type: {}",
data->type_id());
auto array =
std::dynamic_pointer_cast<arrow::FixedSizeBinaryArray>(data);
return array->byte_width() / sizeof(bfloat16);
}
default:
PanicInfo(DataTypeInvalid, "unsupported data type {}", data_type);
}
}
std::string
GenIndexPathIdentifier(int64_t build_id, int64_t index_version) {
return std::to_string(build_id) + "/" + std::to_string(index_version) + "/";
}
std::string
GenTextIndexPathIdentifier(int64_t build_id,
int64_t index_version,
int64_t segment_id,
int64_t field_id) {
return std::to_string(build_id) + "/" + std::to_string(index_version) +
"/" + std::to_string(segment_id) + "/" + std::to_string(field_id) +
"/";
}
std::string
GenIndexPathPrefix(ChunkManagerPtr cm,
int64_t build_id,
int64_t index_version) {
boost::filesystem::path prefix = cm->GetRootPath();
boost::filesystem::path path = std::string(INDEX_ROOT_PATH);
boost::filesystem::path path1 =
GenIndexPathIdentifier(build_id, index_version);
return (prefix / path / path1).string();
}
std::string
GenTextIndexPathPrefix(ChunkManagerPtr cm,
int64_t build_id,
int64_t index_version,
int64_t segment_id,
int64_t field_id) {
boost::filesystem::path prefix = cm->GetRootPath();
boost::filesystem::path path = std::string(TEXT_LOG_ROOT_PATH);
boost::filesystem::path path1 = GenTextIndexPathIdentifier(
build_id, index_version, segment_id, field_id);
return (prefix / path / path1).string();
}
std::string
GenJsonKeyIndexPathIdentifier(int64_t build_id,
int64_t index_version,
int64_t collection_id,
int64_t partition_id,
int64_t segment_id,
int64_t field_id) {
return std::to_string(build_id) + "/" + std::to_string(index_version) +
"/" + std::to_string(collection_id) + "/" +
std::to_string(partition_id) + "/" + std::to_string(segment_id) +
"/" + std::to_string(field_id) + "/";
}
std::string
GenJsonKeyIndexPathPrefix(ChunkManagerPtr cm,
int64_t build_id,
int64_t index_version,
int64_t collection_id,
int64_t partition_id,
int64_t segment_id,
int64_t field_id) {
return cm->GetRootPath() + "/" + std::string(JSON_KEY_INDEX_LOG_ROOT_PATH) +
"/" +
GenJsonKeyIndexPathIdentifier(build_id,
index_version,
collection_id,
partition_id,
segment_id,
field_id);
}
std::string
GetIndexPathPrefixWithBuildID(ChunkManagerPtr cm, int64_t build_id) {
boost::filesystem::path prefix = cm->GetRootPath();
boost::filesystem::path path = std::string(INDEX_ROOT_PATH);
boost::filesystem::path path1 = std::to_string(build_id);
return (prefix / path / path1).string();
}
std::string
GenFieldRawDataPathPrefix(ChunkManagerPtr cm,
int64_t segment_id,
int64_t field_id) {
boost::filesystem::path prefix = cm->GetRootPath();
boost::filesystem::path path = std::string(RAWDATA_ROOT_PATH);
boost::filesystem::path path1 =
std::to_string(segment_id) + "/" + std::to_string(field_id) + "/";
return (prefix / path / path1).string();
}
std::string
GetSegmentRawDataPathPrefix(ChunkManagerPtr cm, int64_t segment_id) {
boost::filesystem::path prefix = cm->GetRootPath();
boost::filesystem::path path = std::string(RAWDATA_ROOT_PATH);
boost::filesystem::path path1 = std::to_string(segment_id);
return (prefix / path / path1).string();
}
std::unique_ptr<DataCodec>
DownloadAndDecodeRemoteFile(ChunkManager* chunk_manager,
const std::string& file,
bool is_field_data) {
auto fileSize = chunk_manager->Size(file);
auto buf = std::shared_ptr<uint8_t[]>(new uint8_t[fileSize]);
chunk_manager->Read(file, buf.get(), fileSize);
auto res = DeserializeFileData(buf, fileSize, is_field_data);
res->SetData(buf);
return res;
}
std::pair<std::string, size_t>
EncodeAndUploadIndexSlice(ChunkManager* chunk_manager,
uint8_t* buf,
int64_t batch_size,
IndexMeta index_meta,
FieldDataMeta field_meta,
std::string object_key) {
// index not use valid_data, so no need to set nullable==true
auto field_data = CreateFieldData(DataType::INT8, false);
field_data->FillFieldData(buf, batch_size);
auto indexData = std::make_shared<IndexData>(field_data);
indexData->set_index_meta(index_meta);
indexData->SetFieldDataMeta(field_meta);
auto serialized_index_data = indexData->serialize_to_remote_file();
auto serialized_index_size = serialized_index_data.size();
chunk_manager->Write(
object_key, serialized_index_data.data(), serialized_index_size);
return std::make_pair(std::move(object_key), serialized_index_size);
}
std::pair<std::string, size_t>
EncodeAndUploadFieldSlice(ChunkManager* chunk_manager,
void* buf,
int64_t element_count,
FieldDataMeta field_data_meta,
const FieldMeta& field_meta,
std::string object_key) {
// dim should not be used for sparse float vector field
auto dim = IsSparseFloatVectorDataType(field_meta.get_data_type())
? -1
: field_meta.get_dim();
auto field_data =
CreateFieldData(field_meta.get_data_type(), false, dim, 0);
field_data->FillFieldData(buf, element_count);
auto insertData = std::make_shared<InsertData>(field_data);
insertData->SetFieldDataMeta(field_data_meta);
auto serialized_inserted_data = insertData->serialize_to_remote_file();
auto serialized_inserted_data_size = serialized_inserted_data.size();
chunk_manager->Write(object_key,
serialized_inserted_data.data(),
serialized_inserted_data_size);
return std::make_pair(std::move(object_key), serialized_inserted_data_size);
}
std::vector<std::future<std::unique_ptr<DataCodec>>>
GetObjectData(ChunkManager* remote_chunk_manager,
const std::vector<std::string>& remote_files) {
auto& pool = ThreadPools::GetThreadPool(milvus::ThreadPoolPriority::HIGH);
std::vector<std::future<std::unique_ptr<DataCodec>>> futures;
futures.reserve(remote_files.size());
for (auto& file : remote_files) {
futures.emplace_back(pool.Submit(
DownloadAndDecodeRemoteFile, remote_chunk_manager, file, true));
}
return futures;
}
std::map<std::string, int64_t>
PutIndexData(ChunkManager* remote_chunk_manager,
const std::vector<const uint8_t*>& data_slices,
const std::vector<int64_t>& slice_sizes,
const std::vector<std::string>& slice_names,
FieldDataMeta& field_meta,
IndexMeta& index_meta) {
auto& pool = ThreadPools::GetThreadPool(milvus::ThreadPoolPriority::MIDDLE);
std::vector<std::future<std::pair<std::string, size_t>>> futures;
AssertInfo(data_slices.size() == slice_sizes.size(),
"inconsistent data slices size {} with slice sizes {}",
data_slices.size(),
slice_sizes.size());
AssertInfo(data_slices.size() == slice_names.size(),
"inconsistent data slices size {} with slice names size {}",
data_slices.size(),
slice_names.size());
for (int64_t i = 0; i < data_slices.size(); ++i) {
futures.push_back(pool.Submit(EncodeAndUploadIndexSlice,
remote_chunk_manager,
const_cast<uint8_t*>(data_slices[i]),
slice_sizes[i],
index_meta,
field_meta,
slice_names[i]));
}
std::map<std::string, int64_t> remote_paths_to_size;
std::exception_ptr first_exception = nullptr;
for (auto& future : futures) {
try {
auto res = future.get();
remote_paths_to_size[res.first] = res.second;
} catch (...) {
if (!first_exception) {
first_exception = std::current_exception();
}
}
}
ReleaseArrowUnused();
if (first_exception) {
std::rethrow_exception(first_exception);
}
return remote_paths_to_size;
}
int64_t
GetTotalNumRowsForFieldDatas(const std::vector<FieldDataPtr>& field_datas) {
int64_t count = 0;
for (auto& field_data : field_datas) {
count += field_data->get_num_rows();
}
return count;
}
size_t
GetNumRowsForLoadInfo(const LoadFieldDataInfo& load_info) {
if (load_info.field_infos.empty()) {
return 0;
}
auto& field = load_info.field_infos.begin()->second;
return field.row_count;
}
void
ReleaseArrowUnused() {
static std::mutex release_mutex;
// While multiple threads are releasing memory,
// we don't need everyone do releasing,
// just let some of them do this also works well
if (release_mutex.try_lock()) {
arrow::default_memory_pool()->ReleaseUnused();
release_mutex.unlock();
}
}
ChunkManagerPtr
CreateChunkManager(const StorageConfig& storage_config) {
auto storage_type = ChunkManagerType_Map[storage_config.storage_type];
switch (storage_type) {
case ChunkManagerType::Local: {
return std::make_shared<LocalChunkManager>(
storage_config.root_path);
}
case ChunkManagerType::Minio: {
return std::make_shared<MinioChunkManager>(storage_config);
}
case ChunkManagerType::Remote: {
auto cloud_provider_type =
CloudProviderType_Map[storage_config.cloud_provider];
switch (cloud_provider_type) {
case CloudProviderType::AWS: {
return std::make_shared<AwsChunkManager>(storage_config);
}
case CloudProviderType::GCP: {
return std::make_shared<GcpChunkManager>(storage_config);
}
case CloudProviderType::ALIYUN: {
return std::make_shared<AliyunChunkManager>(storage_config);
}
case CloudProviderType::TENCENTCLOUD: {
return std::make_shared<TencentCloudChunkManager>(
storage_config);
}
#ifdef AZURE_BUILD_DIR
case CloudProviderType::AZURE: {
return std::make_shared<AzureChunkManager>(storage_config);
}
#endif
#ifdef ENABLE_GCP_NATIVE
case CloudProviderType::GCPNATIVE: {
return std::make_shared<GcpNativeChunkManager>(
storage_config);
}
#endif
default: {
return std::make_shared<MinioChunkManager>(storage_config);
}
}
}
#ifdef USE_OPENDAL
case ChunkManagerType::OpenDAL: {
return std::make_shared<OpenDALChunkManager>(storage_config);
}
#endif
default: {
PanicInfo(ConfigInvalid,
"unsupported storage_config.storage_type {}",
fmt::underlying(storage_type));
}
}
}
FieldDataPtr
CreateFieldData(const DataType& type,
bool nullable,
int64_t dim,
int64_t total_num_rows) {
switch (type) {
case DataType::BOOL:
return std::make_shared<FieldData<bool>>(
type, nullable, total_num_rows);
case DataType::INT8:
return std::make_shared<FieldData<int8_t>>(
type, nullable, total_num_rows);
case DataType::INT16:
return std::make_shared<FieldData<int16_t>>(
type, nullable, total_num_rows);
case DataType::INT32:
return std::make_shared<FieldData<int32_t>>(
type, nullable, total_num_rows);
case DataType::INT64:
return std::make_shared<FieldData<int64_t>>(
type, nullable, total_num_rows);
case DataType::FLOAT:
return std::make_shared<FieldData<float>>(
type, nullable, total_num_rows);
case DataType::DOUBLE:
return std::make_shared<FieldData<double>>(
type, nullable, total_num_rows);
case DataType::STRING:
case DataType::VARCHAR:
return std::make_shared<FieldData<std::string>>(
type, nullable, total_num_rows);
case DataType::JSON:
return std::make_shared<FieldData<Json>>(
type, nullable, total_num_rows);
case DataType::ARRAY:
return std::make_shared<FieldData<Array>>(
type, nullable, total_num_rows);
case DataType::VECTOR_FLOAT:
return std::make_shared<FieldData<FloatVector>>(
dim, type, total_num_rows);
case DataType::VECTOR_BINARY:
return std::make_shared<FieldData<BinaryVector>>(
dim, type, total_num_rows);
case DataType::VECTOR_FLOAT16:
return std::make_shared<FieldData<Float16Vector>>(
dim, type, total_num_rows);
case DataType::VECTOR_BFLOAT16:
return std::make_shared<FieldData<BFloat16Vector>>(
dim, type, total_num_rows);
case DataType::VECTOR_SPARSE_FLOAT:
return std::make_shared<FieldData<SparseFloatVector>>(
type, total_num_rows);
default:
PanicInfo(DataTypeInvalid,
"CreateFieldData not support data type " +
GetDataTypeName(type));
}
}
int64_t
GetByteSizeOfFieldDatas(const std::vector<FieldDataPtr>& field_datas) {
int64_t result = 0;
for (auto& data : field_datas) {
result += data->Size();
}
return result;
}
std::vector<FieldDataPtr>
CollectFieldDataChannel(FieldDataChannelPtr& channel) {
std::vector<FieldDataPtr> result;
FieldDataPtr field_data;
while (channel->pop(field_data)) {
result.push_back(field_data);
}
return result;
}
FieldDataPtr
MergeFieldData(std::vector<FieldDataPtr>& data_array) {
if (data_array.size() == 0) {
return nullptr;
}
if (data_array.size() == 1) {
return data_array[0];
}
size_t total_length = 0;
for (const auto& data : data_array) {
total_length += data->Length();
}
auto merged_data = storage::CreateFieldData(data_array[0]->get_data_type(),
data_array[0]->IsNullable());
merged_data->Reserve(total_length);
for (const auto& data : data_array) {
if (merged_data->IsNullable()) {
merged_data->FillFieldData(
data->Data(), data->ValidData(), data->Length());
} else {
merged_data->FillFieldData(data->Data(), data->Length());
}
}
return merged_data;
}
std::vector<FieldDataPtr>
FetchFieldData(ChunkManager* cm, const std::vector<std::string>& remote_files) {
std::vector<FieldDataPtr> field_datas;
std::vector<std::string> batch_files;
auto FetchRawData = [&]() {
auto fds = GetObjectData(cm, batch_files);
for (size_t i = 0; i < batch_files.size(); ++i) {
auto data = fds[i].get()->GetFieldData();
field_datas.emplace_back(data);
}
};
auto parallel_degree =
uint64_t(DEFAULT_FIELD_MAX_MEMORY_LIMIT / FILE_SLICE_SIZE);
for (auto& file : remote_files) {
if (batch_files.size() >= parallel_degree) {
FetchRawData();
batch_files.clear();
}
batch_files.emplace_back(file);
}
if (batch_files.size() > 0) {
FetchRawData();
}
return field_datas;
}
} // namespace milvus::storage