mirror of
https://gitee.com/milvus-io/milvus.git
synced 2025-12-07 01:28:27 +08:00
1. query with expr under different scalar index types 2. test framework supports preparing one piece of data and multiple parameter queries Signed-off-by: wangting0128 <ting.wang@zilliz.com>
525 lines
23 KiB
Python
525 lines
23 KiB
Python
import re
|
|
import pytest
|
|
from pymilvus import DataType
|
|
|
|
from common.common_type import CaseLabel, CheckTasks
|
|
from common import common_type as ct
|
|
from common import common_func as cf
|
|
from common.code_mapping import QueryErrorMessage as qem
|
|
from common.common_params import (
|
|
IndexName, FieldParams, IndexPrams, DefaultVectorIndexParams, DefaultScalarIndexParams, MetricType, Expr
|
|
)
|
|
from base.client_base import TestcaseBase, TestCaseClassBase
|
|
|
|
|
|
@pytest.mark.xdist_group("TestNoIndexDQLExpr")
|
|
class TestNoIndexDQLExpr(TestCaseClassBase):
|
|
"""
|
|
Scalar fields are not indexed, and verify DQL requests
|
|
|
|
Author: Ting.Wang
|
|
"""
|
|
|
|
def setup_class(self):
|
|
super().setup_class(self)
|
|
|
|
# connect to server before testing
|
|
self._connect(self)
|
|
|
|
# init params
|
|
self.primary_field, nb = "int64_pk", 3000
|
|
|
|
# create a collection with fields
|
|
self.collection_wrap.init_collection(
|
|
name=cf.gen_unique_str("test_no_index_dql_expr"),
|
|
schema=cf.set_collection_schema(
|
|
fields=[self.primary_field, DataType.FLOAT16_VECTOR.name, DataType.BFLOAT16_VECTOR.name,
|
|
DataType.SPARSE_FLOAT_VECTOR.name, DataType.BINARY_VECTOR.name, *self().all_scalar_fields],
|
|
field_params={
|
|
self.primary_field: FieldParams(is_primary=True).to_dict,
|
|
DataType.FLOAT16_VECTOR.name: FieldParams(dim=3).to_dict,
|
|
DataType.BFLOAT16_VECTOR.name: FieldParams(dim=6).to_dict,
|
|
DataType.BINARY_VECTOR.name: FieldParams(dim=16).to_dict
|
|
},
|
|
)
|
|
)
|
|
|
|
# prepare data (> 1024 triggering index building)
|
|
self.insert_data = cf.gen_field_values(self.collection_wrap.schema, nb=nb)
|
|
|
|
@pytest.fixture(scope="class", autouse=True)
|
|
def prepare_data(self):
|
|
self.collection_wrap.insert(data=list(self.insert_data.values()), check_task=CheckTasks.check_insert_result)
|
|
|
|
# flush collection, segment sealed
|
|
self.collection_wrap.flush()
|
|
|
|
# build `Hybrid index` on empty collection
|
|
index_params = {
|
|
**DefaultVectorIndexParams.IVF_SQ8(DataType.FLOAT16_VECTOR.name),
|
|
**DefaultVectorIndexParams.IVF_FLAT(DataType.BFLOAT16_VECTOR.name),
|
|
**DefaultVectorIndexParams.SPARSE_WAND(DataType.SPARSE_FLOAT_VECTOR.name),
|
|
**DefaultVectorIndexParams.BIN_IVF_FLAT(DataType.BINARY_VECTOR.name)
|
|
}
|
|
self.build_multi_index(index_params=index_params)
|
|
assert sorted([n.field_name for n in self.collection_wrap.indexes]) == sorted(index_params.keys())
|
|
|
|
# load collection
|
|
self.collection_wrap.load()
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("expr, output_fields", [
|
|
(Expr.In(Expr.MOD('INT8', 13).subset, [0, 1, 2]).value, ['INT8']),
|
|
(Expr.Nin(Expr.MOD('INT16', 100).subset, [10, 20, 30, 40]).value, ['INT16']),
|
|
])
|
|
def test_no_index_query_with_invalid_expr(self, expr, output_fields):
|
|
"""
|
|
target:
|
|
1. check invalid expr
|
|
method:
|
|
1. prepare some data
|
|
2. query with the invalid expr
|
|
expected:
|
|
1. raises expected error
|
|
"""
|
|
# query
|
|
self.collection_wrap.query(expr=expr, check_task=CheckTasks.err_res,
|
|
check_items={ct.err_code: 1100, ct.err_msg: qem.ParseExpressionFailed})
|
|
|
|
@pytest.mark.skip("https://github.com/milvus-io/milvus/issues/36054")
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize(
|
|
"expr, expr_field", cf.gen_modulo_expression(['int64_pk', 'INT8', 'INT16', 'INT32', 'INT64']))
|
|
@pytest.mark.parametrize("limit", [1, 10, 3000])
|
|
def test_no_index_query_with_modulo(self, expr, expr_field, limit):
|
|
"""
|
|
target:
|
|
1. check modulo expression
|
|
method:
|
|
1. prepare some data
|
|
2. query with the different expr and limit
|
|
3. check query result
|
|
expected:
|
|
1. query response equal to min(insert data, limit)
|
|
"""
|
|
# the total number of inserted data that matches the expression
|
|
expr_count = len([i for i in self.insert_data.get(expr_field, []) if eval(expr.replace(expr_field, str(i)))])
|
|
|
|
# query
|
|
res, _ = self.collection_wrap.query(expr=expr, limit=limit, output_fields=[expr_field])
|
|
assert len(res) == min(expr_count, limit), f"actual: {len(res)} == expect: {min(expr_count, limit)}"
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("expr, expr_field, rex", cf.gen_varchar_expression(['VARCHAR']))
|
|
@pytest.mark.parametrize("limit", [1, 10, 3000])
|
|
def test_no_index_query_with_string(self, expr, expr_field, limit, rex):
|
|
"""
|
|
target:
|
|
1. check string expression
|
|
method:
|
|
1. prepare some data
|
|
2. query with the different expr and limit
|
|
3. check query result
|
|
expected:
|
|
1. query response equal to min(insert data, limit)
|
|
"""
|
|
# the total number of inserted data that matches the expression
|
|
expr_count = len([i for i in self.insert_data.get(expr_field, []) if re.search(rex, i) is not None])
|
|
|
|
# query
|
|
res, _ = self.collection_wrap.query(expr=expr, limit=limit, output_fields=[expr_field])
|
|
assert len(res) == min(expr_count, limit), f"actual: {len(res)} == expect: {min(expr_count, limit)}"
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize(
|
|
"expr, expr_field", cf.gen_number_operation(['INT8', 'INT16', 'INT32', 'INT64', 'FLOAT', 'DOUBLE']))
|
|
@pytest.mark.parametrize("limit", [1, 10, 3000])
|
|
def test_no_index_query_with_operation(self, expr, expr_field, limit):
|
|
"""
|
|
target:
|
|
1. check number operation
|
|
method:
|
|
1. prepare some data
|
|
2. query with the different expr and limit
|
|
3. check query result
|
|
expected:
|
|
1. query response equal to min(insert data, limit)
|
|
"""
|
|
# the total number of inserted data that matches the expression
|
|
expr_count = len([i for i in self.insert_data.get(expr_field, []) if eval(expr.replace(expr_field, str(i)))])
|
|
|
|
# query
|
|
res, _ = self.collection_wrap.query(expr=expr, limit=limit, output_fields=[expr_field])
|
|
assert len(res) == min(expr_count, limit), f"actual: {len(res)} == expect: {min(expr_count, limit)}"
|
|
|
|
|
|
@pytest.mark.xdist_group("TestHybridIndexDQLExpr")
|
|
class TestHybridIndexDQLExpr(TestCaseClassBase):
|
|
"""
|
|
Scalar fields build Hybrid index, and verify DQL requests
|
|
|
|
Author: Ting.Wang
|
|
"""
|
|
|
|
def setup_class(self):
|
|
super().setup_class(self)
|
|
|
|
# connect to server before testing
|
|
self._connect(self)
|
|
|
|
# init params
|
|
self.primary_field, nb = "int64_pk", 3000
|
|
|
|
# create a collection with fields
|
|
self.collection_wrap.init_collection(
|
|
name=cf.gen_unique_str("test_hybrid_index_dql_expr"),
|
|
schema=cf.set_collection_schema(
|
|
fields=[self.primary_field, DataType.FLOAT16_VECTOR.name, DataType.BFLOAT16_VECTOR.name,
|
|
DataType.SPARSE_FLOAT_VECTOR.name, DataType.BINARY_VECTOR.name, *self().all_scalar_fields],
|
|
field_params={
|
|
self.primary_field: FieldParams(is_primary=True).to_dict,
|
|
DataType.FLOAT16_VECTOR.name: FieldParams(dim=3).to_dict,
|
|
DataType.BFLOAT16_VECTOR.name: FieldParams(dim=6).to_dict,
|
|
DataType.BINARY_VECTOR.name: FieldParams(dim=16).to_dict
|
|
},
|
|
)
|
|
)
|
|
|
|
# prepare data (> 1024 triggering index building)
|
|
self.insert_data = cf.gen_field_values(self.collection_wrap.schema, nb=nb)
|
|
|
|
@pytest.fixture(scope="class", autouse=True)
|
|
def prepare_data(self):
|
|
self.collection_wrap.insert(data=list(self.insert_data.values()), check_task=CheckTasks.check_insert_result)
|
|
|
|
# flush collection, segment sealed
|
|
self.collection_wrap.flush()
|
|
|
|
# build `Hybrid index` on empty collection
|
|
index_params = {
|
|
**DefaultVectorIndexParams.DISKANN(DataType.FLOAT16_VECTOR.name),
|
|
**DefaultVectorIndexParams.IVF_SQ8(DataType.BFLOAT16_VECTOR.name),
|
|
**DefaultVectorIndexParams.SPARSE_INVERTED_INDEX(DataType.SPARSE_FLOAT_VECTOR.name),
|
|
**DefaultVectorIndexParams.BIN_IVF_FLAT(DataType.BINARY_VECTOR.name),
|
|
# build Hybrid index
|
|
**DefaultScalarIndexParams.list_default([self.primary_field] + self.all_index_scalar_fields)
|
|
}
|
|
self.build_multi_index(index_params=index_params)
|
|
assert sorted([n.field_name for n in self.collection_wrap.indexes]) == sorted(index_params.keys())
|
|
|
|
# load collection
|
|
self.collection_wrap.load()
|
|
|
|
@pytest.mark.skip("https://github.com/milvus-io/milvus/issues/36054")
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize(
|
|
"expr, expr_field", cf.gen_modulo_expression(['int64_pk', 'INT8', 'INT16', 'INT32', 'INT64']))
|
|
@pytest.mark.parametrize("limit", [1, 10, 3000])
|
|
def test_hybrid_index_query_with_modulo(self, expr, expr_field, limit):
|
|
"""
|
|
target:
|
|
1. check modulo expression
|
|
method:
|
|
1. prepare some data and build `Hybrid index` on scalar fields
|
|
2. query with the different expr and limit
|
|
3. check query result
|
|
expected:
|
|
1. query response equal to min(insert data, limit)
|
|
"""
|
|
# the total number of inserted data that matches the expression
|
|
expr_count = len([i for i in self.insert_data.get(expr_field, []) if eval(expr.replace(expr_field, str(i)))])
|
|
|
|
# query
|
|
res, _ = self.collection_wrap.query(expr=expr, limit=limit, output_fields=[expr_field])
|
|
assert len(res) == min(expr_count, limit), f"actual: {len(res)} == expect: {min(expr_count, limit)}"
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("expr, expr_field, rex", cf.gen_varchar_expression(['VARCHAR']))
|
|
@pytest.mark.parametrize("limit", [1, 10, 3000])
|
|
def test_hybrid_index_query_with_string(self, expr, expr_field, limit, rex):
|
|
"""
|
|
target:
|
|
1. check string expression
|
|
method:
|
|
1. prepare some data and build `Hybrid index` on scalar fields
|
|
2. query with the different expr and limit
|
|
3. check query result
|
|
expected:
|
|
1. query response equal to min(insert data, limit)
|
|
"""
|
|
# the total number of inserted data that matches the expression
|
|
expr_count = len([i for i in self.insert_data.get(expr_field, []) if re.search(rex, i) is not None])
|
|
|
|
# query
|
|
res, _ = self.collection_wrap.query(expr=expr, limit=limit, output_fields=[expr_field])
|
|
assert len(res) == min(expr_count, limit), f"actual: {len(res)} == expect: {min(expr_count, limit)}"
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize(
|
|
"expr, expr_field", cf.gen_number_operation(['INT8', 'INT16', 'INT32', 'INT64', 'FLOAT', 'DOUBLE']))
|
|
@pytest.mark.parametrize("limit", [1, 10, 3000])
|
|
def test_hybrid_index_query_with_operation(self, expr, expr_field, limit):
|
|
"""
|
|
target:
|
|
1. check number operation
|
|
method:
|
|
1. prepare some data and build `Hybrid index` on scalar fields
|
|
2. query with the different expr and limit
|
|
3. check query result
|
|
expected:
|
|
1. query response equal to min(insert data, limit)
|
|
"""
|
|
# the total number of inserted data that matches the expression
|
|
expr_count = len([i for i in self.insert_data.get(expr_field, []) if eval(expr.replace(expr_field, str(i)))])
|
|
|
|
# query
|
|
res, _ = self.collection_wrap.query(expr=expr, limit=limit, output_fields=[expr_field])
|
|
assert len(res) == min(expr_count, limit), f"actual: {len(res)} == expect: {min(expr_count, limit)}"
|
|
|
|
|
|
@pytest.mark.xdist_group("TestInvertedIndexDQLExpr")
|
|
class TestInvertedIndexDQLExpr(TestCaseClassBase):
|
|
"""
|
|
Scalar fields build INVERTED index, and verify DQL requests
|
|
|
|
Author: Ting.Wang
|
|
"""
|
|
|
|
def setup_class(self):
|
|
super().setup_class(self)
|
|
|
|
# connect to server before testing
|
|
self._connect(self)
|
|
|
|
# init params
|
|
self.primary_field, nb = "int64_pk", 3000
|
|
|
|
# create a collection with fields
|
|
self.collection_wrap.init_collection(
|
|
name=cf.gen_unique_str("test_inverted_index_dql_expr"),
|
|
schema=cf.set_collection_schema(
|
|
fields=[self.primary_field, DataType.FLOAT16_VECTOR.name, DataType.BFLOAT16_VECTOR.name,
|
|
DataType.SPARSE_FLOAT_VECTOR.name, DataType.BINARY_VECTOR.name, *self().all_scalar_fields],
|
|
field_params={
|
|
self.primary_field: FieldParams(is_primary=True).to_dict,
|
|
DataType.FLOAT16_VECTOR.name: FieldParams(dim=3).to_dict,
|
|
DataType.BFLOAT16_VECTOR.name: FieldParams(dim=6).to_dict,
|
|
DataType.BINARY_VECTOR.name: FieldParams(dim=16).to_dict
|
|
},
|
|
)
|
|
)
|
|
|
|
# prepare data (> 1024 triggering index building)
|
|
self.insert_data = cf.gen_field_values(self.collection_wrap.schema, nb=nb)
|
|
|
|
@pytest.fixture(scope="class", autouse=True)
|
|
def prepare_data(self):
|
|
self.collection_wrap.insert(data=list(self.insert_data.values()), check_task=CheckTasks.check_insert_result)
|
|
|
|
# flush collection, segment sealed
|
|
self.collection_wrap.flush()
|
|
|
|
# build `Hybrid index` on empty collection
|
|
index_params = {
|
|
**DefaultVectorIndexParams.IVF_FLAT(DataType.FLOAT16_VECTOR.name),
|
|
**DefaultVectorIndexParams.HNSW(DataType.BFLOAT16_VECTOR.name),
|
|
**DefaultVectorIndexParams.SPARSE_WAND(DataType.SPARSE_FLOAT_VECTOR.name),
|
|
**DefaultVectorIndexParams.BIN_FLAT(DataType.BINARY_VECTOR.name),
|
|
# build Hybrid index
|
|
**DefaultScalarIndexParams.list_inverted([self.primary_field] + self.inverted_support_dtype_names)
|
|
}
|
|
self.build_multi_index(index_params=index_params)
|
|
assert sorted([n.field_name for n in self.collection_wrap.indexes]) == sorted(index_params.keys())
|
|
|
|
# load collection
|
|
self.collection_wrap.load()
|
|
|
|
@pytest.mark.skip("https://github.com/milvus-io/milvus/issues/36054")
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize(
|
|
"expr, expr_field", cf.gen_modulo_expression(['int64_pk', 'INT8', 'INT16', 'INT32', 'INT64']))
|
|
@pytest.mark.parametrize("limit", [1, 10, 3000])
|
|
def test_inverted_index_query_with_modulo(self, expr, expr_field, limit):
|
|
"""
|
|
target:
|
|
1. check modulo expression
|
|
method:
|
|
1. prepare some data and build `INVERTED index` on scalar fields
|
|
2. query with the different expr and limit
|
|
3. check query result
|
|
expected:
|
|
1. query response equal to min(insert data, limit)
|
|
"""
|
|
# the total number of inserted data that matches the expression
|
|
expr_count = len([i for i in self.insert_data.get(expr_field, []) if eval(expr.replace(expr_field, str(i)))])
|
|
|
|
# query
|
|
res, _ = self.collection_wrap.query(expr=expr, limit=limit, output_fields=[expr_field])
|
|
assert len(res) == min(expr_count, limit), f"actual: {len(res)} == expect: {min(expr_count, limit)}"
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("expr, expr_field, rex", cf.gen_varchar_expression(['VARCHAR']))
|
|
@pytest.mark.parametrize("limit", [1, 10, 3000])
|
|
def test_inverted_index_query_with_string(self, expr, expr_field, limit, rex):
|
|
"""
|
|
target:
|
|
1. check string expression
|
|
method:
|
|
1. prepare some data and build `INVERTED index` on scalar fields
|
|
2. query with the different expr and limit
|
|
3. check query result
|
|
expected:
|
|
1. query response equal to min(insert data, limit)
|
|
"""
|
|
# the total number of inserted data that matches the expression
|
|
expr_count = len([i for i in self.insert_data.get(expr_field, []) if re.search(rex, i) is not None])
|
|
|
|
# query
|
|
res, _ = self.collection_wrap.query(expr=expr, limit=limit, output_fields=[expr_field])
|
|
assert len(res) == min(expr_count, limit), f"actual: {len(res)} == expect: {min(expr_count, limit)}"
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize(
|
|
"expr, expr_field", cf.gen_number_operation(['INT8', 'INT16', 'INT32', 'INT64', 'FLOAT', 'DOUBLE']))
|
|
@pytest.mark.parametrize("limit", [1, 10, 3000])
|
|
def test_inverted_index_query_with_operation(self, expr, expr_field, limit):
|
|
"""
|
|
target:
|
|
1. check number operation
|
|
method:
|
|
1. prepare some data and build `INVERTED index` on scalar fields
|
|
2. query with the different expr and limit
|
|
3. check query result
|
|
expected:
|
|
1. query response equal to min(insert data, limit)
|
|
"""
|
|
# the total number of inserted data that matches the expression
|
|
expr_count = len([i for i in self.insert_data.get(expr_field, []) if eval(expr.replace(expr_field, str(i)))])
|
|
|
|
# query
|
|
res, _ = self.collection_wrap.query(expr=expr, limit=limit, output_fields=[expr_field])
|
|
assert len(res) == min(expr_count, limit), f"actual: {len(res)} == expect: {min(expr_count, limit)}"
|
|
|
|
|
|
@pytest.mark.xdist_group("TestBitmapIndexDQLExpr")
|
|
class TestBitmapIndexDQLExpr(TestCaseClassBase):
|
|
"""
|
|
Scalar fields build BITMAP index, and verify DQL requests
|
|
|
|
Author: Ting.Wang
|
|
"""
|
|
|
|
def setup_class(self):
|
|
super().setup_class(self)
|
|
|
|
# connect to server before testing
|
|
self._connect(self)
|
|
|
|
# init params
|
|
self.primary_field, nb = "int64_pk", 3000
|
|
|
|
# create a collection with fields
|
|
self.collection_wrap.init_collection(
|
|
name=cf.gen_unique_str("test_bitmap_index_dql_expr"),
|
|
schema=cf.set_collection_schema(
|
|
fields=[self.primary_field, DataType.FLOAT16_VECTOR.name, DataType.BFLOAT16_VECTOR.name,
|
|
DataType.SPARSE_FLOAT_VECTOR.name, DataType.BINARY_VECTOR.name, *self().all_scalar_fields],
|
|
field_params={
|
|
self.primary_field: FieldParams(is_primary=True).to_dict,
|
|
DataType.FLOAT16_VECTOR.name: FieldParams(dim=3).to_dict,
|
|
DataType.BFLOAT16_VECTOR.name: FieldParams(dim=6).to_dict,
|
|
DataType.BINARY_VECTOR.name: FieldParams(dim=16).to_dict
|
|
},
|
|
)
|
|
)
|
|
|
|
# prepare data (> 1024 triggering index building)
|
|
self.insert_data = cf.gen_field_values(self.collection_wrap.schema, nb=nb)
|
|
|
|
@pytest.fixture(scope="class", autouse=True)
|
|
def prepare_data(self):
|
|
self.collection_wrap.insert(data=list(self.insert_data.values()), check_task=CheckTasks.check_insert_result)
|
|
|
|
# flush collection, segment sealed
|
|
self.collection_wrap.flush()
|
|
|
|
# build `Hybrid index` on empty collection
|
|
index_params = {
|
|
**DefaultVectorIndexParams.HNSW(DataType.FLOAT16_VECTOR.name),
|
|
**DefaultVectorIndexParams.DISKANN(DataType.BFLOAT16_VECTOR.name),
|
|
**DefaultVectorIndexParams.SPARSE_WAND(DataType.SPARSE_FLOAT_VECTOR.name),
|
|
**DefaultVectorIndexParams.BIN_IVF_FLAT(DataType.BINARY_VECTOR.name),
|
|
# build Hybrid index
|
|
**DefaultScalarIndexParams.list_bitmap(self.bitmap_support_dtype_names)
|
|
}
|
|
self.build_multi_index(index_params=index_params)
|
|
assert sorted([n.field_name for n in self.collection_wrap.indexes]) == sorted(index_params.keys())
|
|
|
|
# load collection
|
|
self.collection_wrap.load()
|
|
|
|
@pytest.mark.skip("https://github.com/milvus-io/milvus/issues/36054")
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("expr, expr_field", cf.gen_modulo_expression(['INT8', 'INT16', 'INT32', 'INT64']))
|
|
@pytest.mark.parametrize("limit", [1, 10, 3000])
|
|
def test_bitmap_index_query_with_modulo(self, expr, expr_field, limit):
|
|
"""
|
|
target:
|
|
1. check modulo expression
|
|
method:
|
|
1. prepare some data and build `BITMAP index` on scalar fields
|
|
2. query with the different expr and limit
|
|
3. check query result
|
|
expected:
|
|
1. query response equal to min(insert data, limit)
|
|
"""
|
|
# the total number of inserted data that matches the expression
|
|
expr_count = len([i for i in self.insert_data.get(expr_field, []) if eval(expr.replace(expr_field, str(i)))])
|
|
|
|
# query
|
|
res, _ = self.collection_wrap.query(expr=expr, limit=limit, output_fields=[expr_field])
|
|
assert len(res) == min(expr_count, limit), f"actual: {len(res)} == expect: {min(expr_count, limit)}"
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("expr, expr_field, rex", cf.gen_varchar_expression(['VARCHAR']))
|
|
@pytest.mark.parametrize("limit", [1, 10, 3000])
|
|
def test_bitmap_index_query_with_string(self, expr, expr_field, limit, rex):
|
|
"""
|
|
target:
|
|
1. check string expression
|
|
method:
|
|
1. prepare some data and build `BITMAP index` on scalar fields
|
|
2. query with the different expr and limit
|
|
3. check query result
|
|
expected:
|
|
1. query response equal to min(insert data, limit)
|
|
"""
|
|
# the total number of inserted data that matches the expression
|
|
expr_count = len([i for i in self.insert_data.get(expr_field, []) if re.search(rex, i) is not None])
|
|
|
|
# query
|
|
res, _ = self.collection_wrap.query(expr=expr, limit=limit, output_fields=[expr_field])
|
|
assert len(res) == min(expr_count, limit), f"actual: {len(res)} == expect: {min(expr_count, limit)}"
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize(
|
|
"expr, expr_field", cf.gen_number_operation(['INT8', 'INT16', 'INT32', 'INT64', 'FLOAT', 'DOUBLE']))
|
|
@pytest.mark.parametrize("limit", [1, 10, 3000])
|
|
def test_bitmap_index_query_with_operation(self, expr, expr_field, limit):
|
|
"""
|
|
target:
|
|
1. check number operation
|
|
method:
|
|
1. prepare some data and build `BITMAP index` on scalar fields
|
|
2. query with the different expr and limit
|
|
3. check query result
|
|
expected:
|
|
1. query response equal to min(insert data, limit)
|
|
"""
|
|
# the total number of inserted data that matches the expression
|
|
expr_count = len([i for i in self.insert_data.get(expr_field, []) if eval(expr.replace(expr_field, str(i)))])
|
|
|
|
# query
|
|
res, _ = self.collection_wrap.query(expr=expr, limit=limit, output_fields=[expr_field])
|
|
assert len(res) == min(expr_count, limit), f"actual: {len(res)} == expect: {min(expr_count, limit)}"
|