Spade A c4f3f0ce4c
feat: impl StructArray -- support more types of vector in STRUCT (#44736)
ref: https://github.com/milvus-io/milvus/issues/42148

---------

Signed-off-by: SpadeA <tangchenjie1210@gmail.com>
Signed-off-by: SpadeA-Tang <tangchenjie1210@gmail.com>
2025-10-15 10:25:59 +08:00

414 lines
14 KiB
Go

// Licensed to the LF AI & Data foundation under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package parquet
import (
"context"
"fmt"
"github.com/apache/arrow/go/v17/arrow"
"github.com/apache/arrow/go/v17/parquet/pqarrow"
"github.com/samber/lo"
"go.uber.org/zap"
"github.com/milvus-io/milvus-proto/go-api/v2/schemapb"
"github.com/milvus-io/milvus/internal/storage"
"github.com/milvus-io/milvus/pkg/v2/common"
"github.com/milvus-io/milvus/pkg/v2/log"
"github.com/milvus-io/milvus/pkg/v2/util/merr"
"github.com/milvus-io/milvus/pkg/v2/util/typeutil"
)
const (
sparseVectorIndice = "indices"
sparseVectorValues = "values"
)
func WrapTypeErr(expect *schemapb.FieldSchema, actual string) error {
nullable := ""
if expect.GetNullable() {
nullable = "nullable"
}
elementType := ""
if expect.GetDataType() == schemapb.DataType_Array {
elementType = expect.GetElementType().String()
}
// error message examples:
// "expect 'Int32' type for field 'xxx', but got 'bool' type"
// "expect nullable 'Int32 Array' type for field 'xxx', but got 'bool' type"
// "expect 'FloatVector' type for field 'xxx', but got 'bool' type"
return merr.WrapErrImportFailed(
fmt.Sprintf("expect %s '%s %s' type for field '%s', but got '%s' type",
nullable, elementType, expect.GetDataType().String(), expect.GetName(), actual))
}
func WrapNullRowErr(field *schemapb.FieldSchema) error {
return merr.WrapErrImportFailed(
fmt.Sprintf("the field '%s' is not nullable but the file contains null value", field.GetName()))
}
func WrapNullElementErr(field *schemapb.FieldSchema) error {
return merr.WrapErrImportFailed(
fmt.Sprintf("array element is not allowed to be null value for field '%s'", field.GetName()))
}
func CreateFieldReaders(ctx context.Context, fileReader *pqarrow.FileReader, schema *schemapb.CollectionSchema) (map[int64]*FieldReader, error) {
// Create map for all fields including sub-fields from StructArrayFields
allFields := typeutil.GetAllFieldSchemas(schema)
nameToField := lo.KeyBy(allFields, func(field *schemapb.FieldSchema) string {
return field.GetName()
})
pqSchema, err := fileReader.Schema()
if err != nil {
return nil, merr.WrapErrImportFailed(fmt.Sprintf("get parquet schema failed, err=%v", err))
}
err = isSchemaEqual(schema, pqSchema)
if err != nil {
return nil, merr.WrapErrImportFailed(fmt.Sprintf("schema not equal, err=%v", err))
}
// this loop is for "how many fields are provided by this parquet file?"
readFields := make(map[string]int64)
crs := make(map[int64]*FieldReader)
allowInsertAutoID, _ := common.IsAllowInsertAutoID(schema.GetProperties()...)
for i, pqField := range pqSchema.Fields() {
field, ok := nameToField[pqField.Name]
if !ok {
// redundant fields, ignore. only accepts a special field "$meta" to store dynamic data
continue
}
// auto-id field must not provided
if typeutil.IsAutoPKField(field) && !allowInsertAutoID {
return nil, merr.WrapErrImportFailed(
fmt.Sprintf("the primary key '%s' is auto-generated, no need to provide", field.GetName()))
}
// function output field must not provided
if field.GetIsFunctionOutput() {
return nil, merr.WrapErrImportFailed(
fmt.Sprintf("the field '%s' is output by function, no need to provide", field.GetName()))
}
cr, err := NewFieldReader(ctx, fileReader, i, field)
if err != nil {
return nil, err
}
if _, ok = crs[field.GetFieldID()]; ok {
return nil, merr.WrapErrImportFailed(
fmt.Sprintf("there is multi field with name: %s", field.GetName()))
}
crs[field.GetFieldID()] = cr
readFields[field.GetName()] = field.GetFieldID()
}
// this loop is for "are there any fields not provided in the parquet file?"
for _, field := range nameToField {
// auto-id field, function output field already checked
// dynamic field, nullable field, default value field, not provided or provided both ok
if typeutil.IsAutoPKField(field) || field.GetIsDynamic() || field.GetIsFunctionOutput() ||
field.GetNullable() || field.GetDefaultValue() != nil {
continue
}
// the other field must be provided
if _, ok := crs[field.GetFieldID()]; !ok {
return nil, merr.WrapErrImportFailed(
fmt.Sprintf("no parquet field for milvus field '%s'", field.GetName()))
}
}
log.Info("create parquet column readers", zap.Any("readFields", readFields))
return crs, nil
}
func isArrowIntegerType(dataType arrow.Type) bool {
switch dataType {
case arrow.INT8, arrow.INT16, arrow.INT32, arrow.INT64:
return true
default:
return false
}
}
func isArrowFloatingType(dataType arrow.Type) bool {
switch dataType {
case arrow.FLOAT32, arrow.FLOAT64:
return true
default:
return false
}
}
func isArrowArithmeticType(dataType arrow.Type) bool {
return isArrowIntegerType(dataType) || isArrowFloatingType(dataType)
}
func isArrowDataTypeConvertible(src arrow.DataType, dst arrow.DataType, field *schemapb.FieldSchema) bool {
srcType := src.ID()
dstType := dst.ID()
switch srcType {
case arrow.BOOL:
return dstType == arrow.BOOL
case arrow.UINT8:
return dstType == arrow.UINT8
case arrow.INT8:
return isArrowArithmeticType(dstType)
case arrow.INT16:
return isArrowArithmeticType(dstType) && dstType != arrow.INT8
case arrow.INT32:
return isArrowArithmeticType(dstType) && dstType != arrow.INT8 && dstType != arrow.INT16
case arrow.INT64:
return isArrowFloatingType(dstType) || dstType == arrow.INT64
case arrow.FLOAT32:
return isArrowFloatingType(dstType)
case arrow.FLOAT64:
// TODO caiyd: need do strict type check
// return dstType == arrow.FLOAT64
return isArrowFloatingType(dstType)
case arrow.STRING:
return dstType == arrow.STRING
case arrow.BINARY:
return dstType == arrow.LIST && dst.(*arrow.ListType).Elem().ID() == arrow.UINT8
case arrow.LIST:
return dstType == arrow.LIST && isArrowDataTypeConvertible(src.(*arrow.ListType).Elem(), dst.(*arrow.ListType).Elem(), field)
case arrow.NULL:
// if nullable==true or has set default_value, can use null type
return field.GetNullable() || field.GetDefaultValue() != nil
case arrow.STRUCT:
if field.GetDataType() == schemapb.DataType_SparseFloatVector {
valid, _ := IsValidSparseVectorSchema(src)
return valid
}
return false
case arrow.FIXED_SIZE_BINARY:
return dstType == arrow.FIXED_SIZE_BINARY
default:
return false
}
}
// This method returns two booleans
// The first boolean value means the arrowType is a valid sparse vector schema
// The second boolean value: true means the sparse vector is stored as JSON-format string,
// false means the sparse vector is stored as parquet struct
func IsValidSparseVectorSchema(arrowType arrow.DataType) (bool, bool) {
arrowID := arrowType.ID()
if arrowID == arrow.STRUCT {
arrType := arrowType.(*arrow.StructType)
indicesType, ok1 := arrType.FieldByName(sparseVectorIndice)
valuesType, ok2 := arrType.FieldByName(sparseVectorValues)
if !ok1 || !ok2 {
return false, false
}
// indices can be uint32 list or int64 list
// values can be float32 list or float64 list
isValidType := func(finger string, expectedType arrow.DataType) bool {
return finger == arrow.ListOf(expectedType).Fingerprint()
}
indicesFinger := indicesType.Type.Fingerprint()
valuesFinger := valuesType.Type.Fingerprint()
indicesTypeIsOK := (isValidType(indicesFinger, arrow.PrimitiveTypes.Int32) ||
isValidType(indicesFinger, arrow.PrimitiveTypes.Uint32) ||
isValidType(indicesFinger, arrow.PrimitiveTypes.Int64) ||
isValidType(indicesFinger, arrow.PrimitiveTypes.Uint64))
valuesTypeIsOK := (isValidType(valuesFinger, arrow.PrimitiveTypes.Float32) ||
isValidType(valuesFinger, arrow.PrimitiveTypes.Float64))
return indicesTypeIsOK && valuesTypeIsOK, false
}
return arrowID == arrow.STRING, true
}
func convertToArrowDataType(field *schemapb.FieldSchema, isArray bool) (arrow.DataType, error) {
dataType := field.GetDataType()
if isArray {
dataType = field.GetElementType()
}
switch dataType {
case schemapb.DataType_Bool:
return &arrow.BooleanType{}, nil
case schemapb.DataType_Int8:
return &arrow.Int8Type{}, nil
case schemapb.DataType_Int16:
return &arrow.Int16Type{}, nil
case schemapb.DataType_Int32:
return &arrow.Int32Type{}, nil
case schemapb.DataType_Int64, schemapb.DataType_Timestamptz:
return &arrow.Int64Type{}, nil
case schemapb.DataType_Float:
return &arrow.Float32Type{}, nil
case schemapb.DataType_Double:
return &arrow.Float64Type{}, nil
case schemapb.DataType_VarChar, schemapb.DataType_String:
return &arrow.StringType{}, nil
case schemapb.DataType_JSON:
return &arrow.StringType{}, nil
case schemapb.DataType_Geometry:
return &arrow.StringType{}, nil
case schemapb.DataType_Array:
elemType, err := convertToArrowDataType(field, true)
if err != nil {
return nil, err
}
return arrow.ListOfField(arrow.Field{
Name: "item",
Type: elemType,
Nullable: true,
Metadata: arrow.Metadata{},
}), nil
case schemapb.DataType_BinaryVector, schemapb.DataType_Float16Vector, schemapb.DataType_BFloat16Vector:
return arrow.ListOfField(arrow.Field{
Name: "item",
Type: &arrow.Uint8Type{},
Nullable: true,
Metadata: arrow.Metadata{},
}), nil
case schemapb.DataType_FloatVector:
return arrow.ListOfField(arrow.Field{
Name: "item",
Type: &arrow.Float32Type{},
Nullable: true,
Metadata: arrow.Metadata{},
}), nil
case schemapb.DataType_SparseFloatVector:
return &arrow.StringType{}, nil
case schemapb.DataType_Int8Vector:
return arrow.ListOfField(arrow.Field{
Name: "item",
Type: &arrow.Int8Type{},
Nullable: true,
Metadata: arrow.Metadata{},
}), nil
case schemapb.DataType_ArrayOfVector:
dim, err := typeutil.GetDim(field)
if err != nil {
return nil, err
}
elemType, err := storage.VectorArrayToArrowType(field.GetElementType(), int(dim))
if err != nil {
return nil, err
}
return arrow.ListOfField(arrow.Field{
Name: "item",
Type: elemType,
Nullable: true,
Metadata: arrow.Metadata{},
}), nil
default:
return nil, merr.WrapErrParameterInvalidMsg("unsupported data type %v", dataType.String())
}
}
// This method is used only by import util and related tests. Returned arrow.Schema
// doesn't include function output fields.
func ConvertToArrowSchemaForUT(schema *schemapb.CollectionSchema, useNullType bool) (*arrow.Schema, error) {
// Get all fields including struct sub-fields
allFields := typeutil.GetAllFieldSchemas(schema)
arrFields := make([]arrow.Field, 0, len(allFields))
for _, field := range allFields {
if typeutil.IsAutoPKField(field) || field.GetIsFunctionOutput() {
continue
}
arrDataType, err := convertToArrowDataType(field, false)
if err != nil {
return nil, err
}
nullable := field.GetNullable()
if field.GetNullable() && useNullType {
arrDataType = arrow.Null
}
if field.GetDefaultValue() != nil && useNullType {
arrDataType = arrow.Null
nullable = true
}
arrFields = append(arrFields, arrow.Field{
Name: field.GetName(),
Type: arrDataType,
Nullable: nullable,
Metadata: arrow.Metadata{},
})
}
return arrow.NewSchema(arrFields, nil), nil
}
func isSchemaEqual(schema *schemapb.CollectionSchema, arrSchema *arrow.Schema) error {
// Get all fields including struct sub-fields
allFields := typeutil.GetAllFieldSchemas(schema)
arrNameToField := lo.KeyBy(arrSchema.Fields(), func(field arrow.Field) string {
return field.Name
})
// Check all fields (including struct sub-fields which are stored as separate columns)
for _, field := range allFields {
// ignore autoPKField and functionOutputField
if typeutil.IsAutoPKField(field) || field.GetIsFunctionOutput() {
continue
}
arrField, ok := arrNameToField[field.GetName()]
if !ok {
// Special fields no need to provide in data files, the parquet file doesn't contain this field, no need to compare
// 1. dynamic field(name is "$meta"), ignore
// 2. nullable field, filled with null values
// 3. default value field, filled with default value
if field.GetIsDynamic() || field.GetNullable() || field.GetDefaultValue() != nil {
continue
}
return merr.WrapErrImportFailed(fmt.Sprintf("field '%s' not in arrow schema", field.GetName()))
}
toArrDataType, err := convertToArrowDataType(field, false)
if err != nil {
return err
}
if !isArrowDataTypeConvertible(arrField.Type, toArrDataType, field) {
return merr.WrapErrImportFailed(fmt.Sprintf("field '%s' type mis-match, expect arrow type '%s', get arrow data type '%s'",
field.Name, toArrDataType.String(), arrField.Type.String()))
}
}
return nil
}
// todo(smellthemoon): use byte to store valid_data
func bytesToValidData(length int, bytes []byte) []bool {
bools := make([]bool, 0, length)
if len(bytes) == 0 {
// parquet field is "optional" or "required"
// for "required" field, the arrow.array.NullBitmapBytes() returns an empty byte list
// which means all the elements are valid. In this case, we simply construct an all-true bool array
for i := 0; i < length; i++ {
bools = append(bools, true)
}
return bools
}
// for "optional" field, the arrow.array.NullBitmapBytes() returns a non-empty byte list
// with each bit representing the existence of an element
for i := 0; i < length; i++ {
bit := (bytes[uint(i)/8] & BitMask[byte(i)%8]) != 0
bools = append(bools, bit)
}
return bools
}
var (
BitMask = [8]byte{1, 2, 4, 8, 16, 32, 64, 128}
FlippedBitMask = [8]byte{254, 253, 251, 247, 239, 223, 191, 127}
)