milvus/cpp/src/core/unittest/utils.cpp
xiaojun.lin c2ab2bc092 MS-565 rename test->unittest and fix parameter autotune bug
Former-commit-id: 65392a505107e20491035d417940a66e67f82ef9
2019-09-29 10:13:57 +08:00

155 lines
4.6 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "unittest/utils.h"
#include <memory>
#include <string>
#include <utility>
INITIALIZE_EASYLOGGINGPP
namespace {
namespace kn = zilliz::knowhere;
} // namespace
void
InitLog() {
el::Configurations defaultConf;
defaultConf.setToDefault();
defaultConf.set(el::Level::Debug, el::ConfigurationType::Format, "[%thread-%datetime-%level]: %msg (%fbase:%line)");
el::Loggers::reconfigureLogger("default", defaultConf);
}
void
DataGen::Init_with_default() {
Generate(dim, nb, nq);
}
void
DataGen::Generate(const int& dim, const int& nb, const int& nq) {
this->nb = nb;
this->nq = nq;
this->dim = dim;
GenAll(dim, nb, xb, ids, nq, xq);
assert(xb.size() == (size_t)dim * nb);
assert(xq.size() == (size_t)dim * nq);
base_dataset = generate_dataset(nb, dim, xb.data(), ids.data());
query_dataset = generate_query_dataset(nq, dim, xq.data());
}
zilliz::knowhere::DatasetPtr
DataGen::GenQuery(const int& nq) {
xq.resize(nq * dim);
for (int i = 0; i < nq * dim; ++i) {
xq[i] = xb[i];
}
return generate_query_dataset(nq, dim, xq.data());
}
void
GenAll(const int64_t dim, const int64_t& nb, std::vector<float>& xb, std::vector<int64_t>& ids, const int64_t& nq,
std::vector<float>& xq) {
xb.resize(nb * dim);
xq.resize(nq * dim);
ids.resize(nb);
GenAll(dim, nb, xb.data(), ids.data(), nq, xq.data());
}
void
GenAll(const int64_t& dim, const int64_t& nb, float* xb, int64_t* ids, const int64_t& nq, float* xq) {
GenBase(dim, nb, xb, ids);
for (int64_t i = 0; i < nq * dim; ++i) {
xq[i] = xb[i];
}
}
void
GenBase(const int64_t& dim, const int64_t& nb, float* xb, int64_t* ids) {
for (auto i = 0; i < nb; ++i) {
for (auto j = 0; j < dim; ++j) {
// p_data[i * d + j] = float(base + i);
xb[i * dim + j] = drand48();
}
xb[dim * i] += i / 1000.;
ids[i] = i;
}
}
FileIOReader::FileIOReader(const std::string& fname) {
name = fname;
fs = std::fstream(name, std::ios::in | std::ios::binary);
}
FileIOReader::~FileIOReader() {
fs.close();
}
size_t
FileIOReader::operator()(void* ptr, size_t size) {
fs.read(reinterpret_cast<char*>(ptr), size);
return size;
}
FileIOWriter::FileIOWriter(const std::string& fname) {
name = fname;
fs = std::fstream(name, std::ios::out | std::ios::binary);
}
FileIOWriter::~FileIOWriter() {
fs.close();
}
size_t
FileIOWriter::operator()(void* ptr, size_t size) {
fs.write(reinterpret_cast<char*>(ptr), size);
return size;
}
kn::DatasetPtr
generate_dataset(int64_t nb, int64_t dim, float* xb, int64_t* ids) {
std::vector<int64_t> shape{nb, dim};
auto tensor = kn::ConstructFloatTensor((uint8_t*)xb, nb * dim * sizeof(float), shape);
std::vector<kn::TensorPtr> tensors{tensor};
std::vector<kn::FieldPtr> tensor_fields{kn::ConstructFloatField("data")};
auto tensor_schema = std::make_shared<kn::Schema>(tensor_fields);
auto id_array = kn::ConstructInt64Array((uint8_t*)ids, nb * sizeof(int64_t));
std::vector<kn::ArrayPtr> arrays{id_array};
std::vector<kn::FieldPtr> array_fields{kn::ConstructInt64Field("id")};
auto array_schema = std::make_shared<kn::Schema>(tensor_fields);
auto dataset = std::make_shared<kn::Dataset>(std::move(arrays), array_schema, std::move(tensors), tensor_schema);
return dataset;
}
kn::DatasetPtr
generate_query_dataset(int64_t nb, int64_t dim, float* xb) {
std::vector<int64_t> shape{nb, dim};
auto tensor = kn::ConstructFloatTensor((uint8_t*)xb, nb * dim * sizeof(float), shape);
std::vector<kn::TensorPtr> tensors{tensor};
std::vector<kn::FieldPtr> tensor_fields{kn::ConstructFloatField("data")};
auto tensor_schema = std::make_shared<kn::Schema>(tensor_fields);
auto dataset = std::make_shared<kn::Dataset>(std::move(tensors), tensor_schema);
return dataset;
}