mirror of
https://gitee.com/milvus-io/milvus.git
synced 2025-12-30 23:45:28 +08:00
155 lines
4.6 KiB
C++
155 lines
4.6 KiB
C++
// Licensed to the Apache Software Foundation (ASF) under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing,
|
|
// software distributed under the License is distributed on an
|
|
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the License for the
|
|
// specific language governing permissions and limitations
|
|
// under the License.
|
|
|
|
#include "unittest/utils.h"
|
|
|
|
#include <memory>
|
|
#include <string>
|
|
#include <utility>
|
|
|
|
INITIALIZE_EASYLOGGINGPP
|
|
|
|
namespace {
|
|
|
|
namespace kn = zilliz::knowhere;
|
|
|
|
} // namespace
|
|
|
|
void
|
|
InitLog() {
|
|
el::Configurations defaultConf;
|
|
defaultConf.setToDefault();
|
|
defaultConf.set(el::Level::Debug, el::ConfigurationType::Format, "[%thread-%datetime-%level]: %msg (%fbase:%line)");
|
|
el::Loggers::reconfigureLogger("default", defaultConf);
|
|
}
|
|
|
|
void
|
|
DataGen::Init_with_default() {
|
|
Generate(dim, nb, nq);
|
|
}
|
|
|
|
void
|
|
DataGen::Generate(const int& dim, const int& nb, const int& nq) {
|
|
this->nb = nb;
|
|
this->nq = nq;
|
|
this->dim = dim;
|
|
|
|
GenAll(dim, nb, xb, ids, nq, xq);
|
|
assert(xb.size() == (size_t)dim * nb);
|
|
assert(xq.size() == (size_t)dim * nq);
|
|
|
|
base_dataset = generate_dataset(nb, dim, xb.data(), ids.data());
|
|
query_dataset = generate_query_dataset(nq, dim, xq.data());
|
|
}
|
|
|
|
zilliz::knowhere::DatasetPtr
|
|
DataGen::GenQuery(const int& nq) {
|
|
xq.resize(nq * dim);
|
|
for (int i = 0; i < nq * dim; ++i) {
|
|
xq[i] = xb[i];
|
|
}
|
|
return generate_query_dataset(nq, dim, xq.data());
|
|
}
|
|
|
|
void
|
|
GenAll(const int64_t dim, const int64_t& nb, std::vector<float>& xb, std::vector<int64_t>& ids, const int64_t& nq,
|
|
std::vector<float>& xq) {
|
|
xb.resize(nb * dim);
|
|
xq.resize(nq * dim);
|
|
ids.resize(nb);
|
|
GenAll(dim, nb, xb.data(), ids.data(), nq, xq.data());
|
|
}
|
|
|
|
void
|
|
GenAll(const int64_t& dim, const int64_t& nb, float* xb, int64_t* ids, const int64_t& nq, float* xq) {
|
|
GenBase(dim, nb, xb, ids);
|
|
for (int64_t i = 0; i < nq * dim; ++i) {
|
|
xq[i] = xb[i];
|
|
}
|
|
}
|
|
|
|
void
|
|
GenBase(const int64_t& dim, const int64_t& nb, float* xb, int64_t* ids) {
|
|
for (auto i = 0; i < nb; ++i) {
|
|
for (auto j = 0; j < dim; ++j) {
|
|
// p_data[i * d + j] = float(base + i);
|
|
xb[i * dim + j] = drand48();
|
|
}
|
|
xb[dim * i] += i / 1000.;
|
|
ids[i] = i;
|
|
}
|
|
}
|
|
|
|
FileIOReader::FileIOReader(const std::string& fname) {
|
|
name = fname;
|
|
fs = std::fstream(name, std::ios::in | std::ios::binary);
|
|
}
|
|
|
|
FileIOReader::~FileIOReader() {
|
|
fs.close();
|
|
}
|
|
|
|
size_t
|
|
FileIOReader::operator()(void* ptr, size_t size) {
|
|
fs.read(reinterpret_cast<char*>(ptr), size);
|
|
return size;
|
|
}
|
|
|
|
FileIOWriter::FileIOWriter(const std::string& fname) {
|
|
name = fname;
|
|
fs = std::fstream(name, std::ios::out | std::ios::binary);
|
|
}
|
|
|
|
FileIOWriter::~FileIOWriter() {
|
|
fs.close();
|
|
}
|
|
|
|
size_t
|
|
FileIOWriter::operator()(void* ptr, size_t size) {
|
|
fs.write(reinterpret_cast<char*>(ptr), size);
|
|
return size;
|
|
}
|
|
|
|
kn::DatasetPtr
|
|
generate_dataset(int64_t nb, int64_t dim, float* xb, int64_t* ids) {
|
|
std::vector<int64_t> shape{nb, dim};
|
|
auto tensor = kn::ConstructFloatTensor((uint8_t*)xb, nb * dim * sizeof(float), shape);
|
|
std::vector<kn::TensorPtr> tensors{tensor};
|
|
std::vector<kn::FieldPtr> tensor_fields{kn::ConstructFloatField("data")};
|
|
auto tensor_schema = std::make_shared<kn::Schema>(tensor_fields);
|
|
|
|
auto id_array = kn::ConstructInt64Array((uint8_t*)ids, nb * sizeof(int64_t));
|
|
std::vector<kn::ArrayPtr> arrays{id_array};
|
|
std::vector<kn::FieldPtr> array_fields{kn::ConstructInt64Field("id")};
|
|
auto array_schema = std::make_shared<kn::Schema>(tensor_fields);
|
|
|
|
auto dataset = std::make_shared<kn::Dataset>(std::move(arrays), array_schema, std::move(tensors), tensor_schema);
|
|
return dataset;
|
|
}
|
|
|
|
kn::DatasetPtr
|
|
generate_query_dataset(int64_t nb, int64_t dim, float* xb) {
|
|
std::vector<int64_t> shape{nb, dim};
|
|
auto tensor = kn::ConstructFloatTensor((uint8_t*)xb, nb * dim * sizeof(float), shape);
|
|
std::vector<kn::TensorPtr> tensors{tensor};
|
|
std::vector<kn::FieldPtr> tensor_fields{kn::ConstructFloatField("data")};
|
|
auto tensor_schema = std::make_shared<kn::Schema>(tensor_fields);
|
|
|
|
auto dataset = std::make_shared<kn::Dataset>(std::move(tensors), tensor_schema);
|
|
return dataset;
|
|
}
|