2019-11-05 13:35:24 +08:00

151 lines
5.1 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <faiss/IndexFlat.h>
#include <gtest/gtest.h>
#include <string>
#include "utils/CommonUtil.h"
#include "wrapper/utils.h"
namespace {
static const char* CONFIG_STR =
"# All the following configurations are default values.\n"
"\n"
"server_config:\n"
" address: 0.0.0.0 # milvus server ip address (IPv4)\n"
" port: 19530 # port range: 1025 ~ 65534\n"
" deploy_mode: single \n"
" time_zone: UTC+8\n"
"\n"
"db_config:\n"
" primary_path: /tmp/milvus # path used to store data and meta\n"
" secondary_path: # path used to store data only, split by semicolon\n"
"\n"
" backend_url: sqlite://:@:/ # URI format: dialect://username:password@host:port/database\n"
" \n"
" # Replace 'dialect' with 'mysql' or 'sqlite'\n"
"\n"
" insert_buffer_size: 4 # GB, maximum insert buffer size allowed\n"
"\n"
"metric_config:\n"
" enable_monitor: false # enable monitoring or not\n"
" collector: prometheus # prometheus\n"
" prometheus_config:\n"
" port: 8080 # port prometheus used to fetch metrics\n"
"\n"
"cache_config:\n"
" cpu_mem_capacity: 16 # GB, CPU memory used for cache\n"
" cpu_mem_threshold: 0.85 # percentage of data kept when cache cleanup triggered\n"
" cache_insert_data: false # whether load inserted data into cache\n"
"\n"
"engine_config:\n"
" blas_threshold: 20\n"
"\n"
"resource_config:\n"
#ifdef MILVUS_CPU_VERSION
" search_resources:\n"
" - cpu\n"
" index_build_device: cpu # CPU used for building index";
#else
" search_resources:\n"
" - gpu0\n"
" index_build_device: gpu0 # GPU used for building index";
#endif
void
WriteToFile(const std::string& file_path, const char* content) {
std::fstream fs(file_path.c_str(), std::ios_base::out);
// write data to file
fs << content;
fs.close();
}
} // namespace
void
KnowhereTest::SetUp() {
std::string config_path(CONFIG_PATH);
milvus::server::CommonUtil::CreateDirectory(config_path);
WriteToFile(config_path + CONFIG_FILE, CONFIG_STR);
}
void
KnowhereTest::TearDown() {
std::string config_path(CONFIG_PATH);
milvus::server::CommonUtil::DeleteDirectory(config_path);
}
void
DataGenBase::GenData(const int& dim, const int& nb, const int& nq, float* xb, float* xq, int64_t* ids, const int& k,
int64_t* gt_ids, float* gt_dis) {
for (auto i = 0; i < nb; ++i) {
for (auto j = 0; j < dim; ++j) {
// p_data[i * d + j] = float(base + i);
xb[i * dim + j] = drand48();
}
xb[dim * i] += i / 1000.;
ids[i] = i;
}
for (size_t i = 0; i < nq * dim; ++i) {
xq[i] = xb[i];
}
faiss::IndexFlatL2 index(dim);
// index.add_with_ids(nb, xb, ids);
index.add(nb, xb);
index.search(nq, xq, k, gt_dis, gt_ids);
}
void
DataGenBase::GenData(const int& dim, const int& nb, const int& nq, std::vector<float>& xb, std::vector<float>& xq,
std::vector<int64_t>& ids, const int& k, std::vector<int64_t>& gt_ids,
std::vector<float>& gt_dis) {
xb.resize(nb * dim);
xq.resize(nq * dim);
ids.resize(nb);
gt_ids.resize(nq * k);
gt_dis.resize(nq * k);
GenData(dim, nb, nq, xb.data(), xq.data(), ids.data(), k, gt_ids.data(), gt_dis.data());
}
void
DataGenBase::AssertResult(const std::vector<int64_t>& ids, const std::vector<float>& dis) {
EXPECT_EQ(ids.size(), nq * k);
EXPECT_EQ(dis.size(), nq * k);
for (auto i = 0; i < nq; i++) {
EXPECT_EQ(ids[i * k], gt_ids[i * k]);
// EXPECT_EQ(dis[i * k], gt_dis[i * k]);
}
int match = 0;
for (int i = 0; i < nq; ++i) {
for (int j = 0; j < k; ++j) {
for (int l = 0; l < k; ++l) {
if (ids[i * nq + j] == gt_ids[i * nq + l])
match++;
}
}
}
auto precision = float(match) / (nq * k);
EXPECT_GT(precision, 0.5);
std::cout << std::endl << "Precision: " << precision << ", match: " << match << ", total: " << nq * k << std::endl;
}