mirror of
https://gitee.com/milvus-io/milvus.git
synced 2026-01-02 00:45:30 +08:00
351 lines
12 KiB
C++
351 lines
12 KiB
C++
/*******************************************************************************
|
|
* Copyright 上海赜睿信息科技有限公司(Zilliz) - All Rights Reserved
|
|
* Unauthorized copying of this file, via any medium is strictly prohibited.
|
|
* Proprietary and confidential.
|
|
******************************************************************************/
|
|
|
|
#include "src/metrics/Metrics.h"
|
|
#include "src/utils/TimeRecorder.h"
|
|
#include "src/db/engine/EngineFactory.h"
|
|
#include "src/db/Log.h"
|
|
#include "SearchTask.h"
|
|
|
|
#include <thread>
|
|
|
|
|
|
namespace zilliz {
|
|
namespace milvus {
|
|
namespace engine {
|
|
|
|
static constexpr size_t PARALLEL_REDUCE_THRESHOLD = 10000;
|
|
static constexpr size_t PARALLEL_REDUCE_BATCH = 1000;
|
|
|
|
bool
|
|
NeedParallelReduce(uint64_t nq, uint64_t topk) {
|
|
server::ServerConfig &config = server::ServerConfig::GetInstance();
|
|
server::ConfigNode &db_config = config.GetConfig(server::CONFIG_DB);
|
|
bool need_parallel = db_config.GetBoolValue(server::CONFIG_DB_PARALLEL_REDUCE, false);
|
|
if (!need_parallel) {
|
|
return false;
|
|
}
|
|
|
|
return nq * topk >= PARALLEL_REDUCE_THRESHOLD;
|
|
}
|
|
|
|
void
|
|
ParallelReduce(std::function<void(size_t, size_t)> &reduce_function, size_t max_index) {
|
|
size_t reduce_batch = PARALLEL_REDUCE_BATCH;
|
|
|
|
auto thread_count = std::thread::hardware_concurrency() - 1; //not all core do this work
|
|
if (thread_count > 0) {
|
|
reduce_batch = max_index / thread_count + 1;
|
|
}
|
|
ENGINE_LOG_DEBUG << "use " << thread_count <<
|
|
" thread parallelly do reduce, each thread process " << reduce_batch << " vectors";
|
|
|
|
std::vector<std::shared_ptr<std::thread> > thread_array;
|
|
size_t from_index = 0;
|
|
while (from_index < max_index) {
|
|
size_t to_index = from_index + reduce_batch;
|
|
if (to_index > max_index) {
|
|
to_index = max_index;
|
|
}
|
|
|
|
auto reduce_thread = std::make_shared<std::thread>(reduce_function, from_index, to_index);
|
|
thread_array.push_back(reduce_thread);
|
|
|
|
from_index = to_index;
|
|
}
|
|
|
|
for (auto &thread_ptr : thread_array) {
|
|
thread_ptr->join();
|
|
}
|
|
}
|
|
|
|
void
|
|
CollectFileMetrics(int file_type, size_t file_size) {
|
|
switch (file_type) {
|
|
case meta::TableFileSchema::RAW:
|
|
case meta::TableFileSchema::TO_INDEX: {
|
|
server::Metrics::GetInstance().RawFileSizeHistogramObserve(file_size);
|
|
server::Metrics::GetInstance().RawFileSizeTotalIncrement(file_size);
|
|
server::Metrics::GetInstance().RawFileSizeGaugeSet(file_size);
|
|
break;
|
|
}
|
|
default: {
|
|
server::Metrics::GetInstance().IndexFileSizeHistogramObserve(file_size);
|
|
server::Metrics::GetInstance().IndexFileSizeTotalIncrement(file_size);
|
|
server::Metrics::GetInstance().IndexFileSizeGaugeSet(file_size);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
XSearchTask::XSearchTask(TableFileSchemaPtr file) : file_(file) {
|
|
index_engine_ = EngineFactory::Build(file_->dimension_,
|
|
file_->location_,
|
|
(EngineType) file_->engine_type_);
|
|
}
|
|
|
|
void
|
|
XSearchTask::Load(LoadType type, uint8_t device_id) {
|
|
server::TimeRecorder rc("");
|
|
|
|
try {
|
|
if (type == LoadType::DISK2CPU) {
|
|
index_engine_->Load();
|
|
} else if (type == LoadType::CPU2GPU) {
|
|
index_engine_->CopyToGpu(device_id);
|
|
} else if (type == LoadType::GPU2CPU) {
|
|
index_engine_->CopyToCpu();
|
|
} else {
|
|
// TODO: exception
|
|
}
|
|
} catch (std::exception &ex) {
|
|
//typical error: out of disk space or permition denied
|
|
std::string msg = "Failed to load index file: " + std::string(ex.what());
|
|
ENGINE_LOG_ERROR << msg;
|
|
|
|
for (auto &context : search_contexts_) {
|
|
context->IndexSearchDone(file_->id_);//mark as done avoid dead lock, even failed
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
size_t file_size = index_engine_->PhysicalSize();
|
|
|
|
std::string info = "Load file id:" + std::to_string(file_->id_) + " file type:" + std::to_string(file_->file_type_)
|
|
+ " size:" + std::to_string(file_size) + " bytes from location: " + file_->location_ + " totally cost";
|
|
double span = rc.ElapseFromBegin(info);
|
|
for (auto &context : search_contexts_) {
|
|
context->AccumLoadCost(span);
|
|
}
|
|
|
|
CollectFileMetrics(file_->file_type_, file_size);
|
|
|
|
//step 2: return search task for later execution
|
|
index_id_ = file_->id_;
|
|
index_type_ = file_->file_type_;
|
|
search_contexts_.swap(search_contexts_);
|
|
}
|
|
|
|
void
|
|
XSearchTask::Execute() {
|
|
if (index_engine_ == nullptr) {
|
|
return;
|
|
}
|
|
|
|
ENGINE_LOG_DEBUG << "Searching in file id:" << index_id_ << " with "
|
|
<< search_contexts_.size() << " tasks";
|
|
|
|
server::TimeRecorder rc("DoSearch file id:" + std::to_string(index_id_));
|
|
|
|
server::CollectDurationMetrics metrics(index_type_);
|
|
|
|
std::vector<long> output_ids;
|
|
std::vector<float> output_distence;
|
|
for (auto &context : search_contexts_) {
|
|
//step 1: allocate memory
|
|
auto inner_k = context->topk();
|
|
auto nprobe = context->nprobe();
|
|
output_ids.resize(inner_k * context->nq());
|
|
output_distence.resize(inner_k * context->nq());
|
|
|
|
try {
|
|
//step 2: search
|
|
index_engine_->Search(context->nq(), context->vectors(), inner_k, nprobe, output_distence.data(),
|
|
output_ids.data());
|
|
|
|
double span = rc.RecordSection("do search for context:" + context->Identity());
|
|
context->AccumSearchCost(span);
|
|
|
|
//step 3: cluster result
|
|
SearchContext::ResultSet result_set;
|
|
auto spec_k = index_engine_->Count() < context->topk() ? index_engine_->Count() : context->topk();
|
|
XSearchTask::ClusterResult(output_ids, output_distence, context->nq(), spec_k, result_set);
|
|
|
|
span = rc.RecordSection("cluster result for context:" + context->Identity());
|
|
context->AccumReduceCost(span);
|
|
|
|
//step 4: pick up topk result
|
|
XSearchTask::TopkResult(result_set, inner_k, metric_l2, context->GetResult());
|
|
|
|
span = rc.RecordSection("reduce topk for context:" + context->Identity());
|
|
context->AccumReduceCost(span);
|
|
|
|
} catch (std::exception &ex) {
|
|
ENGINE_LOG_ERROR << "SearchTask encounter exception: " << ex.what();
|
|
context->IndexSearchDone(index_id_);//mark as done avoid dead lock, even search failed
|
|
continue;
|
|
}
|
|
|
|
//step 5: notify to send result to client
|
|
context->IndexSearchDone(index_id_);
|
|
}
|
|
|
|
rc.ElapseFromBegin("totally cost");
|
|
|
|
// release index in resource
|
|
index_engine_ = nullptr;
|
|
}
|
|
|
|
TaskPtr
|
|
XSearchTask::Clone() {
|
|
auto ret = std::make_shared<XSearchTask>(file_);
|
|
ret->index_id_ = index_id_;
|
|
ret->index_engine_ = index_engine_->Clone();
|
|
ret->search_contexts_ = search_contexts_;
|
|
ret->metric_l2 = metric_l2;
|
|
return ret;
|
|
}
|
|
|
|
Status XSearchTask::ClusterResult(const std::vector<long> &output_ids,
|
|
const std::vector<float> &output_distence,
|
|
uint64_t nq,
|
|
uint64_t topk,
|
|
SearchContext::ResultSet &result_set) {
|
|
if (output_ids.size() < nq * topk || output_distence.size() < nq * topk) {
|
|
std::string msg = "Invalid id array size: " + std::to_string(output_ids.size()) +
|
|
" distance array size: " + std::to_string(output_distence.size());
|
|
ENGINE_LOG_ERROR << msg;
|
|
return Status::Error(msg);
|
|
}
|
|
|
|
result_set.clear();
|
|
result_set.resize(nq);
|
|
|
|
std::function<void(size_t, size_t)> reduce_worker = [&](size_t from_index, size_t to_index) {
|
|
for (auto i = from_index; i < to_index; i++) {
|
|
SearchContext::Id2DistanceMap id_distance;
|
|
id_distance.reserve(topk);
|
|
for (auto k = 0; k < topk; k++) {
|
|
uint64_t index = i * topk + k;
|
|
if (output_ids[index] < 0) {
|
|
continue;
|
|
}
|
|
id_distance.push_back(std::make_pair(output_ids[index], output_distence[index]));
|
|
}
|
|
result_set[i] = id_distance;
|
|
}
|
|
};
|
|
|
|
if (NeedParallelReduce(nq, topk)) {
|
|
ParallelReduce(reduce_worker, nq);
|
|
} else {
|
|
reduce_worker(0, nq);
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
Status XSearchTask::MergeResult(SearchContext::Id2DistanceMap &distance_src,
|
|
SearchContext::Id2DistanceMap &distance_target,
|
|
uint64_t topk,
|
|
bool ascending) {
|
|
//Note: the score_src and score_target are already arranged by score in ascending order
|
|
if (distance_src.empty()) {
|
|
ENGINE_LOG_WARNING << "Empty distance source array";
|
|
return Status::OK();
|
|
}
|
|
|
|
if (distance_target.empty()) {
|
|
distance_target.swap(distance_src);
|
|
return Status::OK();
|
|
}
|
|
|
|
size_t src_count = distance_src.size();
|
|
size_t target_count = distance_target.size();
|
|
SearchContext::Id2DistanceMap distance_merged;
|
|
distance_merged.reserve(topk);
|
|
size_t src_index = 0, target_index = 0;
|
|
while (true) {
|
|
//all score_src items are merged, if score_merged.size() still less than topk
|
|
//move items from score_target to score_merged until score_merged.size() equal topk
|
|
if (src_index >= src_count) {
|
|
for (size_t i = target_index; i < target_count && distance_merged.size() < topk; ++i) {
|
|
distance_merged.push_back(distance_target[i]);
|
|
}
|
|
break;
|
|
}
|
|
|
|
//all score_target items are merged, if score_merged.size() still less than topk
|
|
//move items from score_src to score_merged until score_merged.size() equal topk
|
|
if (target_index >= target_count) {
|
|
for (size_t i = src_index; i < src_count && distance_merged.size() < topk; ++i) {
|
|
distance_merged.push_back(distance_src[i]);
|
|
}
|
|
break;
|
|
}
|
|
|
|
//compare score,
|
|
// if ascending = true, put smallest score to score_merged one by one
|
|
// else, put largest score to score_merged one by one
|
|
auto &src_pair = distance_src[src_index];
|
|
auto &target_pair = distance_target[target_index];
|
|
if (ascending) {
|
|
if (src_pair.second > target_pair.second) {
|
|
distance_merged.push_back(target_pair);
|
|
target_index++;
|
|
} else {
|
|
distance_merged.push_back(src_pair);
|
|
src_index++;
|
|
}
|
|
} else {
|
|
if (src_pair.second < target_pair.second) {
|
|
distance_merged.push_back(target_pair);
|
|
target_index++;
|
|
} else {
|
|
distance_merged.push_back(src_pair);
|
|
src_index++;
|
|
}
|
|
}
|
|
|
|
//score_merged.size() already equal topk
|
|
if (distance_merged.size() >= topk) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
distance_target.swap(distance_merged);
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
Status XSearchTask::TopkResult(SearchContext::ResultSet &result_src,
|
|
uint64_t topk,
|
|
bool ascending,
|
|
SearchContext::ResultSet &result_target) {
|
|
if (result_target.empty()) {
|
|
result_target.swap(result_src);
|
|
return Status::OK();
|
|
}
|
|
|
|
if (result_src.size() != result_target.size()) {
|
|
std::string msg = "Invalid result set size";
|
|
ENGINE_LOG_ERROR << msg;
|
|
return Status::Error(msg);
|
|
}
|
|
|
|
std::function<void(size_t, size_t)> ReduceWorker = [&](size_t from_index, size_t to_index) {
|
|
for (size_t i = from_index; i < to_index; i++) {
|
|
SearchContext::Id2DistanceMap &score_src = result_src[i];
|
|
SearchContext::Id2DistanceMap &score_target = result_target[i];
|
|
XSearchTask::MergeResult(score_src, score_target, topk, ascending);
|
|
}
|
|
};
|
|
|
|
if (NeedParallelReduce(result_src.size(), topk)) {
|
|
ParallelReduce(ReduceWorker, result_src.size());
|
|
} else {
|
|
ReduceWorker(0, result_src.size());
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
|
|
}
|
|
}
|
|
}
|