milvus/internal/util/importutilv2/parquet/field_reader_test.go
marcelo-cjl 3c2cf2c066
feat: Add nullable vector support in import utility layer (#46142)
related: #45993 

Add nullable vector support in import utility layer
    
Key changes:

ImportV2 util:
- Add nullable vector types (FloatVector, Float16Vector, BFloat16Vector,
BinaryVector, SparseFloatVector, Int8Vector) to
AppendNullableDefaultFieldsData()
- Add tests for nullable vector field data appending

CSV/JSON/Numpy readers:
- Add nullPercent parameter to test data generation for better null
coverage
- Mark vector fields as nullable in test schemas
- Add test cases for nullable vector field parsing
- Refactor tests to use loop-based approach with 0%, 50%, 100% null
percentages

Parquet field reader:
- Add ReadNullableBinaryData() for nullable
BinaryVector/Float16Vector/BFloat16Vector
- Add ReadNullableFloatVectorData() for nullable FloatVector
- Add ReadNullableSparseFloatVectorData() for nullable SparseFloatVector
- Add ReadNullableInt8VectorData() for nullable Int8Vector
- Add ReadNullableStructData() for generic nullable struct data
- Update Next() to use nullable read methods when field is nullable
- Add null data validation for non-nullable fields

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
- Core invariant: import must preserve per-row alignment and validity
for every field — nullable vector fields are expected to be encoded with
per-row validity masks and all readers/writers must emit arrays aligned
to original input rows (null entries represented explicitly).
- New feature & scope: adds end-to-end nullable-vector support in the
import utility layer — AppendNullableDefaultFieldsData in
internal/datanode/importv2/util.go now appends nil placeholders for
nullable vectors (FloatVector, Float16Vector, BFloat16Vector,
BinaryVector, SparseFloatVector, Int8Vector); parquet reader
(internal/util/importutilv2/parquet/field_reader.go) adds
ReadNullableBinaryData, ReadNullableFloatVectorData,
ReadNullableSparseFloatVectorData, ReadNullableInt8VectorData,
ReadNullableStructData and routes nullable branches to these helpers;
CSV/JSON/Numpy readers and test utilities updated to generate and
validate 0/50/100% null scenarios and mark vector fields as nullable in
test schemas.
- Logic removed / simplified: eliminates ad-hoc "parameter-invalid"
rejections for nullable vectors inside FieldReader.Next by centralizing
nullable handling into ReadNullable* helpers and shared validators
(getArrayDataNullable,
checkNullableVectorAlignWithDim/checkNullableVectorAligned), simplifying
control flow and removing scattered special-case checks.
- No data loss / no regression (concrete code paths): nulls are
preserved end-to-end — AppendNullableDefaultFieldsData explicitly
inserts nil entries per null row (datanode import append path);
ReadNullable*Data helpers return both data and []bool validity masks so
callers in field_reader.go and downstream readers receive exact per-row
validity; testutil.BuildSparseVectorData was extended to accept
validData so sparse vectors are materialized only for valid rows while
null rows are represented as missing. These concrete paths ensure null
rows are represented rather than dropped, preventing data loss or
behavioral regression.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

Signed-off-by: marcelo-cjl <marcelo.chen@zilliz.com>
2025-12-29 10:51:21 +08:00

855 lines
27 KiB
Go

package parquet
import (
"context"
"fmt"
"math/rand"
"os"
"strings"
"testing"
"github.com/apache/arrow/go/v17/arrow"
"github.com/apache/arrow/go/v17/arrow/array"
"github.com/apache/arrow/go/v17/arrow/memory"
"github.com/apache/arrow/go/v17/parquet"
"github.com/apache/arrow/go/v17/parquet/file"
"github.com/apache/arrow/go/v17/parquet/pqarrow"
"github.com/stretchr/testify/assert"
"github.com/milvus-io/milvus-proto/go-api/v2/commonpb"
"github.com/milvus-io/milvus-proto/go-api/v2/schemapb"
"github.com/milvus-io/milvus/internal/storage"
"github.com/milvus-io/milvus/internal/util/testutil"
"github.com/milvus-io/milvus/pkg/v2/common"
"github.com/milvus-io/milvus/pkg/v2/objectstorage"
"github.com/milvus-io/milvus/pkg/v2/util/paramtable"
"github.com/milvus-io/milvus/pkg/v2/util/typeutil"
)
func init() {
paramtable.Init()
}
func TestInvalidUTF8(t *testing.T) {
const (
fieldID = int64(100)
numRows = 100
)
schema := &schemapb.CollectionSchema{
Fields: []*schemapb.FieldSchema{
{
FieldID: fieldID,
Name: "str",
DataType: schemapb.DataType_VarChar,
TypeParams: []*commonpb.KeyValuePair{{Key: "max_length", Value: "256"}},
},
},
}
data := make([]string, numRows)
for i := 0; i < numRows-1; i++ {
data[i] = randomString(16)
}
data[numRows-1] = "\xc3\x28" // invalid utf-8
filePath := fmt.Sprintf("/tmp/test_%d_reader.parquet", rand.Int())
defer os.Remove(filePath)
wf, err := os.OpenFile(filePath, os.O_RDWR|os.O_CREATE, 0o666)
assert.NoError(t, err)
pqSchema, err := ConvertToArrowSchemaForUT(schema, false)
assert.NoError(t, err)
fw, err := pqarrow.NewFileWriter(pqSchema, wf,
parquet.NewWriterProperties(parquet.WithMaxRowGroupLength(numRows)), pqarrow.DefaultWriterProps())
assert.NoError(t, err)
insertData, err := storage.NewInsertData(schema)
assert.NoError(t, err)
err = insertData.Data[fieldID].AppendDataRows(data)
assert.NoError(t, err)
columns, err := testutil.BuildArrayData(schema, insertData, false)
assert.NoError(t, err)
recordBatch := array.NewRecord(pqSchema, columns, numRows)
err = fw.Write(recordBatch)
assert.NoError(t, err)
fw.Close()
ctx := context.Background()
f := storage.NewChunkManagerFactory("local", objectstorage.RootPath(testOutputPath))
cm, err := f.NewPersistentStorageChunkManager(ctx)
assert.NoError(t, err)
reader, err := NewReader(ctx, cm, schema, filePath, 64*1024*1024)
assert.NoError(t, err)
_, err = reader.Read()
assert.Error(t, err)
assert.True(t, strings.Contains(err.Error(), "contains invalid UTF-8 data"))
}
// TestParseSparseFloatRowVector tests the parseSparseFloatRowVector function
func TestParseSparseFloatRowVector(t *testing.T) {
tests := []struct {
name string
input string
wantMaxIdx uint32
wantErrMsg string
}{
{
name: "empty sparse vector",
input: "{}",
wantMaxIdx: 0,
},
{
name: "key-value format",
input: "{\"275574541\":1.5383775}",
wantMaxIdx: 275574542, // max index 275574541 + 1
},
{
name: "multiple key-value pairs",
input: "{\"1\":0.5,\"10\":1.5,\"100\":2.5}",
wantMaxIdx: 101, // max index 100 + 1
},
{
name: "invalid format - missing braces",
input: "\"275574541\":1.5383775",
wantErrMsg: "Invalid JSON string for SparseFloatVector",
},
{
name: "invalid JSON format",
input: "{275574541:1.5383775}",
wantErrMsg: "Invalid JSON string for SparseFloatVector",
},
{
name: "malformed JSON",
input: "{\"key\": value}",
wantErrMsg: "Invalid JSON string for SparseFloatVector",
},
{
name: "non-numeric index",
input: "{\"abc\":1.5}",
wantErrMsg: "Invalid JSON string for SparseFloatVector",
},
{
name: "non-numeric value",
input: "{\"123\":\"abc\"}",
wantErrMsg: "Invalid JSON string for SparseFloatVector",
},
{
name: "negative index",
input: "{\"-1\":1.5}",
wantErrMsg: "Invalid JSON string for SparseFloatVector",
},
}
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
rowVec, maxIdx, err := parseSparseFloatRowVector(tt.input)
if tt.wantErrMsg != "" {
assert.Error(t, err)
assert.Contains(t, err.Error(), tt.wantErrMsg)
return
}
assert.NoError(t, err)
assert.Equal(t, tt.wantMaxIdx, maxIdx)
// Verify the rowVec is properly formatted
if maxIdx > 0 {
elemCount := len(rowVec) / 8
assert.Greater(t, elemCount, 0)
// Check the last index matches our expectation
lastIdx := typeutil.SparseFloatRowIndexAt(rowVec, elemCount-1)
assert.Equal(t, tt.wantMaxIdx-1, lastIdx)
} else {
assert.Empty(t, rowVec)
}
})
}
}
func TestParseSparseFloatVectorStructs(t *testing.T) {
mem := memory.NewGoAllocator()
checkFunc := func(indices arrow.Array, values arrow.Array, expectSucceed bool) ([][]byte, uint32) {
st := make(map[string]arrow.Array)
if indices != nil {
st[sparseVectorIndice] = indices
}
if values != nil {
st[sparseVectorValues] = values
}
structs := make([]map[string]arrow.Array, 0)
structs = append(structs, st)
byteArr, maxDim, err := parseSparseFloatVectorStructs(structs)
if expectSucceed {
assert.NoError(t, err)
} else {
assert.Error(t, err)
}
return byteArr, maxDim
}
genInt32Arr := func(len int) *array.Int32 {
builder := array.NewInt32Builder(mem)
data := make([]int32, 0)
validData := make([]bool, 0)
for i := 0; i < len; i++ {
data = append(data, (int32)(i))
validData = append(validData, i%2 == 0)
}
builder.AppendValues(data, validData)
return builder.NewInt32Array()
}
genFloat32Arr := func(len int) *array.Float32 {
builder := array.NewFloat32Builder(mem)
data := make([]float32, 0)
validData := make([]bool, 0)
for i := 0; i < len; i++ {
data = append(data, (float32)(i))
validData = append(validData, i%2 == 0)
}
builder.AppendValues(data, validData)
return builder.NewFloat32Array()
}
genInt32ArrList := func(arr []uint32) *array.List {
builder := array.NewListBuilder(mem, &arrow.Int32Type{})
builder.Append(true)
for _, v := range arr {
builder.ValueBuilder().(*array.Int32Builder).Append((int32)(v))
}
return builder.NewListArray()
}
genUint32ArrList := func(arr []uint32) *array.List {
builder := array.NewListBuilder(mem, &arrow.Uint32Type{})
if arr != nil {
builder.Append(true)
for _, v := range arr {
builder.ValueBuilder().(*array.Uint32Builder).Append(v)
}
}
return builder.NewListArray()
}
genInt64ArrList := func(arr []uint32) *array.List {
builder := array.NewListBuilder(mem, &arrow.Int64Type{})
if arr != nil {
builder.Append(true)
for _, v := range arr {
builder.ValueBuilder().(*array.Int64Builder).Append((int64)(v))
}
}
return builder.NewListArray()
}
genUint64ArrList := func(arr []uint32) *array.List {
builder := array.NewListBuilder(mem, &arrow.Uint64Type{})
if arr != nil {
builder.Append(true)
for _, v := range arr {
builder.ValueBuilder().(*array.Uint64Builder).Append((uint64)(v))
}
}
return builder.NewListArray()
}
genFloat32ArrList := func(arr []float32) *array.List {
builder := array.NewListBuilder(mem, &arrow.Float32Type{})
if arr != nil {
builder.Append(true)
for _, v := range arr {
builder.ValueBuilder().(*array.Float32Builder).Append(v)
}
}
return builder.NewListArray()
}
genFloat64ArrList := func(arr []float32) *array.List {
builder := array.NewListBuilder(mem, &arrow.Float64Type{})
if arr != nil {
builder.Append(true)
for _, v := range arr {
builder.ValueBuilder().(*array.Float64Builder).Append((float64)(v))
}
}
return builder.NewListArray()
}
// idices field missed
checkFunc(nil, genFloat32ArrList([]float32{0.1}), false)
// values field missed
checkFunc(genUint32ArrList([]uint32{1, 2}), nil, false)
// indices is not array.List
checkFunc(genInt32Arr(2), genFloat32ArrList([]float32{0.1, 0.2}), false)
// values is not array.List
checkFunc(genUint32ArrList([]uint32{1, 2}), genFloat32Arr(2), false)
// indices is not list of int32/uint32/int64/uint64 array
checkFunc(genFloat32ArrList([]float32{0.1, 0.2, 0.3}), genFloat32ArrList([]float32{0.1, 0.2, 0.3}), false)
// values is not list of float32/float64 array
checkFunc(genUint32ArrList([]uint32{1, 2, 3}), genUint32ArrList([]uint32{1, 2, 3}), false)
// row number of indices and values are different
checkFunc(genUint32ArrList([]uint32{1, 2}), genFloat32ArrList(nil), false)
// element number of indices and values are different
checkFunc(genUint32ArrList([]uint32{1, 2}), genFloat32ArrList([]float32{0.1}), false)
// duplicated indices
checkFunc(genUint32ArrList([]uint32{4, 5, 4}), genFloat32ArrList([]float32{0.11, 0.22, 0.23}), false)
// check result is correct
// can handle empty indices/values
byteArr, maxDim := checkFunc(genUint32ArrList([]uint32{}), genFloat32ArrList([]float32{}), true)
assert.Equal(t, uint32(0), maxDim)
assert.Equal(t, 1, len(byteArr))
assert.Equal(t, 0, len(byteArr[0]))
// note that the input indices is not sorted, the parseSparseFloatVectorStructs
// returns correct maxDim and byteArr
indices := []uint32{25, 78, 56}
values := []float32{0.11, 0.22, 0.23}
sortedIndices, sortedValues := typeutil.SortSparseFloatRow(indices, values)
rowBytes := typeutil.CreateSparseFloatRow(sortedIndices, sortedValues)
isValidFunc := func(indices arrow.Array, values arrow.Array) {
byteArr, maxDim := checkFunc(indices, values, true)
assert.Equal(t, uint32(78), maxDim)
assert.Equal(t, 1, len(byteArr))
assert.Equal(t, rowBytes, byteArr[0])
}
// ensure all supported types are correct
isValidFunc(genUint32ArrList(indices), genFloat32ArrList(values))
isValidFunc(genUint32ArrList(indices), genFloat64ArrList(values))
isValidFunc(genInt32ArrList(indices), genFloat32ArrList(values))
isValidFunc(genInt32ArrList(indices), genFloat64ArrList(values))
isValidFunc(genUint64ArrList(indices), genFloat32ArrList(values))
isValidFunc(genUint64ArrList(indices), genFloat64ArrList(values))
isValidFunc(genInt64ArrList(indices), genFloat32ArrList(values))
isValidFunc(genInt64ArrList(indices), genFloat64ArrList(values))
}
func TestReadFieldData(t *testing.T) {
checkFunc := func(t *testing.T, nullPercent int, readScehamIsNullable bool, dataType schemapb.DataType, elementType schemapb.DataType) {
fieldName := dataType.String()
if elementType != schemapb.DataType_None {
fieldName = fieldName + "_" + elementType.String()
}
schema := &schemapb.CollectionSchema{
Fields: []*schemapb.FieldSchema{
{
FieldID: 100,
Name: fieldName,
DataType: dataType,
ElementType: elementType,
Nullable: nullPercent != 0,
TypeParams: []*commonpb.KeyValuePair{
{
Key: "dim",
Value: "16",
},
{
Key: "max_length",
Value: "1000",
},
{
Key: "max_capacity",
Value: "50",
},
},
},
},
}
arrDataType, err := convertToArrowDataType(schema.Fields[0], false)
assert.NoError(t, err)
arrFields := make([]arrow.Field, 0)
arrFields = append(arrFields, arrow.Field{
Name: schema.Fields[0].Name,
Type: arrDataType,
Nullable: true,
Metadata: arrow.Metadata{},
})
pqSchema := arrow.NewSchema(arrFields, nil)
filePath := fmt.Sprintf("/tmp/test_%d_reader.parquet", rand.Int())
defer os.Remove(filePath)
wf, err := os.OpenFile(filePath, os.O_RDWR|os.O_CREATE, 0o666)
assert.NoError(t, err)
fw, err := pqarrow.NewFileWriter(pqSchema, wf,
parquet.NewWriterProperties(parquet.WithMaxRowGroupLength(100)), pqarrow.DefaultWriterProps())
assert.NoError(t, err)
rowCount := 5
insertData, err := testutil.CreateInsertData(schema, rowCount, nullPercent)
assert.NoError(t, err)
columns, err := testutil.BuildArrayData(schema, insertData, false)
assert.NoError(t, err)
recordBatch := array.NewRecord(pqSchema, columns, int64(rowCount))
err = fw.Write(recordBatch)
assert.NoError(t, err)
fw.Close()
ctx := context.Background()
f := storage.NewChunkManagerFactory("local", objectstorage.RootPath(testOutputPath))
cm, err := f.NewPersistentStorageChunkManager(ctx)
assert.NoError(t, err)
schema.Fields[0].Nullable = readScehamIsNullable
reader, err := NewReader(ctx, cm, schema, filePath, 64*1024*1024)
assert.NoError(t, err)
assert.NotNil(t, reader)
defer reader.Close()
_, err = reader.Read()
if !readScehamIsNullable && nullPercent != 0 {
assert.Error(t, err)
} else {
assert.NoError(t, err)
}
}
type testCase struct {
name string
nullPercent int
readScehamIsNullable bool
dataType schemapb.DataType
elementType schemapb.DataType
}
buildCaseFunc := func(nullPercent int, readScehamIsNullable bool, dataType schemapb.DataType, elementType schemapb.DataType) *testCase {
name := fmt.Sprintf("nullPercent='%v' schemaNullable='%v' dataType='%s' elementType='%s'",
nullPercent, readScehamIsNullable, dataType, elementType)
return &testCase{
name: name,
nullPercent: nullPercent,
readScehamIsNullable: readScehamIsNullable,
dataType: dataType,
elementType: elementType,
}
}
cases := make([]*testCase, 0)
nullableDataTypes := []schemapb.DataType{
schemapb.DataType_Bool,
schemapb.DataType_Int8,
schemapb.DataType_Int16,
schemapb.DataType_Int32,
schemapb.DataType_Int64,
schemapb.DataType_Float,
schemapb.DataType_Double,
schemapb.DataType_VarChar,
schemapb.DataType_FloatVector,
schemapb.DataType_BinaryVector,
schemapb.DataType_SparseFloatVector,
schemapb.DataType_Float16Vector,
schemapb.DataType_BFloat16Vector,
schemapb.DataType_Int8Vector,
}
for _, dataType := range nullableDataTypes {
for _, nullPercent := range []int{0, 50} {
for _, readScehamIsNullable := range []bool{true, false} {
cases = append(cases, buildCaseFunc(nullPercent, readScehamIsNullable, dataType, schemapb.DataType_None))
}
}
}
elementTypes := []schemapb.DataType{
schemapb.DataType_Bool,
schemapb.DataType_Int8,
schemapb.DataType_Int16,
schemapb.DataType_Int32,
schemapb.DataType_Int64,
schemapb.DataType_Float,
schemapb.DataType_Double,
schemapb.DataType_VarChar,
}
for _, elementType := range elementTypes {
for _, nullPercent := range []int{0, 50} {
for _, readScehamIsNullable := range []bool{true, false} {
cases = append(cases, buildCaseFunc(nullPercent, readScehamIsNullable, schemapb.DataType_Array, elementType))
}
}
}
notNullableTypes := []schemapb.DataType{
schemapb.DataType_JSON,
}
for _, dataType := range notNullableTypes {
cases = append(cases, buildCaseFunc(0, false, dataType, schemapb.DataType_None))
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
checkFunc(t, tt.nullPercent, tt.readScehamIsNullable, tt.dataType, tt.elementType)
})
}
}
func TestTypeMismatch(t *testing.T) {
checkFunc := func(srcDataType schemapb.DataType, srcElementType schemapb.DataType, dstDataType schemapb.DataType, dstElementType schemapb.DataType, nullalbe bool) {
fieldName := "test_field"
schema := &schemapb.CollectionSchema{
Fields: []*schemapb.FieldSchema{
{
FieldID: 100,
Name: fieldName,
DataType: srcDataType,
ElementType: srcElementType,
TypeParams: []*commonpb.KeyValuePair{
{
Key: "dim",
Value: "16",
},
{
Key: "max_length",
Value: "1000",
},
{
Key: "max_capacity",
Value: "50",
},
},
},
},
}
arrDataType, err := convertToArrowDataType(schema.Fields[0], false)
assert.NoError(t, err)
arrFields := make([]arrow.Field, 0)
arrFields = append(arrFields, arrow.Field{
Name: schema.Fields[0].Name,
Type: arrDataType,
Nullable: true,
Metadata: arrow.Metadata{},
})
pqSchema := arrow.NewSchema(arrFields, nil)
filePath := fmt.Sprintf("/tmp/test_%d_reader.parquet", rand.Int())
defer os.Remove(filePath)
wf, err := os.OpenFile(filePath, os.O_RDWR|os.O_CREATE, 0o666)
assert.NoError(t, err)
fw, err := pqarrow.NewFileWriter(pqSchema, wf,
parquet.NewWriterProperties(parquet.WithMaxRowGroupLength(100)), pqarrow.DefaultWriterProps())
assert.NoError(t, err)
rowCount := 5
insertData, err := testutil.CreateInsertData(schema, rowCount, 0)
assert.NoError(t, err)
columns, err := testutil.BuildArrayData(schema, insertData, false)
assert.NoError(t, err)
recordBatch := array.NewRecord(pqSchema, columns, int64(rowCount))
err = fw.Write(recordBatch)
assert.NoError(t, err)
fw.Close()
ctx := context.Background()
f := storage.NewChunkManagerFactory("local", objectstorage.RootPath(testOutputPath))
cm, err := f.NewPersistentStorageChunkManager(ctx)
assert.NoError(t, err)
schema.Fields[0].DataType = dstDataType
schema.Fields[0].ElementType = dstElementType
schema.Fields[0].Nullable = nullalbe
cmReader, err := cm.Reader(ctx, filePath)
assert.NoError(t, err)
reader, err := file.NewParquetReader(cmReader, file.WithReadProps(&parquet.ReaderProperties{
BufferSize: 65535,
BufferedStreamEnabled: true,
}))
assert.NoError(t, err)
readProps := pqarrow.ArrowReadProperties{
BatchSize: int64(rowCount),
}
fileReader, err := pqarrow.NewFileReader(reader, readProps, memory.DefaultAllocator)
assert.NoError(t, err)
columnReader, err := NewFieldReader(ctx, fileReader, 0, schema.Fields[0], common.DefaultTimezone)
assert.NoError(t, err)
_, _, err = columnReader.Next(int64(rowCount))
if srcDataType != dstDataType || srcElementType != dstElementType {
assert.Error(t, err)
} else {
assert.NoError(t, err)
}
}
type testCase struct {
name string
srcDataType schemapb.DataType
srcElementType schemapb.DataType
dstDataType schemapb.DataType
dstElementType schemapb.DataType
nullable bool
}
buildCaseFunc := func(srcDataType schemapb.DataType, srcElementType schemapb.DataType, dstDataType schemapb.DataType, dstElementType schemapb.DataType, nullable bool) *testCase {
name := fmt.Sprintf("srcDataType='%s' srcElementType='%s' dstDataType='%s' dstElementType='%s' nullable='%v'",
srcDataType, srcElementType, dstDataType, dstElementType, nullable)
return &testCase{
name: name,
srcDataType: srcDataType,
srcElementType: srcElementType,
dstDataType: dstDataType,
dstElementType: dstElementType,
nullable: nullable,
}
}
cases := make([]*testCase, 0)
scalarDataTypes := []schemapb.DataType{
schemapb.DataType_Bool,
schemapb.DataType_Int8,
schemapb.DataType_Int16,
schemapb.DataType_Int32,
schemapb.DataType_Int64,
schemapb.DataType_Float,
schemapb.DataType_Double,
schemapb.DataType_VarChar,
}
for _, dataType := range scalarDataTypes {
srcDataType := schemapb.DataType_Bool
if dataType == schemapb.DataType_Bool {
srcDataType = schemapb.DataType_Int8
}
cases = append(cases, buildCaseFunc(srcDataType, schemapb.DataType_None, dataType, schemapb.DataType_None, true))
cases = append(cases, buildCaseFunc(srcDataType, schemapb.DataType_None, dataType, schemapb.DataType_None, false))
}
elementTypes := []schemapb.DataType{
schemapb.DataType_Bool,
schemapb.DataType_Int8,
schemapb.DataType_Int16,
schemapb.DataType_Int32,
schemapb.DataType_Int64,
schemapb.DataType_Float,
schemapb.DataType_Double,
schemapb.DataType_VarChar,
}
for _, elementType := range elementTypes {
srcElementType := schemapb.DataType_Bool
if elementType == schemapb.DataType_Bool {
srcElementType = schemapb.DataType_Int8
}
// element type mismatch
cases = append(cases, buildCaseFunc(schemapb.DataType_Array, srcElementType, schemapb.DataType_Array, elementType, true))
cases = append(cases, buildCaseFunc(schemapb.DataType_Array, srcElementType, schemapb.DataType_Array, elementType, false))
// not a list
cases = append(cases, buildCaseFunc(schemapb.DataType_Bool, schemapb.DataType_None, schemapb.DataType_Array, elementType, true))
cases = append(cases, buildCaseFunc(schemapb.DataType_Bool, schemapb.DataType_None, schemapb.DataType_Array, elementType, false))
}
vectorTypes := []schemapb.DataType{
schemapb.DataType_FloatVector,
schemapb.DataType_BinaryVector,
schemapb.DataType_SparseFloatVector,
schemapb.DataType_Float16Vector,
schemapb.DataType_BFloat16Vector,
schemapb.DataType_Int8Vector,
}
for _, dataType := range vectorTypes {
srcDataType := schemapb.DataType_Bool
cases = append(cases, buildCaseFunc(srcDataType, schemapb.DataType_None, dataType, schemapb.DataType_None, true))
cases = append(cases, buildCaseFunc(srcDataType, schemapb.DataType_None, dataType, schemapb.DataType_None, false))
cases = append(cases, buildCaseFunc(schemapb.DataType_Array, schemapb.DataType_Bool, dataType, schemapb.DataType_None, true))
cases = append(cases, buildCaseFunc(schemapb.DataType_Array, schemapb.DataType_Bool, dataType, schemapb.DataType_None, false))
}
notNullableTypes := []schemapb.DataType{
schemapb.DataType_JSON,
}
for _, dataType := range notNullableTypes {
srcDataType := schemapb.DataType_Bool
if dataType == schemapb.DataType_Bool {
srcDataType = schemapb.DataType_Int8
}
// not a list
cases = append(cases, buildCaseFunc(srcDataType, schemapb.DataType_None, dataType, schemapb.DataType_None, false))
// element type mismatch
cases = append(cases, buildCaseFunc(schemapb.DataType_Array, schemapb.DataType_Bool, dataType, schemapb.DataType_None, false))
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
checkFunc(tt.srcDataType, tt.srcElementType, tt.dstDataType, tt.dstElementType, tt.nullable)
})
}
}
func TestArrayNullElement(t *testing.T) {
checkFunc := func(dataType schemapb.DataType, elementType schemapb.DataType) {
fieldName := "test_field"
schema := &schemapb.CollectionSchema{
Fields: []*schemapb.FieldSchema{
{
FieldID: 100,
Name: fieldName,
DataType: dataType,
ElementType: elementType,
TypeParams: []*commonpb.KeyValuePair{
{
Key: "dim",
Value: "16",
},
{
Key: "max_length",
Value: "1000",
},
{
Key: "max_capacity",
Value: "50",
},
},
},
},
}
arrDataType, err := convertToArrowDataType(schema.Fields[0], false)
assert.NoError(t, err)
arrFields := make([]arrow.Field, 0)
arrFields = append(arrFields, arrow.Field{
Name: schema.Fields[0].Name,
Type: arrDataType,
Nullable: true,
Metadata: arrow.Metadata{},
})
pqSchema := arrow.NewSchema(arrFields, nil)
filePath := fmt.Sprintf("/tmp/test_%d_reader.parquet", rand.Int())
defer os.Remove(filePath)
wf, err := os.OpenFile(filePath, os.O_RDWR|os.O_CREATE, 0o666)
assert.NoError(t, err)
fw, err := pqarrow.NewFileWriter(pqSchema, wf,
parquet.NewWriterProperties(parquet.WithMaxRowGroupLength(100)), pqarrow.DefaultWriterProps())
assert.NoError(t, err)
mem := memory.NewGoAllocator()
columns := make([]arrow.Array, 0, len(schema.Fields))
switch elementType {
case schemapb.DataType_Bool:
builder := array.NewListBuilder(mem, &arrow.BooleanType{})
valueBuilder := builder.ValueBuilder().(*array.BooleanBuilder)
valueBuilder.AppendValues([]bool{true, false}, []bool{true, false})
builder.AppendValues([]int32{0}, []bool{true})
columns = append(columns, builder.NewListArray())
case schemapb.DataType_Int8:
builder := array.NewListBuilder(mem, &arrow.Int8Type{})
valueBuilder := builder.ValueBuilder().(*array.Int8Builder)
valueBuilder.AppendValues([]int8{1, 2}, []bool{true, false})
builder.AppendValues([]int32{0}, []bool{true})
columns = append(columns, builder.NewListArray())
case schemapb.DataType_Int16:
builder := array.NewListBuilder(mem, &arrow.Int16Type{})
valueBuilder := builder.ValueBuilder().(*array.Int16Builder)
valueBuilder.AppendValues([]int16{1, 2}, []bool{true, false})
builder.AppendValues([]int32{0}, []bool{true})
columns = append(columns, builder.NewListArray())
case schemapb.DataType_Int32:
builder := array.NewListBuilder(mem, &arrow.Int32Type{})
valueBuilder := builder.ValueBuilder().(*array.Int32Builder)
valueBuilder.AppendValues([]int32{1, 2}, []bool{true, false})
builder.AppendValues([]int32{0}, []bool{true})
columns = append(columns, builder.NewListArray())
case schemapb.DataType_Int64:
builder := array.NewListBuilder(mem, &arrow.Int64Type{})
valueBuilder := builder.ValueBuilder().(*array.Int64Builder)
valueBuilder.AppendValues([]int64{1, 2}, []bool{true, false})
builder.AppendValues([]int32{0}, []bool{true})
columns = append(columns, builder.NewListArray())
case schemapb.DataType_Float:
builder := array.NewListBuilder(mem, &arrow.Float32Type{})
valueBuilder := builder.ValueBuilder().(*array.Float32Builder)
valueBuilder.AppendValues([]float32{0.1, 0.2}, []bool{true, false})
builder.AppendValues([]int32{0}, []bool{true})
columns = append(columns, builder.NewListArray())
case schemapb.DataType_Double:
builder := array.NewListBuilder(mem, &arrow.Float64Type{})
valueBuilder := builder.ValueBuilder().(*array.Float64Builder)
valueBuilder.AppendValues([]float64{0.1, 0.2}, []bool{true, false})
builder.AppendValues([]int32{0}, []bool{true})
columns = append(columns, builder.NewListArray())
case schemapb.DataType_String, schemapb.DataType_VarChar:
builder := array.NewListBuilder(mem, &arrow.StringType{})
valueBuilder := builder.ValueBuilder().(*array.StringBuilder)
valueBuilder.AppendValues([]string{"a", "b"}, []bool{true, false})
builder.AppendValues([]int32{0}, []bool{true})
columns = append(columns, builder.NewListArray())
default:
break
}
recordBatch := array.NewRecord(pqSchema, columns, int64(1))
err = fw.Write(recordBatch)
assert.NoError(t, err)
fw.Close()
ctx := context.Background()
f := storage.NewChunkManagerFactory("local", objectstorage.RootPath(testOutputPath))
cm, err := f.NewPersistentStorageChunkManager(ctx)
assert.NoError(t, err)
reader, err := NewReader(ctx, cm, schema, filePath, 64*1024*1024)
assert.NoError(t, err)
assert.NotNil(t, reader)
defer reader.Close()
_, err = reader.Read()
assert.Error(t, err)
}
type testCase struct {
name string
dataType schemapb.DataType
elementType schemapb.DataType
}
buildCaseFunc := func(dataType schemapb.DataType, elementType schemapb.DataType) *testCase {
name := fmt.Sprintf("dataType='%s' elementType='%s'", dataType, elementType)
return &testCase{
name: name,
dataType: dataType,
elementType: elementType,
}
}
cases := make([]*testCase, 0)
elementTypes := []schemapb.DataType{
schemapb.DataType_Bool,
schemapb.DataType_Int8,
schemapb.DataType_Int16,
schemapb.DataType_Int32,
schemapb.DataType_Int64,
schemapb.DataType_Float,
schemapb.DataType_Double,
schemapb.DataType_VarChar,
}
for _, elementType := range elementTypes {
cases = append(cases, buildCaseFunc(schemapb.DataType_Array, elementType))
}
for _, tt := range cases {
t.Run(tt.name, func(t *testing.T) {
checkFunc(tt.dataType, tt.elementType)
})
}
}