mirror of
https://gitee.com/milvus-io/milvus.git
synced 2025-12-07 01:28:27 +08:00
#36718 Signed-off-by: luzhang <luzhang@zilliz.com> Co-authored-by: luzhang <luzhang@zilliz.com>
565 lines
19 KiB
C++
565 lines
19 KiB
C++
// Licensed to the LF AI & Data foundation under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "TermExpr.h"
|
|
#include "query/Utils.h"
|
|
namespace milvus {
|
|
namespace exec {
|
|
|
|
void
|
|
PhyTermFilterExpr::Eval(EvalCtx& context, VectorPtr& result) {
|
|
if (is_pk_field_) {
|
|
result = ExecPkTermImpl();
|
|
return;
|
|
}
|
|
switch (expr_->column_.data_type_) {
|
|
case DataType::BOOL: {
|
|
result = ExecVisitorImpl<bool>();
|
|
break;
|
|
}
|
|
case DataType::INT8: {
|
|
result = ExecVisitorImpl<int8_t>();
|
|
break;
|
|
}
|
|
case DataType::INT16: {
|
|
result = ExecVisitorImpl<int16_t>();
|
|
break;
|
|
}
|
|
case DataType::INT32: {
|
|
result = ExecVisitorImpl<int32_t>();
|
|
break;
|
|
}
|
|
case DataType::INT64: {
|
|
result = ExecVisitorImpl<int64_t>();
|
|
break;
|
|
}
|
|
case DataType::FLOAT: {
|
|
result = ExecVisitorImpl<float>();
|
|
break;
|
|
}
|
|
case DataType::DOUBLE: {
|
|
result = ExecVisitorImpl<double>();
|
|
break;
|
|
}
|
|
case DataType::VARCHAR: {
|
|
if (segment_->type() == SegmentType::Growing &&
|
|
!storage::MmapManager::GetInstance()
|
|
.GetMmapConfig()
|
|
.growing_enable_mmap) {
|
|
result = ExecVisitorImpl<std::string>();
|
|
} else {
|
|
result = ExecVisitorImpl<std::string_view>();
|
|
}
|
|
break;
|
|
}
|
|
case DataType::JSON: {
|
|
if (expr_->vals_.size() == 0) {
|
|
result = ExecVisitorImplTemplateJson<bool>();
|
|
break;
|
|
}
|
|
auto type = expr_->vals_[0].val_case();
|
|
switch (type) {
|
|
case proto::plan::GenericValue::ValCase::kBoolVal:
|
|
result = ExecVisitorImplTemplateJson<bool>();
|
|
break;
|
|
case proto::plan::GenericValue::ValCase::kInt64Val:
|
|
result = ExecVisitorImplTemplateJson<int64_t>();
|
|
break;
|
|
case proto::plan::GenericValue::ValCase::kFloatVal:
|
|
result = ExecVisitorImplTemplateJson<double>();
|
|
break;
|
|
case proto::plan::GenericValue::ValCase::kStringVal:
|
|
result = ExecVisitorImplTemplateJson<std::string>();
|
|
break;
|
|
default:
|
|
PanicInfo(DataTypeInvalid, "unknown data type: {}", type);
|
|
}
|
|
break;
|
|
}
|
|
case DataType::ARRAY: {
|
|
if (expr_->vals_.size() == 0) {
|
|
SetNotUseIndex();
|
|
result = ExecVisitorImplTemplateArray<bool>();
|
|
break;
|
|
}
|
|
auto type = expr_->vals_[0].val_case();
|
|
switch (type) {
|
|
case proto::plan::GenericValue::ValCase::kBoolVal:
|
|
SetNotUseIndex();
|
|
result = ExecVisitorImplTemplateArray<bool>();
|
|
break;
|
|
case proto::plan::GenericValue::ValCase::kInt64Val:
|
|
SetNotUseIndex();
|
|
result = ExecVisitorImplTemplateArray<int64_t>();
|
|
break;
|
|
case proto::plan::GenericValue::ValCase::kFloatVal:
|
|
SetNotUseIndex();
|
|
result = ExecVisitorImplTemplateArray<double>();
|
|
break;
|
|
case proto::plan::GenericValue::ValCase::kStringVal:
|
|
SetNotUseIndex();
|
|
result = ExecVisitorImplTemplateArray<std::string>();
|
|
break;
|
|
default:
|
|
PanicInfo(DataTypeInvalid, "unknown data type: {}", type);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
PanicInfo(DataTypeInvalid,
|
|
"unsupported data type: {}",
|
|
expr_->column_.data_type_);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
bool
|
|
PhyTermFilterExpr::CanSkipSegment() {
|
|
const auto& skip_index = segment_->GetSkipIndex();
|
|
T min, max;
|
|
for (auto i = 0; i < expr_->vals_.size(); i++) {
|
|
auto val = GetValueFromProto<T>(expr_->vals_[i]);
|
|
max = i == 0 ? val : std::max(val, max);
|
|
min = i == 0 ? val : std::min(val, min);
|
|
}
|
|
// using skip index to help skipping this segment
|
|
if (segment_->type() == SegmentType::Sealed &&
|
|
skip_index.CanSkipBinaryRange<T>(field_id_, 0, min, max, true, true)) {
|
|
cached_bits_.resize(active_count_, false);
|
|
cached_bits_inited_ = true;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void
|
|
PhyTermFilterExpr::InitPkCacheOffset() {
|
|
auto id_array = std::make_unique<IdArray>();
|
|
switch (pk_type_) {
|
|
case DataType::INT64: {
|
|
if (CanSkipSegment<int64_t>()) {
|
|
return;
|
|
}
|
|
auto dst_ids = id_array->mutable_int_id();
|
|
for (const auto& id : expr_->vals_) {
|
|
dst_ids->add_data(GetValueFromProto<int64_t>(id));
|
|
}
|
|
break;
|
|
}
|
|
case DataType::VARCHAR: {
|
|
if (CanSkipSegment<std::string>()) {
|
|
return;
|
|
}
|
|
auto dst_ids = id_array->mutable_str_id();
|
|
for (const auto& id : expr_->vals_) {
|
|
dst_ids->add_data(GetValueFromProto<std::string>(id));
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
PanicInfo(DataTypeInvalid, "unsupported data type {}", pk_type_);
|
|
}
|
|
}
|
|
|
|
auto [uids, seg_offsets] =
|
|
segment_->search_ids(*id_array, query_timestamp_);
|
|
cached_bits_.resize(active_count_, false);
|
|
for (const auto& offset : seg_offsets) {
|
|
auto _offset = (int64_t)offset.get();
|
|
cached_bits_[_offset] = true;
|
|
}
|
|
cached_bits_inited_ = true;
|
|
}
|
|
|
|
VectorPtr
|
|
PhyTermFilterExpr::ExecPkTermImpl() {
|
|
if (!cached_bits_inited_) {
|
|
InitPkCacheOffset();
|
|
}
|
|
|
|
auto real_batch_size =
|
|
current_data_chunk_pos_ + batch_size_ >= active_count_
|
|
? active_count_ - current_data_chunk_pos_
|
|
: batch_size_;
|
|
|
|
if (real_batch_size == 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
auto res_vec =
|
|
std::make_shared<ColumnVector>(TargetBitmap(real_batch_size));
|
|
TargetBitmapView res(res_vec->GetRawData(), real_batch_size);
|
|
|
|
for (size_t i = 0; i < real_batch_size; ++i) {
|
|
res[i] = cached_bits_[current_data_chunk_pos_++];
|
|
}
|
|
|
|
return res_vec;
|
|
}
|
|
|
|
template <typename ValueType>
|
|
VectorPtr
|
|
PhyTermFilterExpr::ExecVisitorImplTemplateJson() {
|
|
if (expr_->is_in_field_) {
|
|
return ExecTermJsonVariableInField<ValueType>();
|
|
} else {
|
|
return ExecTermJsonFieldInVariable<ValueType>();
|
|
}
|
|
}
|
|
|
|
template <typename ValueType>
|
|
VectorPtr
|
|
PhyTermFilterExpr::ExecVisitorImplTemplateArray() {
|
|
if (expr_->is_in_field_) {
|
|
return ExecTermArrayVariableInField<ValueType>();
|
|
} else {
|
|
return ExecTermArrayFieldInVariable<ValueType>();
|
|
}
|
|
}
|
|
|
|
template <typename ValueType>
|
|
VectorPtr
|
|
PhyTermFilterExpr::ExecTermArrayVariableInField() {
|
|
using GetType = std::conditional_t<std::is_same_v<ValueType, std::string>,
|
|
std::string_view,
|
|
ValueType>;
|
|
auto real_batch_size = GetNextBatchSize();
|
|
if (real_batch_size == 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
auto res_vec =
|
|
std::make_shared<ColumnVector>(TargetBitmap(real_batch_size));
|
|
TargetBitmapView res(res_vec->GetRawData(), real_batch_size);
|
|
|
|
AssertInfo(expr_->vals_.size() == 1,
|
|
"element length in json array must be one");
|
|
ValueType target_val = GetValueFromProto<ValueType>(expr_->vals_[0]);
|
|
|
|
auto execute_sub_batch = [](const ArrayView* data,
|
|
const int size,
|
|
TargetBitmapView res,
|
|
const ValueType& target_val) {
|
|
auto executor = [&](size_t i) {
|
|
for (int i = 0; i < data[i].length(); i++) {
|
|
auto val = data[i].template get_data<GetType>(i);
|
|
if (val == target_val) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
};
|
|
for (int i = 0; i < size; ++i) {
|
|
executor(i);
|
|
}
|
|
};
|
|
|
|
int64_t processed_size = ProcessDataChunks<milvus::ArrayView>(
|
|
execute_sub_batch, std::nullptr_t{}, res, target_val);
|
|
AssertInfo(processed_size == real_batch_size,
|
|
"internal error: expr processed rows {} not equal "
|
|
"expect batch size {}",
|
|
processed_size,
|
|
real_batch_size);
|
|
return res_vec;
|
|
}
|
|
|
|
template <typename ValueType>
|
|
VectorPtr
|
|
PhyTermFilterExpr::ExecTermArrayFieldInVariable() {
|
|
using GetType = std::conditional_t<std::is_same_v<ValueType, std::string>,
|
|
std::string_view,
|
|
ValueType>;
|
|
|
|
auto real_batch_size = GetNextBatchSize();
|
|
if (real_batch_size == 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
auto res_vec =
|
|
std::make_shared<ColumnVector>(TargetBitmap(real_batch_size));
|
|
TargetBitmapView res(res_vec->GetRawData(), real_batch_size);
|
|
|
|
int index = -1;
|
|
if (expr_->column_.nested_path_.size() > 0) {
|
|
index = std::stoi(expr_->column_.nested_path_[0]);
|
|
}
|
|
std::unordered_set<ValueType> term_set;
|
|
for (const auto& element : expr_->vals_) {
|
|
term_set.insert(GetValueFromProto<ValueType>(element));
|
|
}
|
|
|
|
if (term_set.empty()) {
|
|
res.reset();
|
|
MoveCursor();
|
|
return res_vec;
|
|
}
|
|
|
|
auto execute_sub_batch = [](const ArrayView* data,
|
|
const int size,
|
|
TargetBitmapView res,
|
|
int index,
|
|
const std::unordered_set<ValueType>& term_set) {
|
|
for (int i = 0; i < size; ++i) {
|
|
if (index >= data[i].length()) {
|
|
res[i] = false;
|
|
continue;
|
|
}
|
|
auto value = data[i].get_data<GetType>(index);
|
|
res[i] = term_set.find(ValueType(value)) != term_set.end();
|
|
}
|
|
};
|
|
|
|
int64_t processed_size = ProcessDataChunks<milvus::ArrayView>(
|
|
execute_sub_batch, std::nullptr_t{}, res, index, term_set);
|
|
AssertInfo(processed_size == real_batch_size,
|
|
"internal error: expr processed rows {} not equal "
|
|
"expect batch size {}",
|
|
processed_size,
|
|
real_batch_size);
|
|
return res_vec;
|
|
}
|
|
|
|
template <typename ValueType>
|
|
VectorPtr
|
|
PhyTermFilterExpr::ExecTermJsonVariableInField() {
|
|
using GetType = std::conditional_t<std::is_same_v<ValueType, std::string>,
|
|
std::string_view,
|
|
ValueType>;
|
|
auto real_batch_size = GetNextBatchSize();
|
|
if (real_batch_size == 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
auto res_vec =
|
|
std::make_shared<ColumnVector>(TargetBitmap(real_batch_size));
|
|
TargetBitmapView res(res_vec->GetRawData(), real_batch_size);
|
|
|
|
AssertInfo(expr_->vals_.size() == 1,
|
|
"element length in json array must be one");
|
|
ValueType val = GetValueFromProto<ValueType>(expr_->vals_[0]);
|
|
auto pointer = milvus::Json::pointer(expr_->column_.nested_path_);
|
|
|
|
auto execute_sub_batch = [](const Json* data,
|
|
const int size,
|
|
TargetBitmapView res,
|
|
const std::string pointer,
|
|
const ValueType& target_val) {
|
|
auto executor = [&](size_t i) {
|
|
auto doc = data[i].doc();
|
|
auto array = doc.at_pointer(pointer).get_array();
|
|
if (array.error())
|
|
return false;
|
|
for (auto it = array.begin(); it != array.end(); ++it) {
|
|
auto val = (*it).template get<GetType>();
|
|
if (val.error()) {
|
|
return false;
|
|
}
|
|
if (val.value() == target_val) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
};
|
|
for (size_t i = 0; i < size; ++i) {
|
|
res[i] = executor(i);
|
|
}
|
|
};
|
|
int64_t processed_size = ProcessDataChunks<milvus::Json>(
|
|
execute_sub_batch, std::nullptr_t{}, res, pointer, val);
|
|
AssertInfo(processed_size == real_batch_size,
|
|
"internal error: expr processed rows {} not equal "
|
|
"expect batch size {}",
|
|
processed_size,
|
|
real_batch_size);
|
|
return res_vec;
|
|
}
|
|
|
|
template <typename ValueType>
|
|
VectorPtr
|
|
PhyTermFilterExpr::ExecTermJsonFieldInVariable() {
|
|
using GetType = std::conditional_t<std::is_same_v<ValueType, std::string>,
|
|
std::string_view,
|
|
ValueType>;
|
|
auto real_batch_size = GetNextBatchSize();
|
|
if (real_batch_size == 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
auto res_vec =
|
|
std::make_shared<ColumnVector>(TargetBitmap(real_batch_size));
|
|
TargetBitmapView res(res_vec->GetRawData(), real_batch_size);
|
|
|
|
auto pointer = milvus::Json::pointer(expr_->column_.nested_path_);
|
|
std::unordered_set<ValueType> term_set;
|
|
for (const auto& element : expr_->vals_) {
|
|
term_set.insert(GetValueFromProto<ValueType>(element));
|
|
}
|
|
|
|
if (term_set.empty()) {
|
|
res.reset();
|
|
MoveCursor();
|
|
return res_vec;
|
|
}
|
|
|
|
auto execute_sub_batch = [](const Json* data,
|
|
const int size,
|
|
TargetBitmapView res,
|
|
const std::string pointer,
|
|
const std::unordered_set<ValueType>& terms) {
|
|
auto executor = [&](size_t i) {
|
|
auto x = data[i].template at<GetType>(pointer);
|
|
if (x.error()) {
|
|
if constexpr (std::is_same_v<GetType, std::int64_t>) {
|
|
auto x = data[i].template at<double>(pointer);
|
|
if (x.error()) {
|
|
return false;
|
|
}
|
|
|
|
auto value = x.value();
|
|
// if the term set is {1}, and the value is 1.1, we should not return true.
|
|
return std::floor(value) == value &&
|
|
terms.find(ValueType(value)) != terms.end();
|
|
}
|
|
return false;
|
|
}
|
|
return terms.find(ValueType(x.value())) != terms.end();
|
|
};
|
|
for (size_t i = 0; i < size; ++i) {
|
|
res[i] = executor(i);
|
|
}
|
|
};
|
|
int64_t processed_size = ProcessDataChunks<milvus::Json>(
|
|
execute_sub_batch, std::nullptr_t{}, res, pointer, term_set);
|
|
AssertInfo(processed_size == real_batch_size,
|
|
"internal error: expr processed rows {} not equal "
|
|
"expect batch size {}",
|
|
processed_size,
|
|
real_batch_size);
|
|
return res_vec;
|
|
}
|
|
|
|
template <typename T>
|
|
VectorPtr
|
|
PhyTermFilterExpr::ExecVisitorImpl() {
|
|
if (is_index_mode_) {
|
|
return ExecVisitorImplForIndex<T>();
|
|
} else {
|
|
return ExecVisitorImplForData<T>();
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
VectorPtr
|
|
PhyTermFilterExpr::ExecVisitorImplForIndex() {
|
|
typedef std::
|
|
conditional_t<std::is_same_v<T, std::string_view>, std::string, T>
|
|
IndexInnerType;
|
|
using Index = index::ScalarIndex<IndexInnerType>;
|
|
auto real_batch_size = GetNextBatchSize();
|
|
if (real_batch_size == 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
std::vector<IndexInnerType> vals;
|
|
for (auto& val : expr_->vals_) {
|
|
// Integral overflow process
|
|
bool overflowed = false;
|
|
auto converted_val = GetValueFromProtoWithOverflow<T>(val, overflowed);
|
|
if (!overflowed) {
|
|
vals.emplace_back(converted_val);
|
|
}
|
|
}
|
|
auto execute_sub_batch = [](Index* index_ptr,
|
|
const std::vector<IndexInnerType>& vals) {
|
|
TermIndexFunc<T> func;
|
|
return func(index_ptr, vals.size(), vals.data());
|
|
};
|
|
auto res = ProcessIndexChunks<T>(execute_sub_batch, vals);
|
|
AssertInfo(res.size() == real_batch_size,
|
|
"internal error: expr processed rows {} not equal "
|
|
"expect batch size {}",
|
|
res.size(),
|
|
real_batch_size);
|
|
return std::make_shared<ColumnVector>(std::move(res));
|
|
}
|
|
|
|
template <>
|
|
VectorPtr
|
|
PhyTermFilterExpr::ExecVisitorImplForIndex<bool>() {
|
|
using Index = index::ScalarIndex<bool>;
|
|
auto real_batch_size = GetNextBatchSize();
|
|
if (real_batch_size == 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
std::vector<uint8_t> vals;
|
|
for (auto& val : expr_->vals_) {
|
|
vals.emplace_back(GetValueFromProto<bool>(val) ? 1 : 0);
|
|
}
|
|
auto execute_sub_batch = [](Index* index_ptr,
|
|
const std::vector<uint8_t>& vals) {
|
|
TermIndexFunc<bool> func;
|
|
return std::move(func(index_ptr, vals.size(), (bool*)vals.data()));
|
|
};
|
|
auto res = ProcessIndexChunks<bool>(execute_sub_batch, vals);
|
|
return std::make_shared<ColumnVector>(std::move(res));
|
|
}
|
|
|
|
template <typename T>
|
|
VectorPtr
|
|
PhyTermFilterExpr::ExecVisitorImplForData() {
|
|
auto real_batch_size = GetNextBatchSize();
|
|
if (real_batch_size == 0) {
|
|
return nullptr;
|
|
}
|
|
|
|
auto res_vec =
|
|
std::make_shared<ColumnVector>(TargetBitmap(real_batch_size));
|
|
TargetBitmapView res(res_vec->GetRawData(), real_batch_size);
|
|
|
|
std::vector<T> vals;
|
|
for (auto& val : expr_->vals_) {
|
|
// Integral overflow process
|
|
bool overflowed = false;
|
|
auto converted_val = GetValueFromProtoWithOverflow<T>(val, overflowed);
|
|
if (!overflowed) {
|
|
vals.emplace_back(converted_val);
|
|
}
|
|
}
|
|
std::unordered_set<T> vals_set(vals.begin(), vals.end());
|
|
auto execute_sub_batch = [](const T* data,
|
|
const int size,
|
|
TargetBitmapView res,
|
|
const std::unordered_set<T>& vals) {
|
|
TermElementFuncSet<T> func;
|
|
for (size_t i = 0; i < size; ++i) {
|
|
res[i] = func(vals, data[i]);
|
|
}
|
|
};
|
|
int64_t processed_size = ProcessDataChunks<T>(
|
|
execute_sub_batch, std::nullptr_t{}, res, vals_set);
|
|
AssertInfo(processed_size == real_batch_size,
|
|
"internal error: expr processed rows {} not equal "
|
|
"expect batch size {}",
|
|
processed_size,
|
|
real_batch_size);
|
|
return res_vec;
|
|
}
|
|
|
|
} //namespace exec
|
|
} // namespace milvus
|