milvus/tests/python_client/deploy/scripts/first_recall_test.py
zhuwenxing 6e51905efc
[test]Update HNSW index param (#22686)
Signed-off-by: zhuwenxing <wenxing.zhu@zilliz.com>
2023-03-10 15:45:56 +08:00

189 lines
6.4 KiB
Python

import h5py
import numpy as np
import time
from loguru import logger
import copy
from pathlib import Path
import pymilvus
from pymilvus import (
connections,
FieldSchema, CollectionSchema, DataType,
Collection
)
pymilvus_version = pymilvus.__version__
all_index_types = ["IVF_FLAT", "IVF_SQ8", "HNSW"]
default_index_params = [{"nlist": 128}, {"nlist": 128}, {"M": 48, "efConstruction": 200}]
index_params_map = dict(zip(all_index_types, default_index_params))
def gen_index_params(index_type, metric_type="L2"):
default_index = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": metric_type}
index = copy.deepcopy(default_index)
index["index_type"] = index_type
index["params"] = index_params_map[index_type]
if index_type in ["BIN_FLAT", "BIN_IVF_FLAT"]:
index["metric_type"] = "HAMMING"
return index
def gen_search_param(index_type, metric_type="L2"):
search_params = []
if index_type in ["FLAT", "IVF_FLAT", "IVF_SQ8", "IVF_PQ"]:
for nprobe in [10]:
ivf_search_params = {"metric_type": metric_type, "params": {"nprobe": nprobe}}
search_params.append(ivf_search_params)
elif index_type in ["BIN_FLAT", "BIN_IVF_FLAT"]:
for nprobe in [10]:
bin_search_params = {"metric_type": "HAMMING", "params": {"nprobe": nprobe}}
search_params.append(bin_search_params)
elif index_type in ["HNSW"]:
for ef in [150]:
hnsw_search_param = {"metric_type": metric_type, "params": {"ef": ef}}
search_params.append(hnsw_search_param)
elif index_type == "ANNOY":
for search_k in [1000]:
annoy_search_param = {"metric_type": metric_type, "params": {"search_k": search_k}}
search_params.append(annoy_search_param)
else:
logger.info("Invalid index_type.")
raise Exception("Invalid index_type.")
return search_params[0]
def read_benchmark_hdf5(file_path):
f = h5py.File(file_path, 'r')
train = np.array(f["train"])
test = np.array(f["test"])
neighbors = np.array(f["neighbors"])
f.close()
return train, test, neighbors
dim = 128
TIMEOUT = 200
def milvus_recall_test(host='127.0.0.1', index_type="HNSW"):
logger.info(f"recall test for index type {index_type}")
file_path = f"{str(Path(__file__).absolute().parent.parent.parent)}/assets/ann_hdf5/sift-128-euclidean.hdf5"
train, test, neighbors = read_benchmark_hdf5(file_path)
connections.connect(host=host, port="19530")
default_fields = [
FieldSchema(name="int64", dtype=DataType.INT64, is_primary=True),
FieldSchema(name="float", dtype=DataType.FLOAT),
FieldSchema(name="varchar", dtype=DataType.VARCHAR, max_length=65535),
FieldSchema(name="float_vector", dtype=DataType.FLOAT_VECTOR, dim=dim)
]
default_schema = CollectionSchema(
fields=default_fields, description="test collection")
name = f"sift_128_euclidean_{index_type}"
logger.info(f"Create collection {name}")
collection = Collection(name=name, schema=default_schema)
nb = len(train)
batch_size = 50000
epoch = int(nb / batch_size)
t0 = time.time()
for i in range(epoch):
logger.info(f"epoch: {i}")
start = i * batch_size
end = (i + 1) * batch_size
if end > nb:
end = nb
data = [
[i for i in range(start, end)],
[np.float32(i) for i in range(start, end)],
[str(i) for i in range(start, end)],
train[start:end]
]
collection.insert(data)
t1 = time.time()
logger.info(f"Insert {nb} vectors cost {t1 - t0:.4f} seconds")
t0 = time.time()
logger.info(f"Get collection entities...")
if pymilvus_version >= "2.2.0":
collection.flush()
else:
collection.num_entities
logger.info(collection.num_entities)
t1 = time.time()
logger.info(f"Get collection entities cost {t1 - t0:.4f} seconds")
# create index
default_index = gen_index_params(index_type)
logger.info(f"Create index...")
t0 = time.time()
collection.create_index(field_name="float_vector",
index_params=default_index)
t1 = time.time()
logger.info(f"Create index cost {t1 - t0:.4f} seconds")
# load collection
replica_number = 1
logger.info(f"load collection...")
t0 = time.time()
collection.load(replica_number=replica_number)
t1 = time.time()
logger.info(f"load collection cost {t1 - t0:.4f} seconds")
# search
topK = 100
nq = 10000
current_search_params = gen_search_param(index_type)
# define output_fields of search result
for i in range(3):
t0 = time.time()
logger.info(f"Search...")
res = collection.search(
test[:nq], "float_vector", current_search_params, topK, output_fields=["int64"], timeout=TIMEOUT
)
t1 = time.time()
logger.info(f"search cost {t1 - t0:.4f} seconds")
result_ids = []
for hits in res:
result_id = []
for hit in hits:
result_id.append(hit.entity.get("int64"))
result_ids.append(result_id)
# calculate recall
true_ids = neighbors[:nq, :topK]
sum_radio = 0.0
logger.info(f"Calculate recall...")
for index, item in enumerate(result_ids):
# tmp = set(item).intersection(set(flat_id_list[index]))
assert len(item) == len(true_ids[index])
tmp = set(true_ids[index]).intersection(set(item))
sum_radio = sum_radio + len(tmp) / len(item)
recall = round(sum_radio / len(result_ids), 6)
logger.info(f"recall={recall}")
if index_type in ["IVF_PQ", "ANNOY"]:
assert recall >= 0.6, f"recall={recall} < 0.6"
else:
assert 0.95 <= recall < 1.0, f"recall is {recall}, less than 0.95, greater than or equal to 1.0"
# query
expr = "int64 in [2,4,6,8]"
output_fields = ["int64", "float"]
res = collection.query(expr, output_fields, timeout=TIMEOUT)
sorted_res = sorted(res, key=lambda k: k['int64'])
for r in sorted_res:
logger.info(r)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='config for recall test')
parser.add_argument('--host', type=str,
default="127.0.0.1", help='milvus server ip')
args = parser.parse_args()
host = args.host
for index_type in ["HNSW"]:
milvus_recall_test(host, index_type)