zhagnlu a602171d06
enhance: Refactor runtime and expr framework (#28166)
#28165

Signed-off-by: luzhang <luzhang@zilliz.com>
Co-authored-by: luzhang <luzhang@zilliz.com>
2023-12-18 12:04:42 +08:00

324 lines
10 KiB
C++

// Licensed to the LF AI & Data foundation under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <string>
#include "common/Types.h"
#include "exec/expression/EvalCtx.h"
#include "exec/expression/VectorFunction.h"
#include "exec/expression/Utils.h"
#include "exec/QueryContext.h"
#include "expr/ITypeExpr.h"
#include "query/PlanProto.h"
namespace milvus {
namespace exec {
class Expr {
public:
Expr(DataType type,
const std::vector<std::shared_ptr<Expr>>&& inputs,
const std::string& name)
: type_(type),
inputs_(std::move(inputs)),
name_(name),
vector_func_(nullptr) {
}
Expr(DataType type,
const std::vector<std::shared_ptr<Expr>>&& inputs,
std::shared_ptr<VectorFunction> vec_func,
const std::string& name)
: type_(type),
inputs_(std::move(inputs)),
name_(name),
vector_func_(vec_func) {
}
virtual ~Expr() = default;
const DataType&
type() const {
return type_;
}
std::string
get_name() {
return name_;
}
virtual void
Eval(EvalCtx& context, VectorPtr& result) {
}
protected:
DataType type_;
const std::vector<std::shared_ptr<Expr>> inputs_;
std::string name_;
std::shared_ptr<VectorFunction> vector_func_;
};
using ExprPtr = std::shared_ptr<milvus::exec::Expr>;
using SkipFunc = bool (*)(const milvus::SkipIndex&, FieldId, int);
class SegmentExpr : public Expr {
public:
SegmentExpr(const std::vector<ExprPtr>&& input,
const std::string& name,
const segcore::SegmentInternalInterface* segment,
const FieldId& field_id,
Timestamp query_timestamp,
int64_t batch_size)
: Expr(DataType::BOOL, std::move(input), name),
segment_(segment),
field_id_(field_id),
query_timestamp_(query_timestamp),
batch_size_(batch_size) {
num_rows_ = segment_->get_active_count(query_timestamp_);
size_per_chunk_ = segment_->size_per_chunk();
AssertInfo(
batch_size_ > 0,
fmt::format("expr batch size should greater than zero, but now: {}",
batch_size_));
InitSegmentExpr();
}
void
InitSegmentExpr() {
auto& schema = segment_->get_schema();
auto& field_meta = schema[field_id_];
if (schema.get_primary_field_id().has_value() &&
schema.get_primary_field_id().value() == field_id_ &&
IsPrimaryKeyDataType(field_meta.get_data_type())) {
is_pk_field_ = true;
pk_type_ = field_meta.get_data_type();
}
is_index_mode_ = segment_->HasIndex(field_id_);
if (is_index_mode_) {
num_index_chunk_ = segment_->num_chunk_index(field_id_);
} else {
num_data_chunk_ = segment_->num_chunk_data(field_id_);
}
}
int64_t
GetNextBatchSize() {
auto current_chunk =
is_index_mode_ ? current_index_chunk_ : current_data_chunk_;
auto current_chunk_pos =
is_index_mode_ ? current_index_chunk_pos_ : current_data_chunk_pos_;
auto current_rows = current_chunk * size_per_chunk_ + current_chunk_pos;
return current_rows + batch_size_ >= num_rows_
? num_rows_ - current_rows
: batch_size_;
}
template <typename T, typename FUNC, typename... ValTypes>
int64_t
ProcessDataChunks(
FUNC func,
std::function<bool(const milvus::SkipIndex&, FieldId, int)> skip_func,
bool* res,
ValTypes... values) {
int64_t processed_size = 0;
for (size_t i = current_data_chunk_; i < num_data_chunk_; i++) {
auto data_pos =
(i == current_data_chunk_) ? current_data_chunk_pos_ : 0;
auto size = (i == (num_data_chunk_ - 1))
? (segment_->type() == SegmentType::Growing
? num_rows_ % size_per_chunk_ - data_pos
: num_rows_ - data_pos)
: size_per_chunk_ - data_pos;
size = std::min(size, batch_size_ - processed_size);
auto& skip_index = segment_->GetSkipIndex();
if (!skip_func || !skip_func(skip_index, field_id_, i)) {
auto chunk = segment_->chunk_data<T>(field_id_, i);
const T* data = chunk.data() + data_pos;
func(data, size, res + processed_size, values...);
}
processed_size += size;
if (processed_size >= batch_size_) {
current_data_chunk_ = i;
current_data_chunk_pos_ = data_pos + size;
break;
}
}
return processed_size;
}
int
ProcessIndexOneChunk(FixedVector<bool>& result,
size_t chunk_id,
const FixedVector<bool>& chunk_res,
int processed_rows) {
auto data_pos =
chunk_id == current_index_chunk_ ? current_index_chunk_pos_ : 0;
auto size = std::min(
std::min(size_per_chunk_ - data_pos, batch_size_ - processed_rows),
int64_t(chunk_res.size()));
result.insert(result.end(),
chunk_res.begin() + data_pos,
chunk_res.begin() + data_pos + size);
return size;
}
template <typename T, typename FUNC, typename... ValTypes>
FixedVector<bool>
ProcessIndexChunks(FUNC func, ValTypes... values) {
typedef std::
conditional_t<std::is_same_v<T, std::string_view>, std::string, T>
IndexInnerType;
using Index = index::ScalarIndex<IndexInnerType>;
FixedVector<bool> result;
int processed_rows = 0;
for (size_t i = current_index_chunk_; i < num_index_chunk_; i++) {
// This cache result help getting result for every batch loop.
// It avoids indexing execute for evevy batch because indexing
// executing costs quite much time.
if (cached_index_chunk_id_ != i) {
const Index& index =
segment_->chunk_scalar_index<IndexInnerType>(field_id_, i);
auto* index_ptr = const_cast<Index*>(&index);
cached_index_chunk_res_ = std::move(func(index_ptr, values...));
cached_index_chunk_id_ = i;
}
auto size = ProcessIndexOneChunk(
result, i, cached_index_chunk_res_, processed_rows);
if (processed_rows + size >= batch_size_) {
current_index_chunk_ = i;
current_index_chunk_pos_ = i == current_index_chunk_
? current_index_chunk_pos_ + size
: size;
break;
}
processed_rows += size;
}
return result;
}
protected:
const segcore::SegmentInternalInterface* segment_;
const FieldId field_id_;
bool is_pk_field_{false};
DataType pk_type_;
Timestamp query_timestamp_;
int64_t batch_size_;
// State indicate position that expr computing at
// because expr maybe called for every batch.
bool is_index_mode_{false};
bool is_data_mode_{false};
int64_t num_rows_{0};
int64_t num_data_chunk_{0};
int64_t num_index_chunk_{0};
int64_t current_data_chunk_{0};
int64_t current_data_chunk_pos_{0};
int64_t current_index_chunk_{0};
int64_t current_index_chunk_pos_{0};
int64_t size_per_chunk_{0};
// Cache for index scan to avoid search index every batch
int64_t cached_index_chunk_id_{-1};
FixedVector<bool> cached_index_chunk_res_{};
};
std::vector<ExprPtr>
CompileExpressions(const std::vector<expr::TypedExprPtr>& logical_exprs,
ExecContext* context,
const std::unordered_set<std::string>& flatten_cadidates =
std::unordered_set<std::string>(),
bool enable_constant_folding = false);
std::vector<ExprPtr>
CompileInputs(const expr::TypedExprPtr& expr,
QueryContext* config,
const std::unordered_set<std::string>& flatten_cadidates);
ExprPtr
CompileExpression(const expr::TypedExprPtr& expr,
QueryContext* context,
const std::unordered_set<std::string>& flatten_cadidates,
bool enable_constant_folding);
class ExprSet {
public:
explicit ExprSet(const std::vector<expr::TypedExprPtr>& logical_exprs,
ExecContext* exec_ctx) {
exprs_ = CompileExpressions(logical_exprs, exec_ctx);
}
virtual ~ExprSet() = default;
void
Eval(EvalCtx& ctx, std::vector<VectorPtr>& results) {
Eval(0, exprs_.size(), true, ctx, results);
}
virtual void
Eval(int32_t begin,
int32_t end,
bool initialize,
EvalCtx& ctx,
std::vector<VectorPtr>& result);
void
Clear() {
exprs_.clear();
}
ExecContext*
get_exec_context() const {
return exec_ctx_;
}
size_t
size() const {
return exprs_.size();
}
const std::vector<std::shared_ptr<Expr>>&
exprs() const {
return exprs_;
}
const std::shared_ptr<Expr>&
expr(int32_t index) const {
return exprs_[index];
}
private:
std::vector<std::shared_ptr<Expr>> exprs_;
ExecContext* exec_ctx_;
};
} //namespace exec
} // namespace milvus