mirror of
https://gitee.com/milvus-io/milvus.git
synced 2025-12-07 01:28:27 +08:00
https://github.com/milvus-io/milvus/issues/35856 Signed-off-by: junjiejiangjjj <junjie.jiang@zilliz.com>
169 lines
5.4 KiB
Go
169 lines
5.4 KiB
Go
/*
|
|
* # Licensed to the LF AI & Data foundation under one
|
|
* # or more contributor license agreements. See the NOTICE file
|
|
* # distributed with this work for additional information
|
|
* # regarding copyright ownership. The ASF licenses this file
|
|
* # to you under the Apache License, Version 2.0 (the
|
|
* # "License"); you may not use this file except in compliance
|
|
* # with the License. You may obtain a copy of the License at
|
|
* #
|
|
* # http://www.apache.org/licenses/LICENSE-2.0
|
|
* #
|
|
* # Unless required by applicable law or agreed to in writing, software
|
|
* # distributed under the License is distributed on an "AS IS" BASIS,
|
|
* # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* # See the License for the specific language governing permissions and
|
|
* # limitations under the License.
|
|
*/
|
|
|
|
package embedding
|
|
|
|
import (
|
|
"fmt"
|
|
"strings"
|
|
|
|
"github.com/milvus-io/milvus-proto/go-api/v2/schemapb"
|
|
"github.com/milvus-io/milvus/internal/util/credentials"
|
|
"github.com/milvus-io/milvus/internal/util/function/models"
|
|
"github.com/milvus-io/milvus/internal/util/function/models/cohere"
|
|
"github.com/milvus-io/milvus/pkg/v2/util/typeutil"
|
|
)
|
|
|
|
type CohereEmbeddingProvider struct {
|
|
fieldDim int64
|
|
|
|
client *cohere.CohereClient
|
|
url string
|
|
modelName string
|
|
truncate string
|
|
embdType models.EmbeddingType
|
|
outputType string
|
|
|
|
maxBatch int
|
|
timeoutSec int64
|
|
}
|
|
|
|
func NewCohereEmbeddingProvider(fieldSchema *schemapb.FieldSchema, functionSchema *schemapb.FunctionSchema, params map[string]string, credentials *credentials.Credentials) (*CohereEmbeddingProvider, error) {
|
|
fieldDim, err := typeutil.GetDim(fieldSchema)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
apiKey, url, err := models.ParseAKAndURL(credentials, functionSchema.Params, params, models.CohereAIAKEnvStr)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
var modelName string
|
|
truncate := "END"
|
|
for _, param := range functionSchema.Params {
|
|
switch strings.ToLower(param.Key) {
|
|
case models.ModelNameParamKey:
|
|
modelName = param.Value
|
|
case models.TruncateParamKey:
|
|
if param.Value != "NONE" && param.Value != "START" && param.Value != "END" {
|
|
return nil, fmt.Errorf("Illegal parameters, %s only supports [NONE, START, END]", models.TruncateParamKey)
|
|
}
|
|
truncate = param.Value
|
|
default:
|
|
}
|
|
}
|
|
|
|
c, err := cohere.NewCohereClient(apiKey)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if url == "" {
|
|
url = "https://api.cohere.com/v2/embed"
|
|
}
|
|
|
|
embdType := models.GetEmbdType(fieldSchema.DataType)
|
|
if embdType == models.UnsupportEmbd {
|
|
return nil, fmt.Errorf("Unsupport output type: %s", fieldSchema.DataType)
|
|
}
|
|
|
|
outputType := func() string {
|
|
if embdType == models.Float32Embd {
|
|
return "float"
|
|
}
|
|
return "int8"
|
|
}()
|
|
|
|
provider := CohereEmbeddingProvider{
|
|
client: c,
|
|
url: url,
|
|
fieldDim: fieldDim,
|
|
modelName: modelName,
|
|
truncate: truncate,
|
|
embdType: embdType,
|
|
outputType: outputType,
|
|
maxBatch: 96,
|
|
timeoutSec: 30,
|
|
}
|
|
return &provider, nil
|
|
}
|
|
|
|
func (provider *CohereEmbeddingProvider) MaxBatch() int {
|
|
return 5 * provider.maxBatch
|
|
}
|
|
|
|
func (provider *CohereEmbeddingProvider) FieldDim() int64 {
|
|
return provider.fieldDim
|
|
}
|
|
|
|
// Specifies the type of input passed to the model. Required for embedding models v3 and higher.
|
|
func (provider *CohereEmbeddingProvider) getInputType(mode models.TextEmbeddingMode) string {
|
|
// v2 models not support instructor
|
|
if strings.HasSuffix(provider.modelName, "v2.0") {
|
|
return ""
|
|
}
|
|
if mode == models.InsertMode {
|
|
return "search_document" // Used for embeddings stored in a vector database for search use-cases.
|
|
}
|
|
return "search_query" // Used for embeddings of search queries run against a vector DB to find relevant documents.
|
|
}
|
|
|
|
func (provider *CohereEmbeddingProvider) CallEmbedding(texts []string, mode models.TextEmbeddingMode) (any, error) {
|
|
numRows := len(texts)
|
|
inputType := provider.getInputType(mode)
|
|
embRet := models.NewEmbdResult(numRows, provider.embdType)
|
|
for i := 0; i < numRows; i += provider.maxBatch {
|
|
end := i + provider.maxBatch
|
|
if end > numRows {
|
|
end = numRows
|
|
}
|
|
|
|
resp, err := provider.client.Embedding(provider.url, provider.modelName, texts[i:end], inputType, provider.outputType, provider.truncate, provider.timeoutSec)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if provider.embdType == models.Float32Embd {
|
|
if end-i != len(resp.Embeddings.Float) {
|
|
return nil, fmt.Errorf("Get embedding failed. The number of texts and embeddings does not match text:[%d], embedding:[%d]", end-i, len(resp.Embeddings.Float))
|
|
}
|
|
for _, item := range resp.Embeddings.Float {
|
|
if len(item) != int(provider.fieldDim) {
|
|
return nil, fmt.Errorf("The required embedding dim is [%d], but the embedding obtained from the model is [%d]",
|
|
provider.fieldDim, len(item))
|
|
}
|
|
}
|
|
embRet.Append(resp.Embeddings.Float)
|
|
} else {
|
|
if end-i != len(resp.Embeddings.Int8) {
|
|
return nil, fmt.Errorf("Get embedding failed. The number of texts and embeddings does not match text:[%d], embedding:[%d]", end-i, len(resp.Embeddings.Int8))
|
|
}
|
|
for _, item := range resp.Embeddings.Int8 {
|
|
if len(item) != int(provider.fieldDim) {
|
|
return nil, fmt.Errorf("The required embedding dim is [%d], but the embedding obtained from the model is [%d]",
|
|
provider.fieldDim, len(item))
|
|
}
|
|
}
|
|
embRet.Append(resp.Embeddings.Int8)
|
|
}
|
|
}
|
|
|
|
if embRet.EmbdType == models.Float32Embd {
|
|
return embRet.FloatEmbds, nil
|
|
}
|
|
return embRet.Int8Embds, nil
|
|
}
|