mirror of
https://gitee.com/milvus-io/milvus.git
synced 2025-12-07 09:38:39 +08:00
related: #25324 Search GroupBy function, used to aggregate result entities based on a specific scalar column. several points to mention: 1. Temporarliy, the whole groupby is implemented separated from iterative expr framework **for the first period** 2. In the long term, the groupBy operation will be incorporated into the iterative expr framework:https://github.com/milvus-io/milvus/pull/28166 3. This pr includes some unrelated mocked interface regarding alterIndex due to some unworth-to-mention reasons. All these un-associated content will be removed before the final pr is merged. This version of pr is only for review 4. All other related details were commented in the files comparison Signed-off-by: MrPresent-Han <chun.han@zilliz.com>
132 lines
4.7 KiB
C++
132 lines
4.7 KiB
C++
// Copyright (C) 2019-2020 Zilliz. All rights reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software distributed under the License
|
|
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
|
|
// or implied. See the License for the specific language governing permissions and limitations under the License
|
|
|
|
#include <cstdint>
|
|
#include <benchmark/benchmark.h>
|
|
#include <string>
|
|
#include "segcore/SegmentGrowing.h"
|
|
#include "segcore/SegmentSealed.h"
|
|
#include "test_utils/DataGen.h"
|
|
|
|
using namespace milvus;
|
|
using namespace milvus::query;
|
|
using namespace milvus::segcore;
|
|
|
|
static int dim = 768;
|
|
|
|
const auto schema = []() {
|
|
auto schema = std::make_shared<Schema>();
|
|
schema->AddDebugField(
|
|
"fakevec", DataType::VECTOR_FLOAT, dim, knowhere::metric::L2);
|
|
auto i64_fid = schema->AddDebugField("age", DataType::INT64);
|
|
schema->set_primary_field_id(i64_fid);
|
|
return schema;
|
|
}();
|
|
|
|
const auto search_plan = [] {
|
|
const char* raw_plan = R"(vector_anns: <
|
|
field_id: 100
|
|
query_info: <
|
|
topk: 5
|
|
round_decimal: -1
|
|
metric_type: "L2"
|
|
search_params: "{\"nprobe\": 10}"
|
|
>
|
|
placeholder_tag: "$0"
|
|
>)";
|
|
auto plan_str = translate_text_plan_to_binary_plan(raw_plan);
|
|
auto plan =
|
|
CreateSearchPlanByExpr(*schema, plan_str.data(), plan_str.size());
|
|
return plan;
|
|
}();
|
|
auto ph_group = [] {
|
|
auto num_queries = 10;
|
|
auto ph_group_raw = CreatePlaceholderGroup(num_queries, dim, 1024);
|
|
auto ph_group = ParsePlaceholderGroup(search_plan.get(),
|
|
ph_group_raw.SerializeAsString());
|
|
return ph_group;
|
|
}();
|
|
|
|
static void
|
|
Search_GrowingIndex(benchmark::State& state) {
|
|
// schema->AddDebugField("age", DataType::FLOAT);
|
|
|
|
static int64_t N = 1024 * 32;
|
|
const auto dataset_ = [] {
|
|
auto dataset_ = DataGen(schema, N);
|
|
return dataset_;
|
|
}();
|
|
|
|
auto chunk_rows = state.range(1) * 1024;
|
|
auto segconf = SegcoreConfig::default_config();
|
|
segconf.set_chunk_rows(chunk_rows);
|
|
|
|
std::map<std::string, std::string> index_params = {
|
|
{"index_type", "IVF_FLAT"}, {"metric_type", "L2"}, {"nlist", "128"}};
|
|
std::map<std::string, std::string> type_params = {{"dim", "128"}};
|
|
FieldIndexMeta fieldIndexMeta(schema->get_field_id(FieldName("fakevec")),
|
|
std::move(index_params),
|
|
std::move(type_params));
|
|
segconf.set_enable_interim_segment_index(true);
|
|
std::map<FieldId, FieldIndexMeta> filedMap = {
|
|
{schema->get_field_id(FieldName("fakevec")), fieldIndexMeta}};
|
|
IndexMetaPtr metaPtr =
|
|
std::make_shared<CollectionIndexMeta>(226985, std::move(filedMap));
|
|
|
|
auto segment = CreateGrowingSegment(schema, metaPtr, -1, segconf);
|
|
|
|
segment->PreInsert(N);
|
|
segment->Insert(0,
|
|
N,
|
|
dataset_.row_ids_.data(),
|
|
dataset_.timestamps_.data(),
|
|
dataset_.raw_);
|
|
|
|
for (auto _ : state) {
|
|
auto qr = segment->Search(search_plan.get(), ph_group.get());
|
|
}
|
|
}
|
|
|
|
BENCHMARK(Search_GrowingIndex)
|
|
->MinTime(5)
|
|
->ArgsProduct({{true, false}, {8, 16, 32}});
|
|
|
|
static void
|
|
Search_Sealed(benchmark::State& state) {
|
|
auto segment = CreateSealedSegment(schema);
|
|
static int64_t N = 1024 * 1024;
|
|
const auto dataset_ = [] {
|
|
auto dataset_ = DataGen(schema, N);
|
|
return dataset_;
|
|
}();
|
|
SealedLoadFieldData(dataset_, *segment);
|
|
auto choice = state.range(0);
|
|
if (choice == 0) {
|
|
// Brute Force
|
|
} else if (choice == 1) {
|
|
// hnsw
|
|
auto vec = dataset_.get_col<float>(milvus::FieldId(100));
|
|
auto indexing = GenVecIndexing(N, dim, vec.data(), knowhere::IndexEnum::INDEX_HNSW);
|
|
segcore::LoadIndexInfo info;
|
|
info.index = std::move(indexing);
|
|
info.field_id = (*schema)[FieldName("fakevec")].get_id().get();
|
|
info.index_params["index_type"] = "HNSW";
|
|
info.index_params["metric_type"] = knowhere::metric::L2;
|
|
segment->DropFieldData(milvus::FieldId(100));
|
|
segment->LoadIndex(info);
|
|
}
|
|
for (auto _ : state) {
|
|
auto qr = segment->Search(search_plan.get(), ph_group.get());
|
|
}
|
|
}
|
|
|
|
BENCHMARK(Search_Sealed)->MinTime(5)->Arg(1)->Arg(0);
|