milvus/internal/util/function/rerank/weighted_function.go
congqixia 99598ae5ec
enhance: Add param item for hybrid search requery policy (#44466)
Related to #39757

---------

Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
2025-09-24 17:32:04 +08:00

125 lines
4.5 KiB
Go

/*
* # Licensed to the LF AI & Data foundation under one
* # or more contributor license agreements. See the NOTICE file
* # distributed with this work for additional information
* # regarding copyright ownership. The ASF licenses this file
* # to you under the Apache License, Version 2.0 (the
* # "License"); you may not use this file except in compliance
* # with the License. You may obtain a copy of the License at
* #
* # http://www.apache.org/licenses/LICENSE-2.0
* #
* # Unless required by applicable law or agreed to in writing, software
* # distributed under the License is distributed on an "AS IS" BASIS,
* # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* # See the License for the specific language governing permissions and
* # limitations under the License.
*/
package rerank
import (
"context"
"encoding/json"
"fmt"
"strconv"
"strings"
"github.com/milvus-io/milvus-proto/go-api/v2/schemapb"
"github.com/milvus-io/milvus/pkg/v2/util/merr"
)
const (
WeightsParamsKey string = "weights"
NormScoreKey string = "norm_score"
)
type WeightedFunction[T PKType] struct {
RerankBase
weight []float32
needNorm bool
}
func newWeightedFunction(collSchema *schemapb.CollectionSchema, funcSchema *schemapb.FunctionSchema) (Reranker, error) {
base, err := newRerankBase(collSchema, funcSchema, WeightedName, true)
if err != nil {
return nil, err
}
if len(base.GetInputFieldNames()) != 0 {
return nil, fmt.Errorf("The weighted function does not support input parameters, but got %s", base.GetInputFieldNames())
}
var weights []float32
needNorm := false
for _, param := range funcSchema.Params {
switch strings.ToLower(param.Key) {
case WeightsParamsKey:
if err := json.Unmarshal([]byte(param.Value), &weights); err != nil {
return nil, fmt.Errorf("Parse %s param failed, weight should be []float, bug got: %s", WeightsParamsKey, param.Value)
}
for _, weight := range weights {
if weight < 0 || weight > 1 {
return nil, fmt.Errorf("rank param weight should be in range [0, 1]")
}
}
case NormScoreKey:
if needNorm, err = strconv.ParseBool(param.Value); err != nil {
return nil, fmt.Errorf("%s params must be true/false, bug got %s", NormScoreKey, param.Value)
}
}
}
if len(weights) == 0 {
return nil, fmt.Errorf(WeightsParamsKey + " not found")
}
if base.pkType == schemapb.DataType_Int64 {
return &WeightedFunction[int64]{RerankBase: *base, weight: weights, needNorm: needNorm}, nil
} else {
return &WeightedFunction[string]{RerankBase: *base, weight: weights, needNorm: needNorm}, nil
}
}
func (weighted *WeightedFunction[T]) processOneSearchData(ctx context.Context, searchParams *SearchParams, cols []*columns, idGroup map[any]any) (*IDScores[T], error) {
if len(cols) != len(weighted.weight) {
return nil, merr.WrapErrParameterInvalid(fmt.Sprint(len(cols)), fmt.Sprint(len(weighted.weight)), "the length of weights param mismatch with ann search requests")
}
weightedScores := map[T]float32{}
isMixd, descendingOrder := classifyMetricsOrder(searchParams.searchMetrics)
idLocations := make(map[T]IDLoc)
for i, col := range cols {
if col.size == 0 {
continue
}
// If it is a mixed metric (L2 + IP), with both large to small sorting and small to large sorting,
// force the small to large sorting scores to be converted to large to small sorting
normFunc := getNormalizeFunc(weighted.needNorm, searchParams.searchMetrics[i], isMixd)
ids := col.ids.([]T)
for j, id := range ids {
if score, ok := weightedScores[id]; !ok {
idLocations[id] = IDLoc{batchIdx: i, offset: j}
weightedScores[id] = weighted.weight[i] * normFunc(col.scores[j])
} else {
weightedScores[id] = score + weighted.weight[i]*normFunc(col.scores[j])
}
}
}
if searchParams.isGrouping() {
return newGroupingIDScores(weightedScores, idLocations, searchParams, idGroup)
}
// If normlize is set, the final result is sorted from largest to smallest, otherwise it depends on descendingOrder
return newIDScores(weightedScores, idLocations, searchParams, weighted.needNorm || descendingOrder), nil
}
func (weighted *WeightedFunction[T]) Process(ctx context.Context, searchParams *SearchParams, inputs *rerankInputs) (*rerankOutputs, error) {
outputs := newRerankOutputs(inputs, searchParams)
for _, cols := range inputs.data {
idScore, err := weighted.processOneSearchData(ctx, searchParams, cols, inputs.idGroupValue)
if err != nil {
return nil, err
}
appendResult(inputs, outputs, idScore)
}
return outputs, nil
}