mirror of
https://gitee.com/milvus-io/milvus.git
synced 2025-12-29 06:55:27 +08:00
- add cases for creating collections - change unique str from var to function - improve coding standards See also: #5273 #5285 Signed-off-by: ThreadDao yufen.zong@zilliz.com
108 lines
4.3 KiB
Python
108 lines
4.3 KiB
Python
import os
|
|
import random
|
|
import string
|
|
import numpy as np
|
|
from sklearn import preprocessing
|
|
|
|
from pymilvus_orm.types import DataType
|
|
from pymilvus_orm.schema import CollectionSchema, FieldSchema
|
|
|
|
from common.common_type import int_field_desc, float_field_desc, float_vec_field_desc, binary_vec_field_desc
|
|
from common.common_type import default_nb, all_index_types, binary_support, default_index_params
|
|
from common.common_type import default_int64_field, default_float_field, default_float_vec_field_name, default_binary_vec_field_name
|
|
from common.common_type import default_dim, collection_desc, default_collection_desc, default_binary_desc
|
|
from utils.util_log import test_log as log
|
|
|
|
"""" Methods of processing data """
|
|
l2 = lambda x, y: np.linalg.norm(np.array(x) - np.array(y))
|
|
|
|
|
|
def gen_unique_str(str_value=None):
|
|
prefix = "".join(random.choice(string.ascii_letters + string.digits) for _ in range(8))
|
|
return "test_" + prefix if str_value is None else str_value + "_" + prefix
|
|
|
|
|
|
def gen_int64_field(is_primary=False, description=int_field_desc):
|
|
int64_field = FieldSchema(name=default_int64_field, dtype=DataType.INT64, description=description,
|
|
is_primary=is_primary)
|
|
return int64_field
|
|
|
|
|
|
def gen_float_field(is_primary=False, description=float_field_desc):
|
|
float_field = FieldSchema(name=default_float_field, dtype=DataType.FLOAT, description=description,
|
|
is_primary=is_primary)
|
|
return float_field
|
|
|
|
|
|
def gen_float_vec_field(is_primary=False, dim=default_dim, description=float_vec_field_desc):
|
|
float_vec_field = FieldSchema(name=default_float_vec_field_name, dtype=DataType.FLOAT_VECTOR,
|
|
description=description, dim=dim, is_primary=is_primary)
|
|
return float_vec_field
|
|
|
|
|
|
def gen_binary_vec_field(is_primary=False, dim=default_dim, description=binary_vec_field_desc):
|
|
binary_vec_field = FieldSchema(name=default_binary_vec_field_name, dtype=DataType.BINARY_VECTOR,
|
|
description=description, dim=dim, is_primary=is_primary)
|
|
return binary_vec_field
|
|
|
|
|
|
def gen_default_collection_schema(description=default_collection_desc, primary_field=None):
|
|
fields = [gen_int64_field(), gen_float_field(), gen_float_vec_field()]
|
|
schema = CollectionSchema(fields=fields, description=description, primary_field=primary_field)
|
|
return schema
|
|
|
|
|
|
def gen_collection_schema(fields, description=collection_desc, **kwargs):
|
|
schema = CollectionSchema(fields=fields, description=description, **kwargs)
|
|
return schema
|
|
|
|
|
|
def gen_default_binary_collection_schema(description=default_binary_desc, primary_field=None):
|
|
fields = [gen_int64_field(), gen_float_field(), gen_binary_vec_field()]
|
|
binary_schema = CollectionSchema(fields=fields, description=description, primary_field=primary_field)
|
|
return binary_schema
|
|
|
|
|
|
def gen_simple_index():
|
|
index_params = []
|
|
for i in range(len(all_index_types)):
|
|
if all_index_types[i] in binary_support:
|
|
continue
|
|
dic = {"index_type": all_index_types[i], "metric_type": "L2"}
|
|
dic.update({"params": default_index_params[i]})
|
|
index_params.append(dic)
|
|
return index_params
|
|
|
|
|
|
def get_vectors(num, dim, is_normal=True):
|
|
vectors = [[random.random() for _ in range(dim)] for _ in range(num)]
|
|
vectors = preprocessing.normalize(vectors, axis=1, norm='l2')
|
|
return vectors.tolist()
|
|
|
|
|
|
def get_entities(nb=default_nb, is_normal=False):
|
|
vectors = get_vectors(nb, default_dim, is_normal)
|
|
entities = [
|
|
{"name": "int64", "type": DataType.INT64, "values": [i for i in range(nb)]},
|
|
{"name": "float", "type": DataType.FLOAT, "values": [float(i) for i in range(nb)]},
|
|
{"name": default_float_vec_field_name, "type": DataType.FLOAT_VECTOR, "values": vectors}
|
|
]
|
|
return entities
|
|
|
|
|
|
def modify_file(file_name_list, input_content=""):
|
|
if not isinstance(file_name_list, list):
|
|
log.error("[modify_file] file is not a list.")
|
|
|
|
for file_name in file_name_list:
|
|
if not os.path.isfile(file_name):
|
|
log.error("[modify_file] file(%s) is not exist." % file_name)
|
|
|
|
with open(file_name, "r+") as f:
|
|
f.seek(0)
|
|
f.truncate()
|
|
f.write(input_content)
|
|
f.close()
|
|
|
|
log.info("[modify_file] File(%s) modification is complete." % file_name_list)
|