milvus/cpp/src/scheduler/task/SearchTask.cpp
starlord 965ca2c9c1 format scheduler code
Former-commit-id: c2ff1ac702af62b4968a192d12b258bc90dd0b50
2019-09-27 11:50:01 +08:00

390 lines
14 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "scheduler/task/SearchTask.h"
#include "scheduler/job/SearchJob.h"
#include "metrics/Metrics.h"
#include "db/engine/EngineFactory.h"
#include "utils/TimeRecorder.h"
#include "utils/Log.h"
#include <thread>
#include <utility>
#include <string>
namespace zilliz {
namespace milvus {
namespace scheduler {
static constexpr size_t PARALLEL_REDUCE_THRESHOLD = 10000;
static constexpr size_t PARALLEL_REDUCE_BATCH = 1000;
std::mutex XSearchTask::merge_mutex_;
//bool
//NeedParallelReduce(uint64_t nq, uint64_t topk) {
// server::ServerConfig &config = server::ServerConfig::GetInstance();
// server::ConfigNode &db_config = config.GetConfig(server::CONFIG_DB);
// bool need_parallel = db_config.GetBoolValue(server::CONFIG_DB_PARALLEL_REDUCE, false);
// if (!need_parallel) {
// return false;
// }
//
// return nq * topk >= PARALLEL_REDUCE_THRESHOLD;
//}
//
//void
//ParallelReduce(std::function<void(size_t, size_t)> &reduce_function, size_t max_index) {
// size_t reduce_batch = PARALLEL_REDUCE_BATCH;
//
// auto thread_count = std::thread::hardware_concurrency() - 1; //not all core do this work
// if (thread_count > 0) {
// reduce_batch = max_index / thread_count + 1;
// }
// ENGINE_LOG_DEBUG << "use " << thread_count <<
// " thread parallelly do reduce, each thread process " << reduce_batch << " vectors";
//
// std::vector<std::shared_ptr<std::thread> > thread_array;
// size_t from_index = 0;
// while (from_index < max_index) {
// size_t to_index = from_index + reduce_batch;
// if (to_index > max_index) {
// to_index = max_index;
// }
//
// auto reduce_thread = std::make_shared<std::thread>(reduce_function, from_index, to_index);
// thread_array.push_back(reduce_thread);
//
// from_index = to_index;
// }
//
// for (auto &thread_ptr : thread_array) {
// thread_ptr->join();
// }
//}
void
CollectFileMetrics(int file_type, size_t file_size) {
switch (file_type) {
case TableFileSchema::RAW:
case TableFileSchema::TO_INDEX: {
server::Metrics::GetInstance().RawFileSizeHistogramObserve(file_size);
server::Metrics::GetInstance().RawFileSizeTotalIncrement(file_size);
server::Metrics::GetInstance().RawFileSizeGaugeSet(file_size);
break;
}
default: {
server::Metrics::GetInstance().IndexFileSizeHistogramObserve(file_size);
server::Metrics::GetInstance().IndexFileSizeTotalIncrement(file_size);
server::Metrics::GetInstance().IndexFileSizeGaugeSet(file_size);
break;
}
}
}
XSearchTask::XSearchTask(TableFileSchemaPtr file)
: Task(TaskType::SearchTask), file_(file) {
if (file_) {
index_engine_ = EngineFactory::Build(file_->dimension_,
file_->location_,
(EngineType) file_->engine_type_,
(MetricType) file_->metric_type_,
file_->nlist_);
}
}
void
XSearchTask::Load(LoadType type, uint8_t device_id) {
TimeRecorder rc("");
Status stat = Status::OK();
std::string error_msg;
std::string type_str;
try {
if (type == LoadType::DISK2CPU) {
stat = index_engine_->Load();
type_str = "DISK2CPU";
} else if (type == LoadType::CPU2GPU) {
stat = index_engine_->CopyToGpu(device_id);
type_str = "CPU2GPU";
} else if (type == LoadType::GPU2CPU) {
stat = index_engine_->CopyToCpu();
type_str = "GPU2CPU";
} else {
error_msg = "Wrong load type";
stat = Status(SERVER_UNEXPECTED_ERROR, error_msg);
}
} catch (std::exception &ex) {
//typical error: out of disk space or permition denied
error_msg = "Failed to load index file: " + std::string(ex.what());
stat = Status(SERVER_UNEXPECTED_ERROR, error_msg);
}
if (!stat.ok()) {
Status s;
if (stat.ToString().find("out of memory") != std::string::npos) {
error_msg = "out of memory: " + type_str;
s = Status(SERVER_OUT_OF_MEMORY, error_msg);
} else {
error_msg = "Failed to load index file: " + type_str;
s = Status(SERVER_UNEXPECTED_ERROR, error_msg);
}
if (auto job = job_.lock()) {
auto search_job = std::static_pointer_cast<scheduler::SearchJob>(job);
search_job->SearchDone(file_->id_);
search_job->GetStatus() = s;
}
return;
}
size_t file_size = index_engine_->PhysicalSize();
std::string info = "Load file id:" + std::to_string(file_->id_) + " file type:" + std::to_string(file_->file_type_)
+ " size:" + std::to_string(file_size) + " bytes from location: " + file_->location_ + " totally cost";
double span = rc.ElapseFromBegin(info);
// for (auto &context : search_contexts_) {
// context->AccumLoadCost(span);
// }
CollectFileMetrics(file_->file_type_, file_size);
//step 2: return search task for later execution
index_id_ = file_->id_;
index_type_ = file_->file_type_;
// search_contexts_.swap(search_contexts_);
}
void
XSearchTask::Execute() {
if (index_engine_ == nullptr) {
return;
}
// ENGINE_LOG_DEBUG << "Searching in file id:" << index_id_ << " with "
// << search_contexts_.size() << " tasks";
TimeRecorder rc("DoSearch file id:" + std::to_string(index_id_));
server::CollectDurationMetrics metrics(index_type_);
std::vector<int64_t> output_ids;
std::vector<float> output_distance;
if (auto job = job_.lock()) {
auto search_job = std::static_pointer_cast<scheduler::SearchJob>(job);
//step 1: allocate memory
uint64_t nq = search_job->nq();
uint64_t topk = search_job->topk();
uint64_t nprobe = search_job->nprobe();
const float *vectors = search_job->vectors();
output_ids.resize(topk * nq);
output_distance.resize(topk * nq);
std::string hdr = "job " + std::to_string(search_job->id()) +
" nq " + std::to_string(nq) +
" topk " + std::to_string(topk);
try {
//step 2: search
index_engine_->Search(nq, vectors, topk, nprobe, output_distance.data(), output_ids.data());
double span = rc.RecordSection(hdr + ", do search");
// search_job->AccumSearchCost(span);
//step 3: cluster result
scheduler::ResultSet result_set;
auto spec_k = index_engine_->Count() < topk ? index_engine_->Count() : topk;
XSearchTask::ClusterResult(output_ids, output_distance, nq, spec_k, result_set);
span = rc.RecordSection(hdr + ", cluster result");
// search_job->AccumReduceCost(span);
// step 4: pick up topk result
XSearchTask::TopkResult(result_set, topk, metric_l2, search_job->GetResult());
span = rc.RecordSection(hdr + ", reduce topk");
// search_job->AccumReduceCost(span);
} catch (std::exception &ex) {
ENGINE_LOG_ERROR << "SearchTask encounter exception: " << ex.what();
// search_job->IndexSearchDone(index_id_);//mark as done avoid dead lock, even search failed
}
//step 5: notify to send result to client
search_job->SearchDone(index_id_);
}
rc.ElapseFromBegin("totally cost");
// release index in resource
index_engine_ = nullptr;
}
Status
XSearchTask::ClusterResult(const std::vector<int64_t> &output_ids,
const std::vector<float> &output_distance,
uint64_t nq,
uint64_t topk,
scheduler::ResultSet &result_set) {
if (output_ids.size() < nq * topk || output_distance.size() < nq * topk) {
std::string msg = "Invalid id array size: " + std::to_string(output_ids.size()) +
" distance array size: " + std::to_string(output_distance.size());
ENGINE_LOG_ERROR << msg;
return Status(DB_ERROR, msg);
}
result_set.clear();
result_set.resize(nq);
std::function<void(size_t, size_t)> reduce_worker = [&](size_t from_index, size_t to_index) {
for (auto i = from_index; i < to_index; i++) {
scheduler::Id2DistanceMap id_distance;
id_distance.reserve(topk);
for (auto k = 0; k < topk; k++) {
uint64_t index = i * topk + k;
if (output_ids[index] < 0) {
continue;
}
id_distance.push_back(std::make_pair(output_ids[index], output_distance[index]));
}
result_set[i] = id_distance;
}
};
// if (NeedParallelReduce(nq, topk)) {
// ParallelReduce(reduce_worker, nq);
// } else {
reduce_worker(0, nq);
// }
return Status::OK();
}
Status
XSearchTask::MergeResult(scheduler::Id2DistanceMap &distance_src,
scheduler::Id2DistanceMap &distance_target,
uint64_t topk,
bool ascending) {
//Note: the score_src and score_target are already arranged by score in ascending order
if (distance_src.empty()) {
ENGINE_LOG_WARNING << "Empty distance source array";
return Status::OK();
}
std::unique_lock<std::mutex> lock(merge_mutex_);
if (distance_target.empty()) {
distance_target.swap(distance_src);
return Status::OK();
}
size_t src_count = distance_src.size();
size_t target_count = distance_target.size();
scheduler::Id2DistanceMap distance_merged;
distance_merged.reserve(topk);
size_t src_index = 0, target_index = 0;
while (true) {
//all score_src items are merged, if score_merged.size() still less than topk
//move items from score_target to score_merged until score_merged.size() equal topk
if (src_index >= src_count) {
for (size_t i = target_index; i < target_count && distance_merged.size() < topk; ++i) {
distance_merged.push_back(distance_target[i]);
}
break;
}
//all score_target items are merged, if score_merged.size() still less than topk
//move items from score_src to score_merged until score_merged.size() equal topk
if (target_index >= target_count) {
for (size_t i = src_index; i < src_count && distance_merged.size() < topk; ++i) {
distance_merged.push_back(distance_src[i]);
}
break;
}
//compare score,
// if ascending = true, put smallest score to score_merged one by one
// else, put largest score to score_merged one by one
auto &src_pair = distance_src[src_index];
auto &target_pair = distance_target[target_index];
if (ascending) {
if (src_pair.second > target_pair.second) {
distance_merged.push_back(target_pair);
target_index++;
} else {
distance_merged.push_back(src_pair);
src_index++;
}
} else {
if (src_pair.second < target_pair.second) {
distance_merged.push_back(target_pair);
target_index++;
} else {
distance_merged.push_back(src_pair);
src_index++;
}
}
//score_merged.size() already equal topk
if (distance_merged.size() >= topk) {
break;
}
}
distance_target.swap(distance_merged);
return Status::OK();
}
Status
XSearchTask::TopkResult(scheduler::ResultSet &result_src,
uint64_t topk,
bool ascending,
scheduler::ResultSet &result_target) {
if (result_target.empty()) {
result_target.swap(result_src);
return Status::OK();
}
if (result_src.size() != result_target.size()) {
std::string msg = "Invalid result set size";
ENGINE_LOG_ERROR << msg;
return Status(DB_ERROR, msg);
}
std::function<void(size_t, size_t)> ReduceWorker = [&](size_t from_index, size_t to_index) {
for (size_t i = from_index; i < to_index; i++) {
scheduler::Id2DistanceMap &score_src = result_src[i];
scheduler::Id2DistanceMap &score_target = result_target[i];
XSearchTask::MergeResult(score_src, score_target, topk, ascending);
}
};
// if (NeedParallelReduce(result_src.size(), topk)) {
// ParallelReduce(ReduceWorker, result_src.size());
// } else {
ReduceWorker(0, result_src.size());
// }
return Status::OK();
}
} // namespace scheduler
} // namespace milvus
} // namespace zilliz