quicksilver 952f34352a enable build milvus on centos7 (#769)
* enable build milvus on centos7

* Update build enviroment Centos7 dockerfile

* Update Dockerfile

* Update Dockerfile

* Update Dockerfile

* Update Dockerfile

* Update Dockerfile

* Update Dockerfile

* Update Dockerfile

* add centos7_build_deps.sh

* add centos7 build cpu version enviroment

* add centos7 on github actions

* fix bug

* fix bug

* fix bug

* update ci/docker/centos-7-core.dockerfile

* fix github actions bug

* update centos7 case on github actions

* update docker-compose.yml

* debug centos case on github actions

* debug centos case on github actions

* add centos7 deploy dockerfile
2019-12-16 14:07:20 +08:00
2019-12-16 14:07:20 +08:00
2019-11-27 17:49:46 +08:00
2019-09-28 12:36:14 +08:00
2019-09-28 15:00:26 +08:00
2019-12-16 14:07:20 +08:00
2019-12-14 15:11:02 +08:00
2019-10-15 18:43:51 +08:00
2019-10-21 17:25:37 +08:00
2019-12-04 16:27:44 +08:00
2019-09-16 14:43:44 +08:00
2019-11-05 02:24:15 +08:00

Milvuslogo

Slack LICENSE Language codebeat badge Release Release_date codecov All Contributors

中文版 | 日本語版

What is Milvus

Milvus is the world's fastest similarity search engine for massive-scale feature vectors. Built with heterogeneous computing architecture for the best cost efficiency. Searches over billion-scale vectors take only milliseconds with minimum computing resources.

For more detailed introduction of Milvus and its architecture, see Milvus overview.

Milvus provides stable Python, Java and C++ SDKs.

Keep up-to-date with newest releases and latest updates by reading Milvus release notes.

Get started

See the Milvus install guide for using Docker containers. To install Milvus from source code, see build from source.

To edit Milvus settings, read Milvus configuration.

Try your first Milvus program

Try running a program with Milvus using Python or Java example code.

To use C++ example code, use below command:

 # Run Milvus C++ example
 $ cd [Milvus root path]/core/milvus/bin
 $ ./sdk_simple

Roadmap

Please read our roadmap for upcoming features.

Contribution guidelines

Contributions are welcomed and greatly appreciated. Please read our contribution guidelines for detailed contribution workflow. This project adheres to the code of conduct of Milvus. By participating, you are expected to uphold this code.

We use GitHub issues to track issues and bugs. For general questions and public discussions, please join our community.

Join our community

To connect with other users and contributors, welcome to join our Slack channel.

Contributors

Below is a list of Milvus contributors. We greatly appreciate your contributions!


zerowe-seven

💻

erdustiggen

💻

gaolizhou

💻

Sijie Zhang

📖

PizzaL

💻

levylll

💻

Resources

License

Apache License 2.0

Description
Milvus 是一款全球领先的开源向量数据库,赋能 AI 应用和向量相似度搜索,加速非结构化数据检索。
Readme Apache-2.0 212 MiB
Languages
Go 59%
C++ 19.7%
Python 19.5%
Shell 0.7%
Groovy 0.4%
Other 0.5%