milvus/internal/core/unittest/test_growing_index.cpp
Buqian Zheng 070dfc77bf
feat: [Sparse Float Vector] segcore basics and index building (#30357)
This commit adds sparse float vector support to segcore with the
following:

1. data type enum declarations
2. Adds corresponding data structures for handling sparse float vectors
in various scenarios, including:
* FieldData as a bridge between the binlog and the in memory data
structures
* mmap::Column as the in memory representation of a sparse float vector
column of a sealed segment;
* ConcurrentVector as the in memory representation of a sparse float
vector of a growing segment which supports inserts.
3. Adds logic in payload reader/writer to serialize/deserialize from/to
binlog
4. Adds the ability to allow the index node to build sparse float vector
index
5. Adds the ability to allow the query node to build growing index for
growing segment and temp index for sealed segment without index built

This commit also includes some code cleanness, comment improvement, and
some unit tests for sparse vector.

https://github.com/milvus-io/milvus/issues/29419

Signed-off-by: Buqian Zheng <zhengbuqian@gmail.com>
2024-03-11 14:45:02 +08:00

216 lines
8.8 KiB
C++

// Copyright (C) 2019-2020 Zilliz. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under the License
#include <gtest/gtest.h>
#include "pb/plan.pb.h"
#include "pb/schema.pb.h"
#include "query/Plan.h"
#include "segcore/SegmentGrowing.h"
#include "segcore/SegmentGrowingImpl.h"
#include "test_utils/DataGen.h"
using namespace milvus;
using namespace milvus::segcore;
namespace pb = milvus::proto;
TEST(GrowingIndex, Correctness) {
auto schema = std::make_shared<Schema>();
auto pk = schema->AddDebugField("pk", DataType::INT64);
auto random = schema->AddDebugField("random", DataType::DOUBLE);
auto vec = schema->AddDebugField(
"embeddings", DataType::VECTOR_FLOAT, 128, knowhere::metric::L2);
schema->set_primary_field_id(pk);
std::map<std::string, std::string> index_params = {
{"index_type", "IVF_FLAT"}, {"metric_type", "L2"}, {"nlist", "128"}};
std::map<std::string, std::string> type_params = {{"dim", "128"}};
FieldIndexMeta fieldIndexMeta(
vec, std::move(index_params), std::move(type_params));
auto& config = SegcoreConfig::default_config();
config.set_chunk_rows(1024);
config.set_enable_interim_segment_index(true);
std::map<FieldId, FieldIndexMeta> filedMap = {{vec, fieldIndexMeta}};
IndexMetaPtr metaPtr =
std::make_shared<CollectionIndexMeta>(226985, std::move(filedMap));
auto segment = CreateGrowingSegment(schema, metaPtr);
auto segmentImplPtr = dynamic_cast<SegmentGrowingImpl*>(segment.get());
milvus::proto::plan::PlanNode plan_node;
auto vector_anns = plan_node.mutable_vector_anns();
vector_anns->set_vector_type(milvus::proto::plan::VectorType::FloatVector);
vector_anns->set_placeholder_tag("$0");
vector_anns->set_field_id(102);
auto query_info = vector_anns->mutable_query_info();
query_info->set_topk(5);
query_info->set_round_decimal(3);
query_info->set_metric_type("l2");
query_info->set_search_params(R"({"nprobe": 16})");
auto plan_str = plan_node.SerializeAsString();
milvus::proto::plan::PlanNode range_query_plan_node;
auto vector_range_querys = range_query_plan_node.mutable_vector_anns();
vector_range_querys->set_vector_type(
milvus::proto::plan::VectorType::FloatVector);
vector_range_querys->set_placeholder_tag("$0");
vector_range_querys->set_field_id(102);
auto range_query_info = vector_range_querys->mutable_query_info();
range_query_info->set_topk(5);
range_query_info->set_round_decimal(3);
range_query_info->set_metric_type("l2");
range_query_info->set_search_params(
R"({"nprobe": 10, "radius": 600, "range_filter": 500})");
auto range_plan_str = range_query_plan_node.SerializeAsString();
int64_t per_batch = 10000;
int64_t n_batch = 20;
int64_t top_k = 5;
for (int64_t i = 0; i < n_batch; i++) {
auto dataset = DataGen(schema, per_batch);
auto offset = segment->PreInsert(per_batch);
auto pks = dataset.get_col<int64_t>(pk);
segment->Insert(offset,
per_batch,
dataset.row_ids_.data(),
dataset.timestamps_.data(),
dataset.raw_);
auto filed_data = segmentImplPtr->get_insert_record()
.get_field_data<milvus::FloatVector>(vec);
auto inserted = (i + 1) * per_batch;
//once index built, chunk data will be removed
if (i < 2) {
EXPECT_EQ(filed_data->num_chunk(),
upper_div(inserted, filed_data->get_size_per_chunk()));
} else {
EXPECT_EQ(filed_data->num_chunk(), 0);
}
auto num_queries = 5;
auto ph_group_raw = CreatePlaceholderGroup(num_queries, 128, 1024);
auto plan = milvus::query::CreateSearchPlanByExpr(
*schema, plan_str.data(), plan_str.size());
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
Timestamp timestamp = 1000000;
auto sr = segment->Search(plan.get(), ph_group.get(), timestamp);
EXPECT_EQ(sr->total_nq_, num_queries);
EXPECT_EQ(sr->unity_topK_, top_k);
EXPECT_EQ(sr->distances_.size(), num_queries * top_k);
EXPECT_EQ(sr->seg_offsets_.size(), num_queries * top_k);
auto range_plan = milvus::query::CreateSearchPlanByExpr(
*schema, range_plan_str.data(), range_plan_str.size());
auto range_ph_group = ParsePlaceholderGroup(
range_plan.get(), ph_group_raw.SerializeAsString());
auto range_sr =
segment->Search(range_plan.get(), range_ph_group.get(), timestamp);
ASSERT_EQ(range_sr->total_nq_, num_queries);
EXPECT_EQ(sr->unity_topK_, top_k);
EXPECT_EQ(sr->distances_.size(), num_queries * top_k);
EXPECT_EQ(sr->seg_offsets_.size(), num_queries * top_k);
for (int j = 0; j < range_sr->seg_offsets_.size(); j++) {
if (range_sr->seg_offsets_[j] != -1) {
EXPECT_TRUE(sr->distances_[j] >= 500.0 &&
sr->distances_[j] <= 600.0);
}
}
}
}
TEST(GrowingIndex, MissIndexMeta) {
auto schema = std::make_shared<Schema>();
auto pk = schema->AddDebugField("pk", DataType::INT64);
auto random = schema->AddDebugField("random", DataType::DOUBLE);
auto vec = schema->AddDebugField(
"embeddings", DataType::VECTOR_FLOAT, 128, knowhere::metric::L2);
schema->set_primary_field_id(pk);
auto& config = SegcoreConfig::default_config();
config.set_chunk_rows(1024);
config.set_enable_interim_segment_index(true);
auto segment = CreateGrowingSegment(schema, nullptr);
}
using Param = const char*;
class GrowingIndexGetVectorTest : public ::testing::TestWithParam<Param> {
void
SetUp() override {
auto param = GetParam();
metricType = param;
}
protected:
const char* metricType;
};
INSTANTIATE_TEST_SUITE_P(IndexTypeParameters,
GrowingIndexGetVectorTest,
::testing::Values(knowhere::metric::L2,
knowhere::metric::COSINE,
knowhere::metric::IP));
TEST_P(GrowingIndexGetVectorTest, GetVector) {
auto schema = std::make_shared<Schema>();
auto pk = schema->AddDebugField("pk", DataType::INT64);
auto random = schema->AddDebugField("random", DataType::DOUBLE);
auto vec = schema->AddDebugField(
"embeddings", DataType::VECTOR_FLOAT, 128, metricType);
schema->set_primary_field_id(pk);
std::map<std::string, std::string> index_params = {
{"index_type", "IVF_FLAT"},
{"metric_type", metricType},
{"nlist", "128"}};
std::map<std::string, std::string> type_params = {{"dim", "128"}};
FieldIndexMeta fieldIndexMeta(
vec, std::move(index_params), std::move(type_params));
auto& config = SegcoreConfig::default_config();
config.set_chunk_rows(1024);
config.set_enable_interim_segment_index(true);
std::map<FieldId, FieldIndexMeta> filedMap = {{vec, fieldIndexMeta}};
IndexMetaPtr metaPtr =
std::make_shared<CollectionIndexMeta>(100000, std::move(filedMap));
auto segment_growing = CreateGrowingSegment(schema, metaPtr);
auto segment = dynamic_cast<SegmentGrowingImpl*>(segment_growing.get());
int64_t per_batch = 5000;
int64_t n_batch = 20;
int64_t dim = 128;
for (int64_t i = 0; i < n_batch; i++) {
auto dataset = DataGen(schema, per_batch);
auto fakevec = dataset.get_col<float>(vec);
auto offset = segment->PreInsert(per_batch);
segment->Insert(offset,
per_batch,
dataset.row_ids_.data(),
dataset.timestamps_.data(),
dataset.raw_);
auto num_inserted = (i + 1) * per_batch;
auto ids_ds = GenRandomIds(num_inserted);
auto result =
segment->bulk_subscript(vec, ids_ds->GetIds(), num_inserted);
auto vector = result.get()->mutable_vectors()->float_vector().data();
EXPECT_TRUE(vector.size() == num_inserted * dim);
for (size_t i = 0; i < num_inserted; ++i) {
auto id = ids_ds->GetIds()[i];
for (size_t j = 0; j < 128; ++j) {
EXPECT_TRUE(vector[i * dim + j] ==
fakevec[(id % per_batch) * dim + j]);
}
}
}
}