mirror of
https://gitee.com/milvus-io/milvus.git
synced 2025-12-28 22:45:26 +08:00
issue: #46352 - Add GenerateChannelBalancedPrimaryKeys function supporting Int64 and VarChar PK types with even distribution across channels - Add GenerateBalancedInt64PKs and GenerateBalancedVarCharPKs helper functions using murmur3 and crc32 hash algorithms respectively - Add PrimaryKeyConfig struct to configure PK generation in InsertAndFlush - Update InsertAndFlush to use channel balanced PKs instead of random hash keys for better test coverage - Add comprehensive unit tests including end-to-end validation with typeutil.HashPK2Channels to verify exact channel distribution <!-- This is an auto-generated comment: release notes by coderabbit.ai --> ## Summary by CodeRabbit * **Tests** * Enhanced integration tests with configurable primary-key sequencing across insert batches. * Added utilities to generate channel-balanced primary keys for integer and string types. * Expanded test coverage validating balanced distribution, uniqueness, continuation, and large-scale behavior across multiple channels. <sub>✏️ Tip: You can customize this high-level summary in your review settings.</sub> <!-- end of auto-generated comment: release notes by coderabbit.ai --> --------- Signed-off-by: wayblink <anyang.wang@zilliz.com> Signed-off-by: Wei Liu <wei.liu@zilliz.com>
731 lines
21 KiB
Go
731 lines
21 KiB
Go
// Licensed to the LF AI & Data foundation under one
|
|
// or more contributor license agreements. See the NOTICE file
|
|
// distributed with this work for additional information
|
|
// regarding copyright ownership. The ASF licenses this file
|
|
// to you under the Apache License, Version 2.0 (the
|
|
// "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package integration
|
|
|
|
import (
|
|
"fmt"
|
|
"testing"
|
|
|
|
"github.com/stretchr/testify/assert"
|
|
|
|
"github.com/milvus-io/milvus-proto/go-api/v2/schemapb"
|
|
"github.com/milvus-io/milvus/pkg/v2/util/typeutil"
|
|
)
|
|
|
|
func TestGenerateBalancedInt64PKs(t *testing.T) {
|
|
t.Run("basic_functionality", func(t *testing.T) {
|
|
numRows := 100
|
|
numChannels := 4
|
|
pks, nextPK := GenerateBalancedInt64PKs(numRows, numChannels, 1)
|
|
|
|
assert.Equal(t, numRows, len(pks), "should generate correct number of PKs")
|
|
assert.Greater(t, nextPK, int64(numRows), "nextPK should be greater than numRows")
|
|
})
|
|
|
|
t.Run("zero_channels_defaults_to_one", func(t *testing.T) {
|
|
numRows := 10
|
|
pks, _ := GenerateBalancedInt64PKs(numRows, 0, 1)
|
|
|
|
assert.Equal(t, numRows, len(pks), "should generate correct number of PKs")
|
|
})
|
|
|
|
t.Run("negative_channels_defaults_to_one", func(t *testing.T) {
|
|
numRows := 10
|
|
pks, _ := GenerateBalancedInt64PKs(numRows, -5, 1)
|
|
|
|
assert.Equal(t, numRows, len(pks), "should generate correct number of PKs")
|
|
})
|
|
|
|
t.Run("balanced_distribution_by_hash", func(t *testing.T) {
|
|
numRows := 100
|
|
numChannels := 4
|
|
pks, _ := GenerateBalancedInt64PKs(numRows, numChannels, 1)
|
|
|
|
// Verify distribution by hashing PKs
|
|
channelCounts := make(map[int]int)
|
|
for _, pk := range pks {
|
|
hash := hashInt64ForChannel(pk)
|
|
ch := int(hash % uint32(numChannels))
|
|
channelCounts[ch]++
|
|
}
|
|
|
|
// Each channel should have 25 PKs (100/4 = 25)
|
|
expectedCount := numRows / numChannels
|
|
for ch := 0; ch < numChannels; ch++ {
|
|
assert.Equal(t, expectedCount, channelCounts[ch],
|
|
"channel %d should have %d PKs", ch, expectedCount)
|
|
}
|
|
})
|
|
|
|
t.Run("remainder_distribution", func(t *testing.T) {
|
|
numRows := 10
|
|
numChannels := 3
|
|
pks, _ := GenerateBalancedInt64PKs(numRows, numChannels, 1)
|
|
|
|
channelCounts := make(map[int]int)
|
|
for _, pk := range pks {
|
|
hash := hashInt64ForChannel(pk)
|
|
ch := int(hash % uint32(numChannels))
|
|
channelCounts[ch]++
|
|
}
|
|
|
|
// 10 / 3 = 3 base, remainder = 1
|
|
// Channel 0: 4 PKs (3 + 1 from remainder)
|
|
// Channel 1: 3 PKs
|
|
// Channel 2: 3 PKs
|
|
assert.Equal(t, 4, channelCounts[0], "channel 0 should have 4 PKs")
|
|
assert.Equal(t, 3, channelCounts[1], "channel 1 should have 3 PKs")
|
|
assert.Equal(t, 3, channelCounts[2], "channel 2 should have 3 PKs")
|
|
})
|
|
|
|
t.Run("unique_pks", func(t *testing.T) {
|
|
numRows := 100
|
|
numChannels := 4
|
|
pks, _ := GenerateBalancedInt64PKs(numRows, numChannels, 1)
|
|
|
|
// Verify all PKs are unique
|
|
seen := make(map[int64]bool)
|
|
for _, pk := range pks {
|
|
assert.False(t, seen[pk], "PK %d should be unique", pk)
|
|
seen[pk] = true
|
|
}
|
|
})
|
|
|
|
t.Run("positive_pks", func(t *testing.T) {
|
|
numRows := 50
|
|
numChannels := 5
|
|
pks, _ := GenerateBalancedInt64PKs(numRows, numChannels, 1)
|
|
|
|
for _, pk := range pks {
|
|
assert.Greater(t, pk, int64(0), "PKs should be positive")
|
|
}
|
|
})
|
|
|
|
t.Run("continuation_no_duplicates", func(t *testing.T) {
|
|
numRows := 100
|
|
numChannels := 4
|
|
|
|
// First call
|
|
pks1, nextPK := GenerateBalancedInt64PKs(numRows, numChannels, 1)
|
|
|
|
// Second call continues from nextPK
|
|
pks2, _ := GenerateBalancedInt64PKs(numRows, numChannels, nextPK)
|
|
|
|
// Verify no overlap between pks1 and pks2
|
|
seen := make(map[int64]bool)
|
|
for _, pk := range pks1 {
|
|
seen[pk] = true
|
|
}
|
|
for _, pk := range pks2 {
|
|
assert.False(t, seen[pk], "duplicate PK found: %d", pk)
|
|
}
|
|
})
|
|
|
|
t.Run("custom_start_pk", func(t *testing.T) {
|
|
numRows := 10
|
|
numChannels := 2
|
|
startPK := int64(1000)
|
|
|
|
pks, nextPK := GenerateBalancedInt64PKs(numRows, numChannels, startPK)
|
|
|
|
// All PKs should be >= startPK
|
|
for _, pk := range pks {
|
|
assert.GreaterOrEqual(t, pk, startPK, "PK should be >= startPK")
|
|
}
|
|
assert.Greater(t, nextPK, startPK, "nextPK should be > startPK")
|
|
})
|
|
}
|
|
|
|
func TestHashInt64ForChannel(t *testing.T) {
|
|
t.Run("consistency", func(t *testing.T) {
|
|
// Same input should always produce same output
|
|
pk := int64(12345)
|
|
hash1 := hashInt64ForChannel(pk)
|
|
hash2 := hashInt64ForChannel(pk)
|
|
|
|
assert.Equal(t, hash1, hash2, "same input should produce same hash")
|
|
})
|
|
|
|
t.Run("different_inputs_different_hashes", func(t *testing.T) {
|
|
// Different inputs should generally produce different hashes
|
|
// (with very high probability)
|
|
hashes := make(map[uint32]int64)
|
|
collisions := 0
|
|
|
|
for pk := int64(1); pk <= 1000; pk++ {
|
|
hash := hashInt64ForChannel(pk)
|
|
if existingPK, exists := hashes[hash]; exists {
|
|
collisions++
|
|
t.Logf("collision: PK %d and %d both hash to %d", pk, existingPK, hash)
|
|
}
|
|
hashes[hash] = pk
|
|
}
|
|
|
|
// Allow a small number of collisions (hash collisions are possible)
|
|
assert.Less(t, collisions, 10,
|
|
"too many hash collisions for first 1000 PKs")
|
|
})
|
|
|
|
t.Run("non_negative_result", func(t *testing.T) {
|
|
// The hash should always be non-negative (due to & 0x7fffffff)
|
|
testCases := []int64{0, 1, -1, 100, -100, 1 << 62, -(1 << 62)}
|
|
|
|
for _, pk := range testCases {
|
|
hash := hashInt64ForChannel(pk)
|
|
assert.GreaterOrEqual(t, hash, uint32(0),
|
|
"hash for PK %d should be non-negative", pk)
|
|
}
|
|
})
|
|
|
|
t.Run("distribution_across_channels", func(t *testing.T) {
|
|
// Test that hashes distribute well across channels
|
|
numChannels := 8
|
|
channelCounts := make(map[int]int)
|
|
|
|
for pk := int64(1); pk <= 8000; pk++ {
|
|
hash := hashInt64ForChannel(pk)
|
|
ch := int(hash % uint32(numChannels))
|
|
channelCounts[ch]++
|
|
}
|
|
|
|
// Each channel should have roughly 1000 items (8000/8)
|
|
// Allow 20% variance
|
|
expectedCount := 1000
|
|
tolerance := 200
|
|
|
|
for ch := 0; ch < numChannels; ch++ {
|
|
count := channelCounts[ch]
|
|
assert.Greater(t, count, expectedCount-tolerance,
|
|
"channel %d has too few items: %d", ch, count)
|
|
assert.Less(t, count, expectedCount+tolerance,
|
|
"channel %d has too many items: %d", ch, count)
|
|
}
|
|
})
|
|
}
|
|
|
|
func TestGenerateChannelBalancedPrimaryKeys(t *testing.T) {
|
|
t.Run("int64_type", func(t *testing.T) {
|
|
numRows := 100
|
|
numChannels := 4
|
|
fieldName := "test_pk"
|
|
|
|
fieldData, nextPK := GenerateChannelBalancedPrimaryKeys(fieldName, schemapb.DataType_Int64, numRows, numChannels, 1)
|
|
|
|
assert.Equal(t, schemapb.DataType_Int64, fieldData.GetType())
|
|
assert.Equal(t, fieldName, fieldData.GetFieldName())
|
|
assert.Greater(t, nextPK, int64(0), "nextPK should be positive")
|
|
|
|
pks := fieldData.GetScalars().GetLongData().GetData()
|
|
assert.Equal(t, numRows, len(pks))
|
|
|
|
// Verify balanced distribution
|
|
channelCounts := make(map[int]int)
|
|
for _, pk := range pks {
|
|
hash := hashInt64ForChannel(pk)
|
|
ch := int(hash % uint32(numChannels))
|
|
channelCounts[ch]++
|
|
}
|
|
|
|
expectedCount := numRows / numChannels
|
|
for ch := 0; ch < numChannels; ch++ {
|
|
assert.Equal(t, expectedCount, channelCounts[ch],
|
|
"channel %d should have %d PKs", ch, expectedCount)
|
|
}
|
|
})
|
|
|
|
t.Run("varchar_type", func(t *testing.T) {
|
|
numRows := 100
|
|
numChannels := 4
|
|
fieldName := "test_varchar_pk"
|
|
|
|
fieldData, nextPK := GenerateChannelBalancedPrimaryKeys(fieldName, schemapb.DataType_VarChar, numRows, numChannels, 1)
|
|
|
|
assert.Equal(t, schemapb.DataType_VarChar, fieldData.GetType())
|
|
assert.Equal(t, fieldName, fieldData.GetFieldName())
|
|
assert.Greater(t, nextPK, int64(0), "nextPK should be positive")
|
|
|
|
pks := fieldData.GetScalars().GetStringData().GetData()
|
|
assert.Equal(t, numRows, len(pks))
|
|
|
|
// Verify balanced distribution
|
|
channelCounts := make(map[int]int)
|
|
for _, pk := range pks {
|
|
hash := hashVarCharForChannel(pk)
|
|
ch := int(hash % uint32(numChannels))
|
|
channelCounts[ch]++
|
|
}
|
|
|
|
expectedCount := numRows / numChannels
|
|
for ch := 0; ch < numChannels; ch++ {
|
|
assert.Equal(t, expectedCount, channelCounts[ch],
|
|
"channel %d should have %d PKs", ch, expectedCount)
|
|
}
|
|
})
|
|
|
|
t.Run("string_type_as_varchar", func(t *testing.T) {
|
|
numRows := 50
|
|
numChannels := 2
|
|
fieldName := "string_pk"
|
|
|
|
fieldData, _ := GenerateChannelBalancedPrimaryKeys(fieldName, schemapb.DataType_String, numRows, numChannels, 1)
|
|
|
|
// String type should be treated as VarChar
|
|
assert.Equal(t, schemapb.DataType_VarChar, fieldData.GetType())
|
|
assert.Equal(t, fieldName, fieldData.GetFieldName())
|
|
|
|
pks := fieldData.GetScalars().GetStringData().GetData()
|
|
assert.Equal(t, numRows, len(pks))
|
|
})
|
|
|
|
t.Run("unsupported_type_panics", func(t *testing.T) {
|
|
assert.Panics(t, func() {
|
|
GenerateChannelBalancedPrimaryKeys("test", schemapb.DataType_Float, 10, 2, 1)
|
|
}, "unsupported type should panic")
|
|
})
|
|
|
|
t.Run("continuation_no_duplicates", func(t *testing.T) {
|
|
numRows := 100
|
|
numChannels := 4
|
|
fieldName := "test_pk"
|
|
|
|
// First call
|
|
fieldData1, nextPK := GenerateChannelBalancedPrimaryKeys(fieldName, schemapb.DataType_Int64, numRows, numChannels, 1)
|
|
pks1 := fieldData1.GetScalars().GetLongData().GetData()
|
|
|
|
// Second call continues from nextPK
|
|
fieldData2, _ := GenerateChannelBalancedPrimaryKeys(fieldName, schemapb.DataType_Int64, numRows, numChannels, nextPK)
|
|
pks2 := fieldData2.GetScalars().GetLongData().GetData()
|
|
|
|
// Verify no overlap
|
|
seen := make(map[int64]bool)
|
|
for _, pk := range pks1 {
|
|
seen[pk] = true
|
|
}
|
|
for _, pk := range pks2 {
|
|
assert.False(t, seen[pk], "duplicate PK found: %d", pk)
|
|
}
|
|
})
|
|
}
|
|
|
|
func TestGenerateBalancedVarCharPKs(t *testing.T) {
|
|
t.Run("basic_functionality", func(t *testing.T) {
|
|
numRows := 100
|
|
numChannels := 4
|
|
pks, nextIndex := GenerateBalancedVarCharPKs(numRows, numChannels, 1)
|
|
|
|
assert.Equal(t, numRows, len(pks), "should generate correct number of PKs")
|
|
assert.Greater(t, nextIndex, numRows, "nextIndex should be greater than numRows")
|
|
})
|
|
|
|
t.Run("zero_channels_defaults_to_one", func(t *testing.T) {
|
|
numRows := 10
|
|
pks, _ := GenerateBalancedVarCharPKs(numRows, 0, 1)
|
|
|
|
assert.Equal(t, numRows, len(pks), "should generate correct number of PKs")
|
|
})
|
|
|
|
t.Run("negative_channels_defaults_to_one", func(t *testing.T) {
|
|
numRows := 10
|
|
pks, _ := GenerateBalancedVarCharPKs(numRows, -5, 1)
|
|
|
|
assert.Equal(t, numRows, len(pks), "should generate correct number of PKs")
|
|
})
|
|
|
|
t.Run("balanced_distribution_by_hash", func(t *testing.T) {
|
|
numRows := 100
|
|
numChannels := 4
|
|
pks, _ := GenerateBalancedVarCharPKs(numRows, numChannels, 1)
|
|
|
|
// Verify distribution by hashing PKs
|
|
channelCounts := make(map[int]int)
|
|
for _, pk := range pks {
|
|
hash := hashVarCharForChannel(pk)
|
|
ch := int(hash % uint32(numChannels))
|
|
channelCounts[ch]++
|
|
}
|
|
|
|
// Each channel should have 25 PKs (100/4 = 25)
|
|
expectedCount := numRows / numChannels
|
|
for ch := 0; ch < numChannels; ch++ {
|
|
assert.Equal(t, expectedCount, channelCounts[ch],
|
|
"channel %d should have %d PKs", ch, expectedCount)
|
|
}
|
|
})
|
|
|
|
t.Run("remainder_distribution", func(t *testing.T) {
|
|
numRows := 10
|
|
numChannels := 3
|
|
pks, _ := GenerateBalancedVarCharPKs(numRows, numChannels, 1)
|
|
|
|
channelCounts := make(map[int]int)
|
|
for _, pk := range pks {
|
|
hash := hashVarCharForChannel(pk)
|
|
ch := int(hash % uint32(numChannels))
|
|
channelCounts[ch]++
|
|
}
|
|
|
|
// 10 / 3 = 3 base, remainder = 1
|
|
// Channel 0: 4 PKs (3 + 1 from remainder)
|
|
// Channel 1: 3 PKs
|
|
// Channel 2: 3 PKs
|
|
assert.Equal(t, 4, channelCounts[0], "channel 0 should have 4 PKs")
|
|
assert.Equal(t, 3, channelCounts[1], "channel 1 should have 3 PKs")
|
|
assert.Equal(t, 3, channelCounts[2], "channel 2 should have 3 PKs")
|
|
})
|
|
|
|
t.Run("unique_pks", func(t *testing.T) {
|
|
numRows := 100
|
|
numChannels := 4
|
|
pks, _ := GenerateBalancedVarCharPKs(numRows, numChannels, 1)
|
|
|
|
// Verify all PKs are unique
|
|
seen := make(map[string]bool)
|
|
for _, pk := range pks {
|
|
assert.False(t, seen[pk], "PK %s should be unique", pk)
|
|
seen[pk] = true
|
|
}
|
|
})
|
|
|
|
t.Run("non_empty_pks", func(t *testing.T) {
|
|
numRows := 50
|
|
numChannels := 5
|
|
pks, _ := GenerateBalancedVarCharPKs(numRows, numChannels, 1)
|
|
|
|
for _, pk := range pks {
|
|
assert.NotEmpty(t, pk, "PKs should not be empty")
|
|
}
|
|
})
|
|
|
|
t.Run("continuation_no_duplicates", func(t *testing.T) {
|
|
numRows := 100
|
|
numChannels := 4
|
|
|
|
// First call
|
|
pks1, nextIndex := GenerateBalancedVarCharPKs(numRows, numChannels, 1)
|
|
|
|
// Second call continues from nextIndex
|
|
pks2, _ := GenerateBalancedVarCharPKs(numRows, numChannels, nextIndex)
|
|
|
|
// Verify no overlap between pks1 and pks2
|
|
seen := make(map[string]bool)
|
|
for _, pk := range pks1 {
|
|
seen[pk] = true
|
|
}
|
|
for _, pk := range pks2 {
|
|
assert.False(t, seen[pk], "duplicate PK found: %s", pk)
|
|
}
|
|
})
|
|
}
|
|
|
|
func TestHashVarCharForChannel(t *testing.T) {
|
|
t.Run("consistency", func(t *testing.T) {
|
|
// Same input should always produce same output
|
|
pk := "test_pk_12345"
|
|
hash1 := hashVarCharForChannel(pk)
|
|
hash2 := hashVarCharForChannel(pk)
|
|
|
|
assert.Equal(t, hash1, hash2, "same input should produce same hash")
|
|
})
|
|
|
|
t.Run("different_inputs_different_hashes", func(t *testing.T) {
|
|
// Different inputs should generally produce different hashes
|
|
hashes := make(map[uint32]string)
|
|
collisions := 0
|
|
|
|
for i := 1; i <= 1000; i++ {
|
|
// Use unique pk format: pk_<number>
|
|
pk := fmt.Sprintf("pk_%d", i)
|
|
hash := hashVarCharForChannel(pk)
|
|
if existingPK, exists := hashes[hash]; exists {
|
|
collisions++
|
|
t.Logf("collision: PK %s and %s both hash to %d", pk, existingPK, hash)
|
|
}
|
|
hashes[hash] = pk
|
|
}
|
|
|
|
// Allow some collisions (hash collisions are expected)
|
|
assert.Less(t, collisions, 50,
|
|
"too many hash collisions for first 1000 PKs")
|
|
})
|
|
|
|
t.Run("substring_limit", func(t *testing.T) {
|
|
// Strings longer than 100 chars should only hash first 100 chars
|
|
base := "a"
|
|
longStr := ""
|
|
for i := 0; i < 150; i++ {
|
|
longStr += base
|
|
}
|
|
shortStr := longStr[:100]
|
|
|
|
// Hash of long string should equal hash of first 100 chars
|
|
hashLong := hashVarCharForChannel(longStr)
|
|
hashShort := hashVarCharForChannel(shortStr)
|
|
|
|
assert.Equal(t, hashShort, hashLong,
|
|
"hash of long string should equal hash of first 100 chars")
|
|
})
|
|
|
|
t.Run("distribution_across_channels", func(t *testing.T) {
|
|
// Test that hashes distribute well across channels
|
|
numChannels := 8
|
|
channelCounts := make(map[int]int)
|
|
|
|
for i := 1; i <= 8000; i++ {
|
|
// Use unique pk format for distribution test
|
|
pk := fmt.Sprintf("distribution_test_pk_%d", i)
|
|
hash := hashVarCharForChannel(pk)
|
|
ch := int(hash % uint32(numChannels))
|
|
channelCounts[ch]++
|
|
}
|
|
|
|
// Each channel should have roughly 1000 items (8000/8)
|
|
// Allow 20% variance
|
|
expectedCount := 1000
|
|
tolerance := 200
|
|
|
|
for ch := 0; ch < numChannels; ch++ {
|
|
count := channelCounts[ch]
|
|
assert.Greater(t, count, expectedCount-tolerance,
|
|
"channel %d has too few items: %d", ch, count)
|
|
assert.Less(t, count, expectedCount+tolerance,
|
|
"channel %d has too many items: %d", ch, count)
|
|
}
|
|
})
|
|
}
|
|
|
|
// TestHashPK2ChannelsIntegration verifies that GenerateChannelBalancedPrimaryKeys
|
|
// produces PKs that are evenly distributed when using the actual HashPK2Channels function.
|
|
// This is an end-to-end test to ensure our hash implementation matches Milvus's internal implementation.
|
|
func TestHashPK2ChannelsIntegration(t *testing.T) {
|
|
t.Run("int64_pk_balanced_with_HashPK2Channels", func(t *testing.T) {
|
|
numRows := 100
|
|
numChannels := 4
|
|
fieldName := "test_pk"
|
|
|
|
// Generate balanced PKs
|
|
fieldData, _ := GenerateChannelBalancedPrimaryKeys(fieldName, schemapb.DataType_Int64, numRows, numChannels, 1)
|
|
pks := fieldData.GetScalars().GetLongData().GetData()
|
|
|
|
// Create schemapb.IDs for HashPK2Channels
|
|
ids := &schemapb.IDs{
|
|
IdField: &schemapb.IDs_IntId{
|
|
IntId: &schemapb.LongArray{
|
|
Data: pks,
|
|
},
|
|
},
|
|
}
|
|
|
|
// Create shard names
|
|
shardNames := make([]string, numChannels)
|
|
for i := 0; i < numChannels; i++ {
|
|
shardNames[i] = fmt.Sprintf("shard_%d", i)
|
|
}
|
|
|
|
// Use actual HashPK2Channels to get channel assignments
|
|
channelIndices := typeutil.HashPK2Channels(ids, shardNames)
|
|
|
|
// Count distribution
|
|
channelCounts := make(map[uint32]int)
|
|
for _, ch := range channelIndices {
|
|
channelCounts[ch]++
|
|
}
|
|
|
|
// Verify balanced distribution: each channel should have exactly numRows/numChannels
|
|
expectedCount := numRows / numChannels
|
|
for ch := 0; ch < numChannels; ch++ {
|
|
assert.Equal(t, expectedCount, channelCounts[uint32(ch)],
|
|
"channel %d should have exactly %d PKs via HashPK2Channels", ch, expectedCount)
|
|
}
|
|
})
|
|
|
|
t.Run("int64_pk_with_remainder", func(t *testing.T) {
|
|
numRows := 10
|
|
numChannels := 3
|
|
fieldName := "test_pk"
|
|
|
|
fieldData, _ := GenerateChannelBalancedPrimaryKeys(fieldName, schemapb.DataType_Int64, numRows, numChannels, 1)
|
|
pks := fieldData.GetScalars().GetLongData().GetData()
|
|
|
|
ids := &schemapb.IDs{
|
|
IdField: &schemapb.IDs_IntId{
|
|
IntId: &schemapb.LongArray{
|
|
Data: pks,
|
|
},
|
|
},
|
|
}
|
|
|
|
shardNames := make([]string, numChannels)
|
|
for i := 0; i < numChannels; i++ {
|
|
shardNames[i] = fmt.Sprintf("shard_%d", i)
|
|
}
|
|
|
|
channelIndices := typeutil.HashPK2Channels(ids, shardNames)
|
|
|
|
channelCounts := make(map[uint32]int)
|
|
for _, ch := range channelIndices {
|
|
channelCounts[ch]++
|
|
}
|
|
|
|
// 10 / 3 = 3 base, remainder = 1
|
|
// Channel 0: 4, Channel 1: 3, Channel 2: 3
|
|
assert.Equal(t, 4, channelCounts[0], "channel 0 should have 4 PKs")
|
|
assert.Equal(t, 3, channelCounts[1], "channel 1 should have 3 PKs")
|
|
assert.Equal(t, 3, channelCounts[2], "channel 2 should have 3 PKs")
|
|
})
|
|
|
|
t.Run("varchar_pk_balanced_with_HashPK2Channels", func(t *testing.T) {
|
|
numRows := 100
|
|
numChannels := 4
|
|
fieldName := "test_varchar_pk"
|
|
|
|
fieldData, _ := GenerateChannelBalancedPrimaryKeys(fieldName, schemapb.DataType_VarChar, numRows, numChannels, 1)
|
|
pks := fieldData.GetScalars().GetStringData().GetData()
|
|
|
|
ids := &schemapb.IDs{
|
|
IdField: &schemapb.IDs_StrId{
|
|
StrId: &schemapb.StringArray{
|
|
Data: pks,
|
|
},
|
|
},
|
|
}
|
|
|
|
shardNames := make([]string, numChannels)
|
|
for i := 0; i < numChannels; i++ {
|
|
shardNames[i] = fmt.Sprintf("shard_%d", i)
|
|
}
|
|
|
|
channelIndices := typeutil.HashPK2Channels(ids, shardNames)
|
|
|
|
channelCounts := make(map[uint32]int)
|
|
for _, ch := range channelIndices {
|
|
channelCounts[ch]++
|
|
}
|
|
|
|
expectedCount := numRows / numChannels
|
|
for ch := 0; ch < numChannels; ch++ {
|
|
assert.Equal(t, expectedCount, channelCounts[uint32(ch)],
|
|
"channel %d should have exactly %d PKs via HashPK2Channels", ch, expectedCount)
|
|
}
|
|
})
|
|
|
|
t.Run("varchar_pk_with_remainder", func(t *testing.T) {
|
|
numRows := 10
|
|
numChannels := 3
|
|
fieldName := "test_varchar_pk"
|
|
|
|
fieldData, _ := GenerateChannelBalancedPrimaryKeys(fieldName, schemapb.DataType_VarChar, numRows, numChannels, 1)
|
|
pks := fieldData.GetScalars().GetStringData().GetData()
|
|
|
|
ids := &schemapb.IDs{
|
|
IdField: &schemapb.IDs_StrId{
|
|
StrId: &schemapb.StringArray{
|
|
Data: pks,
|
|
},
|
|
},
|
|
}
|
|
|
|
shardNames := make([]string, numChannels)
|
|
for i := 0; i < numChannels; i++ {
|
|
shardNames[i] = fmt.Sprintf("shard_%d", i)
|
|
}
|
|
|
|
channelIndices := typeutil.HashPK2Channels(ids, shardNames)
|
|
|
|
channelCounts := make(map[uint32]int)
|
|
for _, ch := range channelIndices {
|
|
channelCounts[ch]++
|
|
}
|
|
|
|
// 10 / 3 = 3 base, remainder = 1
|
|
assert.Equal(t, 4, channelCounts[0], "channel 0 should have 4 PKs")
|
|
assert.Equal(t, 3, channelCounts[1], "channel 1 should have 3 PKs")
|
|
assert.Equal(t, 3, channelCounts[2], "channel 2 should have 3 PKs")
|
|
})
|
|
|
|
t.Run("large_scale_int64_distribution", func(t *testing.T) {
|
|
numRows := 1000
|
|
numChannels := 8
|
|
fieldName := "test_pk"
|
|
|
|
fieldData, _ := GenerateChannelBalancedPrimaryKeys(fieldName, schemapb.DataType_Int64, numRows, numChannels, 1)
|
|
pks := fieldData.GetScalars().GetLongData().GetData()
|
|
|
|
ids := &schemapb.IDs{
|
|
IdField: &schemapb.IDs_IntId{
|
|
IntId: &schemapb.LongArray{
|
|
Data: pks,
|
|
},
|
|
},
|
|
}
|
|
|
|
shardNames := make([]string, numChannels)
|
|
for i := 0; i < numChannels; i++ {
|
|
shardNames[i] = fmt.Sprintf("shard_%d", i)
|
|
}
|
|
|
|
channelIndices := typeutil.HashPK2Channels(ids, shardNames)
|
|
|
|
channelCounts := make(map[uint32]int)
|
|
for _, ch := range channelIndices {
|
|
channelCounts[ch]++
|
|
}
|
|
|
|
// Each channel should have exactly 125 PKs (1000/8)
|
|
expectedCount := numRows / numChannels
|
|
for ch := 0; ch < numChannels; ch++ {
|
|
assert.Equal(t, expectedCount, channelCounts[uint32(ch)],
|
|
"channel %d should have exactly %d PKs via HashPK2Channels", ch, expectedCount)
|
|
}
|
|
})
|
|
|
|
t.Run("large_scale_varchar_distribution", func(t *testing.T) {
|
|
numRows := 1000
|
|
numChannels := 8
|
|
fieldName := "test_varchar_pk"
|
|
|
|
fieldData, _ := GenerateChannelBalancedPrimaryKeys(fieldName, schemapb.DataType_VarChar, numRows, numChannels, 1)
|
|
pks := fieldData.GetScalars().GetStringData().GetData()
|
|
|
|
ids := &schemapb.IDs{
|
|
IdField: &schemapb.IDs_StrId{
|
|
StrId: &schemapb.StringArray{
|
|
Data: pks,
|
|
},
|
|
},
|
|
}
|
|
|
|
shardNames := make([]string, numChannels)
|
|
for i := 0; i < numChannels; i++ {
|
|
shardNames[i] = fmt.Sprintf("shard_%d", i)
|
|
}
|
|
|
|
channelIndices := typeutil.HashPK2Channels(ids, shardNames)
|
|
|
|
channelCounts := make(map[uint32]int)
|
|
for _, ch := range channelIndices {
|
|
channelCounts[ch]++
|
|
}
|
|
|
|
// Each channel should have exactly 125 PKs (1000/8)
|
|
expectedCount := numRows / numChannels
|
|
for ch := 0; ch < numChannels; ch++ {
|
|
assert.Equal(t, expectedCount, channelCounts[uint32(ch)],
|
|
"channel %d should have exactly %d PKs via HashPK2Channels", ch, expectedCount)
|
|
}
|
|
})
|
|
}
|