binbin a2787cad9a
Add test case for search with expressions. (#5768)
Signed-off-by: Binbin Lv <binbin.lv@zilliz.com>
2021-06-15 15:11:57 +08:00

681 lines
37 KiB
Python

import threading
import time
import pytest
import random
import numpy as np
from base.client_base import TestcaseBase
from utils.util_log import test_log as log
from common import common_func as cf
from common import common_type as ct
from common.common_type import CaseLabel, CheckTasks
prefix = "search_collection"
default_search_field = ct.default_float_vec_field_name
default_search_exp = "int64 >= 0"
default_dim = ct.default_dim
default_nq = ct.default_nq
default_limit = ct.default_limit
default_search_params = ct.default_search_params
epsilon = ct.epsilon
class TestCollectionSearch(TestcaseBase):
""" Test case of search interface """
"""
******************************************************************
# The followings are invalid cases
******************************************************************
"""
@pytest.mark.tags(CaseLabel.L3)
def test_search_no_connection(self):
"""
target: test search without connection
method: create and delete connection, then search
expected: raise exception and report the error
"""
log.info("Test case of search interface: test_search_no_connection (searching without connection)")
# 1. initialize with data
collection_w = self.init_collection_general(prefix, True)[0]
# 2. search
log.info("test_search_no_connection: searching collection %s" % collection_w.name)
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
res, _ = collection_w.search(vectors[:default_nq], default_search_field,
default_search_params, default_limit,
default_search_exp,
check_task=CheckTasks.check_search_results,
check_items={"nq": default_nq,
"limit": default_limit})
# 3. remove connection
log.info("test_search_no_connection: removing connection")
self.connection_wrap.remove_connection(alias='default')
log.info("test_search_no_connection: removed connection")
# 4. search without connection
log.info("test_search_no_connection: searching without connection")
collection_w.search(vectors[:default_nq], default_search_field,
default_search_params, default_limit,
default_search_exp,
check_task=CheckTasks.err_res,
check_items={"err_code": 1, "err_msg": "should create connect first"})
@pytest.mark.tags(CaseLabel.L3)
def test_search_no_collection(self):
"""
target: test the scenario which search the non-exist collection
method: 1. create collection
2. drop collection
3. search the dropped collection
expected: raise exception and report the error
"""
log.info("Test case of search interface: test_search_no_collection (searching the non-exist collection)")
# 1. initialize without data
collection_w = self.init_collection_general(prefix)[0]
# 2. Drop collection
collection_w.drop()
# 3. Search without collection
log.info("test_search_no_collection: Searching without collection ")
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
collection_w.search(vectors, default_search_field,
default_search_params, default_limit, "float_vector > 0",
check_task=CheckTasks.err_res,
check_items={"err_code": 1,
"err_msg": "collection %s doesn't exist!" % collection_w.name})
@pytest.mark.tags(CaseLabel.L3)
def test_search_with_empty_collection(self):
"""
target: test search with empty connection
method: search the empty collection
expected: raise exception and report the error
"""
log.info("Test case of search interface: test_search_with_empty_collection")
# 1 initialize without data
collection_w = self.init_collection_general(prefix)[0]
# 2 search collection without data
log.info("test_search_with_empty_collection: Searching empty collection %s" % collection_w.name)
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
collection_w.search(vectors[:default_nq], default_search_field, default_search_params,
default_limit, default_search_exp,
check_task=CheckTasks.err_res,
check_items={"err_code": 1,
"err_msg": "collection hasn't been loaded or has been released"})
@pytest.mark.tags(CaseLabel.L3)
def test_search_with_empty_vectors(self):
"""
target: test search with empty query vector
method: search using empty query vector
expected: search successfully with 0 results
"""
log.info("Test case of search interface: test_search_with_empty_vectors")
# 1 initialize without data
collection_w = self.init_collection_general(prefix, True, 10)[0]
# 2 search collection without data
log.info("test_search_with_empty_vectors: Searching collection %s using empty vector" % collection_w.name)
res, _ = collection_w.search([], default_search_field, default_search_params,
default_limit, default_search_exp,
check_task=CheckTasks.check_search_results,
check_items={"nq": 0})
log.info("test_search_with_empty_vectors: test PASS with %s results" % len(res))
@pytest.mark.tags(CaseLabel.L3)
def test_search_param_missing(self):
"""
target: test search with incomplete parameters
method: search with incomplete parameters
expected: raise exception and report the error
"""
log.info("Test case of search interface: test_search_param_missing")
# 1 initialize without data
collection_w = self.init_collection_general(prefix)[0]
# 2 search collection with missing parameters
log.info("test_search_param_missing: Searching collection %s with missing parameters" % collection_w.name)
try:
collection_w.search()
except TypeError as e:
assert "missing" and "'data', 'anns_field', 'param', 'limit', and 'expression'" in str(e)
log.info("test_search_no_collection: test PASS with expected assertion: %s" % e)
@pytest.mark.tags(CaseLabel.L3)
def test_search_param_invalid_dim(self):
"""
target: test search with invalid parameter values
method: search with invalid dim
expected: raise exception and report the error
"""
log.info("Test case of search interface: test_search_param_invalid_dim")
# 1. initialize with data
collection_w = self.init_collection_general(prefix, True)[0]
# 2. search with invalid dim
log.info("test_search_param_invalid_dim: searching with invalid dim")
wrong_dim = 129
vectors = [[random.random() for _ in range(wrong_dim)] for _ in range(default_nq)]
collection_w.search(vectors[:default_nq], default_search_field,
default_search_params, default_limit, default_search_exp,
check_task=CheckTasks.err_res,
check_items={"err_code": 1,
"err_msg": "UnexpectedError"})
@pytest.mark.tags(CaseLabel.L3)
def test_search_param_invalid_metric_type(self):
"""
target: test search with invalid parameter values
method: search with invalid metric type
expected: raise exception and report the error
"""
log.info("Test case of search interface: test_search_param_invalid_metric_type")
# 1. initialize with data
collection_w = self.init_collection_general(prefix, True)[0]
# 2.2 search with invalid metric_type
log.info("test_search_param_invalid_metric_type: searching with invalid metric_type")
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
search_params = {"metric_type": "L10", "params": {"nprobe": 10}}
collection_w.search(vectors[:default_nq], default_search_field, search_params,
default_limit, default_search_exp,
check_task=CheckTasks.err_res,
check_items={"err_code": 1,
"err_msg": "metric type not found"})
@pytest.mark.tags(CaseLabel.L3)
def test_search_param_invalid_limit(self):
"""
target: test search with invalid parameter values
method: search with invalid limit: 0 and maximum
expected: raise exception and report the error
"""
log.info("Test case of search interface: test_search_param_invalid_limit")
# 1. initialize with data
collection_w = self.init_collection_general(prefix, True)[0]
# 2 search with invalid limit (topK)
log.info("test_search_param_invalid_limit: searching with invalid limit (topK)")
limit = 0
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
log.info("test_search_param_invalid_limit: searching with invalid limit (topK) = %s" % limit)
collection_w.search(vectors[:default_nq], default_search_field, default_search_params,
limit, default_search_exp,
check_task=CheckTasks.err_res,
check_items={"err_code": 1,
"err_msg": "division by zero"})
limit = 16385
log.info("test_search_param_invalid_limit: searching with invalid max limit (topK) = %s" % limit)
collection_w.search(vectors[:default_nq], default_search_field, default_search_params,
limit, default_search_exp,
check_task=CheckTasks.err_res,
check_items={"err_code": 1,
"err_msg": "limit %d is too large" % limit})
@pytest.mark.tags(CaseLabel.L3)
def test_search_param_invalid_field(self):
"""
target: test search with invalid parameter values
method: search with invalid field
expected: raise exception and report the error
"""
log.info("Test case of search interface: test_search_param_invalid_field")
# 1. initialize with data
collection_w = self.init_collection_general(prefix, True)[0]
# 2 search with invalid field
log.info("test_search_param_invalid_field: searching with invalid field")
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
log.info("test_search_param_invalid_field: searching with invalid field (empty)")
collection_w.search(vectors[:default_nq], " ", default_search_params,
default_limit, default_search_exp,
check_task=CheckTasks.err_res,
check_items={"err_code": 1,
"err_msg": "invalid search field"})
log.info("test_search_param_invalid_field: searching with invalid field")
invalid_search_field = "floatvector"
collection_w.search(vectors[:default_nq], invalid_search_field, default_search_params,
default_limit, default_search_exp,
check_task=CheckTasks.err_res,
check_items={"err_code": 1,
"err_msg": "invalid search field"})
@pytest.mark.tags(CaseLabel.L3)
def test_search_param_invalid_expr(self):
"""
target: test search with invalid parameter values
method: search with invalid search expressions
expected: raise exception and report the error
"""
log.info("Test case of search interface: test_search_param_invalid_expr")
# 1. initialize with data
collection_w = self.init_collection_general(prefix, True)[0]
# 2 search with invalid expr
log.info("test_search_param_invalid_expr: searching with invalid expression")
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
log.info("test_search_param_invalid_expr: searching with invalid expr (empty)")
collection_w.search(vectors[:default_nq], default_search_field,
default_search_params, default_limit, " ",
check_task=CheckTasks.err_res,
check_items={"err_code": 1,
"err_msg": "invalid expression"})
log.info("test_search_param_invalid_expr: searching with invalid expr")
collection_w.search(vectors[:default_nq], default_search_field,
default_search_params, default_limit, "int63 >= 0",
check_task=CheckTasks.err_res,
check_items={"err_code": 1,
"err_msg": "invalid expression"})
@pytest.mark.tags(CaseLabel.L3)
def test_search_index_partition_not_existed(self):
"""
target: test search not existed partition
method: search with not existed partition
expected: raise exception and report the error
"""
log.info("Test case of search interface: test_search_index_partition_not_existed")
# 1. initialize with data
collection_w = self.init_collection_general(prefix, True)[0]
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
# 2. create index
default_index = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2"}
collection_w.create_index("float_vector", default_index)
# 3. search the non exist partition
partition_name = "search_non-exist"
collection_w.search(vectors[:default_nq], default_search_field, default_search_params,
default_limit, default_search_exp, [partition_name],
check_task=CheckTasks.err_res,
check_items={"err_code": 1,
"err_msg": "PartitonName: %s not found" % partition_name})
@pytest.mark.tags(CaseLabel.L3)
def test_search_param_invalid_binary(self):
"""
target: test search within binary data (invalid parameter)
method: search with wrong metric type
expected: raise exception and report the error
"""
log.info("test_search_param_invalid_binary: test invalid paramter with binary data")
# 1. initialize with binary data
collection_w = self.init_collection_general(prefix, True, is_binary=True)[0]
# 2. create index
default_index = {"index_type": "BIN_IVF_FLAT", "params": {"nlist": 128}, "metric_type": "JACCARD"}
collection_w.create_index("binary_vector", default_index)
# 3. search with exception
binary_vectors = cf.gen_binary_vectors(3000, default_dim)[1]
wrong_search_params = {"metric_type": "L2", "params": {"nprobe": 10}}
collection_w.search(binary_vectors[:default_nq], "binary_vector", wrong_search_params,
default_limit, default_search_exp,
check_task=CheckTasks.err_res,
check_items={"err_code": 1,
"err_msg": "unsupported"})
"""
******************************************************************
# The following are valid base cases
******************************************************************
"""
@pytest.mark.tags(CaseLabel.L3)
def test_search_before_after_delete(self):
"""
target: test search function before and after deletion
method: 1 search the collection
2 delete a partition
3 search the collection
expected: the deleted entities should not be searched
"""
log.info("test_search_before_after_delete: test search after deleting entities")
# 1. initialize with data
partition_num = 1
limit = 1000
collection_w = self.init_collection_general(prefix, True, 1000, partition_num)[0]
# 2. search all the partitions before partition deletion
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
log.info("test_search_before_after_delete: searching before deleting partitions")
res, _ = collection_w.search(vectors[:default_nq], default_search_field,
default_search_params, limit, default_search_exp,
check_task=CheckTasks.check_search_results,
check_items={"nq": default_nq,
"limit": limit})
# 3. delete partitions
log.info("test_search_before_after_delete: deleting a partition")
par = collection_w.partitions
deleted_entity_num = par[partition_num].num_entities
collection_w.drop_partition(par[partition_num].name)
log.info("test_search_before_after_delete: deleted a partition")
collection_w.release()
collection_w.load()
# 4. search after delete partitions
log.info("test_search_before_after_delete: searching after deleting partitions")
res, _ = collection_w.search(vectors[:default_nq], default_search_field,
default_search_params, limit, default_search_exp,
check_task=CheckTasks.check_search_results,
check_items={"nq": default_nq,
"limit": limit-deleted_entity_num})
@pytest.mark.tags(CaseLabel.L3)
def test_search_after_different_index(self):
"""
target: test search with different index
method: test search with different index
expected: searched successfully
"""
log.info("Test case of search interface: test_search_after_different_index")
# 1. initialize with data
collection_w = self.init_collection_general(prefix, True, partition_num=1)[0]
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
# 2. create different index
default_index_list = ["IVF_FLAT", "IVF_PQ", "IVF_SQ8", "HNSW",
"RHNSW_FLAT", "RHNSW_PQ", "RHNSW_SQ", "ANNOY"]
for index in default_index_list:
log.info("test_search_after_different_index: Creating index-%s" % index)
default_index = {"index_type": index, "params": {"nlist": 128}, "metric_type": "L2"}
collection_w.create_index("float_vector", default_index)
log.info("test_search_after_different_index: Created index-%s" % index)
# 3. search
log.info("test_search_after_different_index: Searching after creating index-%s" % index)
res, _ = collection_w.search(vectors[:default_nq], default_search_field,
default_search_params, default_limit, default_search_exp,
check_task=CheckTasks.check_search_results,
check_items={"nq": default_nq,
"limit": default_limit})
@pytest.mark.tags(CaseLabel.L3)
def test_search_after_index_different_metric_type(self):
"""
target: test search with different metric type
method: test search with different metric type
expected: searched successfully
"""
log.info("Test case of search interface: test_search_after_index_different_metric_type")
# 1. initialize with data
collection_w = self.init_collection_general(prefix, True, partition_num=1)[0]
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
# 2. create different index
default_index_list = ["IVF_FLAT", "IVF_SQ8"]
for index in default_index_list:
log.info("test_search_after_different_index: Creating index-%s" % index)
default_index = {"index_type": index, "params": {"nlist": 128}, "metric_type": "IP"}
collection_w.create_index("float_vector", default_index)
log.info("test_search_after_different_index: Created index-%s" % index)
# 3. search
log.info("test_search_after_different_index: Searching after creating index-%s" % index)
res, _ = collection_w.search(vectors[:default_nq], default_search_field,
default_search_params, default_limit, default_search_exp,
check_task=CheckTasks.check_search_results,
check_items={"nq": default_nq,
"limit": default_limit})
@pytest.mark.tags(CaseLabel.L3)
def test_search_collection_multiple_times(self):
"""
target: test search for multiple times
method: search for multiple times
expected: searched successfully
"""
log.info("Test case of search interface: test_search_collection_multiple_times")
# 1. initialize with data
collection_w = self.init_collection_general(prefix, True)[0]
# 2. search for multiple times
N = 5
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
for i in range(N):
log.info("test_search_collection_multiple_times: searching round %d" % (i+1))
res, _ = collection_w.search(vectors[:default_nq], default_search_field,
default_search_params, default_limit, default_search_exp,
check_task=CheckTasks.check_search_results,
check_items={"nq": default_nq,
"limit": default_limit})
log.info("test_search_collection_multiple_times: test PASS")
@pytest.mark.tags(CaseLabel.L3)
def test_search_index_one_partition(self):
"""
target: test search from partition
method: search from one partition
expected: searched successfully
"""
log.info("Test case of search interface: test_search_index_one_partition")
# 1. initialize with data
collection_w = self.init_collection_general(prefix, True, 1000, 1)[0]
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
# 2. create index
default_index = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2"}
collection_w.create_index("float_vector", default_index)
# 3. search in one partition
log.info("test_search_index_one_partition: searching (1000 entities) through one partition")
par = collection_w.partitions
log.info("test_search_index_one_partition: partitions: %s" % par)
partition_name = par[1].name
entity_num = par[1].num_entities
limit = 1000
res, _ = collection_w.search(vectors[:default_nq], default_search_field,
default_search_params, limit, default_search_exp,
[partition_name],
check_task=CheckTasks.check_search_results,
check_items={"nq": default_nq,
"limit": entity_num})
@pytest.mark.tags(CaseLabel.L3)
def test_search_index_partitions(self):
"""
target: test search from partitions
method: search from one partitions
expected: searched successfully
"""
log.info("Test case of search interface: test_search_index_partitions")
# 1. initialize with data
collection_w = self.init_collection_general(prefix, True, 1000, 1)[0]
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
# 2. create index
default_index = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2"}
collection_w.create_index("float_vector", default_index)
# 3. search through partitions
log.info("test_search_index_partitions: searching (1000 entities) through partitions")
par = collection_w.partitions
log.info("test_search_index_partitions: partitions: %s" % par)
limit = 1000
res, _ = collection_w.search(vectors[:default_nq], default_search_field,
default_search_params, limit, default_search_exp,
[par[0].name, par[1].name],
check_task=CheckTasks.check_search_results,
check_items={"nq": default_nq,
"limit": limit})
@pytest.mark.tags(CaseLabel.L3)
def test_search_index_partition_empty(self):
"""
target: test search the empty partition
method: search from the empty partition
expected: searched successfully with 0 results
"""
log.info("Test case of search interface: test_search_index_partition_empty")
# 1. initialize with data
collection_w = self.init_collection_general(prefix, True)[0]
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
# 2. create empty partition
partition_name = "search_partition_empty"
collection_w.create_partition(partition_name=partition_name, description="search partition empty")
par = collection_w.partitions
log.info("test_search_index_partition_empty: partitions: %s" % par)
collection_w.load()
# 3. create index
default_index = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2"}
collection_w.create_index("float_vector", default_index)
# 4. search the empty partition
log.info("test_search_index_partition_empty: searching %s entities through empty partition" % default_limit)
res, _ = collection_w.search(vectors[:default_nq], default_search_field,
default_search_params, default_limit,
default_search_exp, [partition_name],
check_task=CheckTasks.check_search_results,
check_items={"nq": default_nq,
"limit": 0})
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.xfail(reason="distance not accurate yet")
def test_search_binary_jaccard_flat_index(self):
"""
target: search binary_collection, and check the result: distance
method: compare the return distance value with value computed with L2
expected: the return distance equals to the computed value
"""
log.info("Test case of search interface: test_search_binary_jaccard_flat_index")
# 1. initialize with binary data
collection_w, _, binary_raw_vector = \
self.init_collection_general(prefix, True, is_binary=True)
# 2. create index
default_index = {"index_type": "BIN_IVF_FLAT", "params": {"nlist": 128}, "metric_type": "JACCARD"}
collection_w.create_index("binary_vector", default_index)
# 3. compute the distance
query_raw_vector, binary_vectors = cf.gen_binary_vectors(3000, default_dim)
distance_0 = cf.jaccard(query_raw_vector[0], binary_raw_vector[0])
distance_1 = cf.jaccard(query_raw_vector[0], binary_raw_vector[1])
# 4. search and compare the distance
search_params = {"metric_type": "JACCARD", "params": {"nprobe": 10}}
res, _ = collection_w.search(binary_vectors[:default_nq], "binary_vector",
search_params, default_limit, "int64 >= 0")
assert abs(res[0]._distances[0] - min(distance_0, distance_1)) <= epsilon
@pytest.mark.tags(CaseLabel.L3)
def test_search_binary_flat_with_L2(self):
"""
target: search binary collection, and check the result: distance
method: compare the return distance value with value computed with L2
expected: the return distance equals to the computed value
"""
log.info("Test case of search interface: test_search_binary_flat_with_L2")
# 1. initialize with binary data
collection_w = self.init_collection_general(prefix, True, is_binary=True)[0]
# 2. search and assert
query_raw_vector, binary_vectors = cf.gen_binary_vectors(3000, default_dim)
search_params = {"metric_type": "L2", "params": {"nprobe": 10}}
collection_w.search(binary_vectors[:default_nq], "binary_vector",
search_params, default_limit, "int64 >= 0",
check_task=CheckTasks.err_res,
check_items={"err_code": 1,
"err_msg": "Search failed"})
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.xfail(reason="distance not accurate yet")
def test_search_binary_hamming_flat_index(self):
"""
target: search binary_collection, and check the result: distance
method: compare the return distance value with value computed with L2
expected: the return distance equals to the computed value
"""
log.info("Test case of search interface: test_search_binary_hamming_flat_index")
# 1. initialize with binary data
collection_w, _, binary_raw_vector = \
self.init_collection_general(prefix, True, is_binary=True)
# 2. create index
default_index = {"index_type": "BIN_IVF_FLAT", "params": {"nlist": 128}, "metric_type": "HAMMING"}
collection_w.create_index("binary_vector", default_index)
# 3. compute the distance
query_raw_vector, binary_vectors = cf.gen_binary_vectors(3000, default_dim)
distance_0 = cf.hamming(query_raw_vector[0], binary_raw_vector[0])
distance_1 = cf.hamming(query_raw_vector[0], binary_raw_vector[1])
# 4. search and compare the distance
search_params = {"metric_type": "HAMMING", "params": {"nprobe": 10}}
res, _ = collection_w.search(binary_vectors[:default_nq], "binary_vector",
search_params, default_limit, "int64 >= 0")
assert abs(res[0]._distances[0] - min(distance_0, distance_1)) <= epsilon
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.xfail(reason="distance not accurate yet")
def test_search_binary_tanimoto_flat_index(self):
"""
target: search binary_collection, and check the result: distance
method: compare the return distance value with value computed with Inner product
expected: the return distance equals to the computed value
"""
# 1. initialize with binary data
collection_w, _, binary_raw_vector = \
self.init_collection_general(prefix, True, is_binary=True)
# 2. create index
default_index = {"index_type": "BIN_IVF_FLAT", "params": {"nlist": 128}, "metric_type": "TANIMOTO"}
collection_w.create_index("binary_vector", default_index)
# 3. compute the distance
query_raw_vector, binary_vectors = cf.gen_binary_vectors(3000, default_dim)
distance_0 = cf.tanimoto(query_raw_vector[0], binary_raw_vector[0])
distance_1 = cf.tanimoto(query_raw_vector[0], binary_raw_vector[1])
# 4. search and compare the distance
search_params = {"metric_type": "TANIMOTO", "params": {"nprobe": 10}}
res, _ = collection_w.search(binary_vectors[:default_nq], "binary_vector",
search_params, default_limit, "int64 >= 0")
assert abs(res[0]._distances[0] - min(distance_0, distance_1)) <= epsilon
@pytest.mark.tags(CaseLabel.L3)
def test_search_multi_collections(self):
"""
target: test search multi collections of L2
method: add vectors into 10 collections, and search
expected: search status ok, the length of result
"""
log.info("Test case of search interface: test_search_multi_collections")
self._connect()
connection_num = 10
for i in range(connection_num):
# 1. initialize with data
log.info("test_search_multi_collections: search round %d" % (i+1))
collection_w = self.init_collection_general(prefix, True)[0]
# 2. search
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
log.info("test_search_multi_collections: searching %s entities (nq = %s) from collection %s" %
(default_limit, default_nq, collection_w.name))
res, _ = collection_w.search(vectors[:default_nq], default_search_field,
default_search_params, default_limit,
default_search_exp,
check_task=CheckTasks.check_search_results,
check_items={"nq": default_nq,
"limit": default_limit})
log.info("test_search_multi_collections: searched %s collections" % connection_num)
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.timeout(300)
def test_search_concurrent_multi_threads(self):
"""
target: test concurrent search with multi-processes
method: search with 10 processes, each process uses dependent connection
expected: status ok and the returned vectors should be query_records
"""
log.info("Test case of search interface: test_search_concurrent_multi_threads")
threads_num = 10
threads = []
# 1. initialize with data
collection_w = self.init_collection_general(prefix, True)[0]
def search(collection_w):
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
res, _ = collection_w.search(vectors[:default_nq], default_search_field,
default_search_params, default_limit, default_search_exp,
check_task=CheckTasks.check_search_results,
check_items={"nq": default_nq,
"limit": default_limit})
# 2. search with multi-processes
log.info("test_search_concurrent_multi_threads: searching with %s processes" % threads_num)
for i in range(threads_num):
t = threading.Thread(target=search, args=(collection_w,))
threads.append(t)
t.start()
time.sleep(0.2)
for t in threads:
t.join()
log.info("test_search_concurrent_multi_threads: searched with %s processes" % threads_num)
@pytest.mark.tags(CaseLabel.L3)
@pytest.mark.parametrize("expression, limit",
zip(cf.gen_normal_expressions(),
[999, 898, 997, 2, 3]))
def test_search_with_expression(self, expression, limit):
"""
target: test search with different expressions
method: test search with different expressions
expected: searched successfully with correct limit(topK)
"""
log.info("Test case of search interface: test_search_with_expression")
# 1. initialize with data
collection_w = self.init_collection_general(prefix, True, 1000)[0]
# 2. create index
index_param = {"index_type": "IVF_FLAT", "metric_type": "L2", "params": {"nlist": 100}}
collection_w.create_index("float_vector", index_param)
# 3. search with different expressions
log.info("test_search_with_expression: searching with expression: %s" % expression)
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nq)]
res, _ = collection_w.search(vectors[:default_nq], default_search_field,
default_search_params, 1000, expression,
check_task=CheckTasks.check_search_results,
check_items={"nq": default_nq,
"limit": limit})