congqixia 7d13bdcf4c
fix: [2.6] correct field data offset calculation in rerank functions for bulk search (#45444) (#45482)
Cherry-pick from master
pr: #45444
Related to #45338

When using bulk vector search in hybrid search with rerank functions,
the output field values for different queries were all equal to the
values returned by the first query, instead of the correct values
belonging to each document ID. The document IDs were correct, but the
entity field values were wrong.

In rerank functions (RRF, weighted, decay, model), when processing
multiple queries in a batch, the `idLocations` stored only the relative
offset within each result set (`idx`), not accounting for the absolute
position within the entire batch. This caused `FillFieldData` to
retrieve field data from the wrong positions, always using offsets
relative to the first query.

This fix ensures that when processing bulk searches with rerank
functions, each result correctly retrieves its corresponding field data
based on the absolute offset within the entire batch, resolving the
issue where all queries returned the first query's field values.

Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
2025-11-11 18:15:37 +08:00

610 lines
18 KiB
Go

/*
* # Licensed to the LF AI & Data foundation under one
* # or more contributor license agreements. See the NOTICE file
* # distributed with this work for additional information
* # regarding copyright ownership. The ASF licenses this file
* # to you under the Apache License, Version 2.0 (the
* # "License"); you may not use this file except in compliance
* # with the License. You may obtain a copy of the License at
* #
* # http://www.apache.org/licenses/LICENSE-2.0
* #
* # Unless required by applicable law or agreed to in writing, software
* # distributed under the License is distributed on an "AS IS" BASIS,
* # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* # See the License for the specific language governing permissions and
* # limitations under the License.
*/
package rerank
import (
"fmt"
"math"
"sort"
"strings"
"github.com/milvus-io/milvus-proto/go-api/v2/schemapb"
"github.com/milvus-io/milvus/pkg/v2/log"
"github.com/milvus-io/milvus/pkg/v2/util/merr"
"github.com/milvus-io/milvus/pkg/v2/util/metric"
"github.com/milvus-io/milvus/pkg/v2/util/typeutil"
)
type PKType interface {
int64 | string
}
// Data for a single search result for a single query, with multi fields
type columns struct {
data []any
size int64
ids any
scores []float32
nqOffset int64
}
type rerankInputs struct {
// nqs,searchResultsIndex
data [][]*columns
idGroupValue map[any]any
nq int64
// field data need for non-requery rerank
// multipIdField []map[int64]*schemapb.FieldData
fieldData []*schemapb.SearchResultData
// There is only fieldId in schemapb.SearchResultData, but no fieldName
inputFieldIds []int64
}
func organizeFieldIdData(multipSearchResultData []*schemapb.SearchResultData, inputFieldIds []int64) ([]map[int64]*schemapb.FieldData, error) {
multipIdField := []map[int64]*schemapb.FieldData{}
for _, searchData := range multipSearchResultData {
idField := map[int64]*schemapb.FieldData{}
if searchData != nil && typeutil.GetSizeOfIDs(searchData.Ids) != 0 && len(searchData.FieldsData) != 0 {
for _, field := range searchData.FieldsData {
for _, fieldid := range inputFieldIds {
if fieldid == field.FieldId {
idField[field.FieldId] = field
}
}
}
if len(idField) != len(inputFieldIds) {
return nil, fmt.Errorf("Search reaults mismatch rerank inputs")
}
}
multipIdField = append(multipIdField, idField)
}
return multipIdField, nil
}
func newRerankInputs(multipSearchResultData []*schemapb.SearchResultData, inputFieldIds []int64, isGrouping bool) (*rerankInputs, error) {
if len(multipSearchResultData) == 0 {
return &rerankInputs{}, nil
}
multipIdField, err := organizeFieldIdData(multipSearchResultData, inputFieldIds)
if err != nil {
return nil, err
}
nq := multipSearchResultData[0].NumQueries
cols := make([][]*columns, nq)
for i := range cols {
cols[i] = make([]*columns, len(multipSearchResultData))
}
for retIdx, searchResult := range multipSearchResultData {
start := int64(0)
for i := int64(0); i < nq; i++ {
size := searchResult.Topks[i]
if cols[i][retIdx] == nil {
cols[i][retIdx] = &columns{}
cols[i][retIdx].size = size
cols[i][retIdx].ids = getIds(searchResult.Ids, start, size)
cols[i][retIdx].scores = searchResult.Scores[start : start+size]
cols[i][retIdx].nqOffset = start
}
for _, fieldId := range inputFieldIds {
fieldData, exist := multipIdField[retIdx][fieldId]
if !exist {
continue
}
d, err := getField(fieldData, start, size)
if err != nil {
return nil, err
}
cols[i][retIdx].data = append(cols[i][retIdx].data, d)
}
start += size
}
}
if isGrouping {
idGroup, err := genIdGroupingMap(multipSearchResultData)
if err != nil {
return nil, err
}
return &rerankInputs{cols, idGroup, nq, multipSearchResultData, inputFieldIds}, nil
}
return &rerankInputs{cols, nil, nq, multipSearchResultData, inputFieldIds}, nil
}
func (inputs *rerankInputs) numOfQueries() int64 {
return inputs.nq
}
type rerankOutputs struct {
searchResultData *schemapb.SearchResultData
}
func newRerankOutputs(inputs *rerankInputs, searchParams *SearchParams) *rerankOutputs {
topk := searchParams.limit
if searchParams.isGrouping() {
topk = topk * searchParams.groupSize
}
ret := &schemapb.SearchResultData{
NumQueries: searchParams.nq,
TopK: topk,
FieldsData: make([]*schemapb.FieldData, 0),
Scores: []float32{},
Ids: &schemapb.IDs{},
Topks: []int64{},
}
// Find the first non-empty fieldData and prepare result fields
for _, fieldData := range inputs.fieldData {
if fieldData != nil && len(fieldData.GetFieldsData()) > 0 {
ret.FieldsData = typeutil.PrepareResultFieldData(fieldData.GetFieldsData(), searchParams.limit)
break
}
}
return &rerankOutputs{ret}
}
func appendResult[T PKType](inputs *rerankInputs, outputs *rerankOutputs, idScores *IDScores[T]) {
ids := idScores.ids
scores := idScores.scores
outputs.searchResultData.Topks = append(outputs.searchResultData.Topks, int64(len(ids)))
outputs.searchResultData.Scores = append(outputs.searchResultData.Scores, scores...)
if len(inputs.fieldData) > 0 && len(outputs.searchResultData.FieldsData) > 0 {
for idx := range ids {
loc := idScores.locations[idx]
typeutil.AppendFieldData(outputs.searchResultData.FieldsData, inputs.fieldData[loc.batchIdx].GetFieldsData(), int64(loc.offset))
}
}
switch any(ids).(type) {
case []int64:
if outputs.searchResultData.Ids.GetIntId() == nil {
outputs.searchResultData.Ids.IdField = &schemapb.IDs_IntId{
IntId: &schemapb.LongArray{
Data: make([]int64, 0),
},
}
}
outputs.searchResultData.Ids.GetIntId().Data = append(outputs.searchResultData.Ids.GetIntId().Data, any(ids).([]int64)...)
case []string:
if outputs.searchResultData.Ids.GetStrId() == nil {
outputs.searchResultData.Ids.IdField = &schemapb.IDs_StrId{
StrId: &schemapb.StringArray{
Data: make([]string, 0),
},
}
}
outputs.searchResultData.Ids.GetStrId().Data = append(outputs.searchResultData.Ids.GetStrId().Data, any(ids).([]string)...)
}
}
type IDScores[T PKType] struct {
ids []T
scores []float32
size int64
locations []IDLoc
}
type IDLoc struct {
batchIdx int
offset int
}
func newIDScores[T PKType](idScores map[T]float32, idLocs map[T]IDLoc, searchParams *SearchParams, descendingOrder bool) *IDScores[T] {
ids := make([]T, 0, len(idScores))
for id := range idScores {
ids = append(ids, id)
}
sort.Slice(ids, func(i, j int) bool {
if idScores[ids[i]] == idScores[ids[j]] {
return ids[i] < ids[j]
}
if descendingOrder {
return idScores[ids[i]] > idScores[ids[j]]
} else {
return idScores[ids[i]] < idScores[ids[j]]
}
})
topk := searchParams.offset + searchParams.limit
if int64(len(ids)) > topk {
ids = ids[:topk]
}
ret := IDScores[T]{
make([]T, 0, searchParams.limit),
make([]float32, 0, searchParams.limit),
0,
make([]IDLoc, 0, searchParams.limit),
}
for index := searchParams.offset; index < int64(len(ids)); index++ {
score := idScores[ids[index]]
if searchParams.roundDecimal != -1 {
multiplier := math.Pow(10.0, float64(searchParams.roundDecimal))
score = float32(math.Floor(float64(score)*multiplier+0.5) / multiplier)
}
ret.ids = append(ret.ids, ids[index])
ret.scores = append(ret.scores, score)
ret.locations = append(ret.locations, idLocs[ids[index]])
}
ret.size = int64(len(ret.ids))
return &ret
}
func groupScore[T PKType](group *Group[T], scorerType string) (float32, error) {
switch scorerType {
case maxScorer:
return group.maxScore, nil
case sumScorer:
return group.sumScore, nil
case avgScorer:
if len(group.idList) == 0 {
return 0, merr.WrapErrParameterInvalid(1, len(group.idList),
"input group for score must have at least one id, must be sth wrong within code")
}
return group.sumScore / float32(len(group.idList)), nil
default:
return 0, merr.WrapErrParameterInvalidMsg("input group scorer type: %s is not supported!", scorerType)
}
}
type Group[T PKType] struct {
idList []T
scoreList []float32
groupVal any
maxScore float32
sumScore float32
finalScore float32
}
func newGroupingIDScores[T PKType](idScores map[T]float32, idLocations map[T]IDLoc, searchParams *SearchParams, idGroup map[any]any) (*IDScores[T], error) {
ids := make([]T, 0, len(idScores))
for id := range idScores {
ids = append(ids, id)
}
sort.Slice(ids, func(i, j int) bool {
if idScores[ids[i]] == idScores[ids[j]] {
return ids[i] < ids[j]
}
return idScores[ids[i]] > idScores[ids[j]]
})
buckets := make(map[interface{}]*Group[T])
for _, id := range ids {
score := idScores[id]
groupVal := idGroup[id]
if buckets[groupVal] == nil {
buckets[groupVal] = &Group[T]{
idList: make([]T, 0),
scoreList: make([]float32, 0),
groupVal: groupVal,
}
}
if int64(len(buckets[groupVal].idList)) >= searchParams.groupSize {
continue
}
buckets[groupVal].idList = append(buckets[groupVal].idList, id)
buckets[groupVal].scoreList = append(buckets[groupVal].scoreList, idScores[id])
if score > buckets[groupVal].maxScore {
buckets[groupVal].maxScore = score
}
buckets[groupVal].sumScore += score
}
groupList := make([]*Group[T], len(buckets))
idx := 0
var err error
for _, group := range buckets {
if group.finalScore, err = groupScore(group, searchParams.groupScore); err != nil {
return nil, err
}
groupList[idx] = group
idx += 1
}
sort.Slice(groupList, func(i, j int) bool {
if groupList[i].finalScore == groupList[j].finalScore {
if len(groupList[i].idList) == len(groupList[j].idList) {
// if final score and size of group are both equal
// choose the group with smaller first key
// here, it's guaranteed all group having at least one id in the idList
return groupList[i].idList[0] < groupList[j].idList[0]
}
// choose the larger group when scores are equal
return len(groupList[i].idList) > len(groupList[j].idList)
}
return groupList[i].finalScore > groupList[j].finalScore
})
if int64(len(groupList)) > searchParams.limit+searchParams.offset {
groupList = groupList[:searchParams.limit+searchParams.offset]
}
ret := IDScores[T]{
make([]T, 0, searchParams.limit),
make([]float32, 0, searchParams.limit),
0,
make([]IDLoc, 0, searchParams.limit),
}
for index := int(searchParams.offset); index < len(groupList); index++ {
group := groupList[index]
for i, score := range group.scoreList {
// idList and scoreList must have same length
if searchParams.roundDecimal != -1 {
multiplier := math.Pow(10.0, float64(searchParams.roundDecimal))
score = float32(math.Floor(float64(score)*multiplier+0.5) / multiplier)
}
ret.scores = append(ret.scores, score)
ret.ids = append(ret.ids, group.idList[i])
ret.locations = append(ret.locations, idLocations[group.idList[i]])
}
}
ret.size = int64(len(ret.ids))
return &ret, nil
}
func getField(inputField *schemapb.FieldData, start int64, size int64) (any, error) {
switch inputField.Type {
case schemapb.DataType_Int8, schemapb.DataType_Int16, schemapb.DataType_Int32:
if inputField.GetScalars() != nil && inputField.GetScalars().GetIntData() != nil {
return inputField.GetScalars().GetIntData().Data[start : start+size], nil
}
return []int32{}, nil
case schemapb.DataType_Int64:
if inputField.GetScalars() != nil && inputField.GetScalars().GetLongData() != nil {
return inputField.GetScalars().GetLongData().Data[start : start+size], nil
}
return []int64{}, nil
case schemapb.DataType_Float:
if inputField.GetScalars() != nil && inputField.GetScalars().GetFloatData() != nil {
return inputField.GetScalars().GetFloatData().Data[start : start+size], nil
}
return []float32{}, nil
case schemapb.DataType_Double:
if inputField.GetScalars() != nil && inputField.GetScalars().GetDoubleData() != nil {
return inputField.GetScalars().GetDoubleData().Data[start : start+size], nil
}
return []float64{}, nil
case schemapb.DataType_Timestamptz:
if inputField.GetScalars() != nil && inputField.GetScalars().GetTimestamptzData() != nil {
return inputField.GetScalars().GetTimestamptzData().Data[start : start+size], nil
}
return []int64{}, nil
case schemapb.DataType_Bool:
if inputField.GetScalars() != nil && inputField.GetScalars().GetBoolData() != nil {
return inputField.GetScalars().GetBoolData().Data[start : start+size], nil
}
return []bool{}, nil
case schemapb.DataType_String, schemapb.DataType_VarChar:
if inputField.GetScalars() != nil && inputField.GetScalars().GetStringData() != nil {
return inputField.GetScalars().GetStringData().Data[start : start+size], nil
}
return []string{}, nil
default:
return nil, fmt.Errorf("Unsupported field type:%s", inputField.Type.String())
}
}
func getIds(ids *schemapb.IDs, start int64, size int64) any {
if ids == nil {
return nil
}
switch ids.IdField.(type) {
case *schemapb.IDs_IntId:
if ids.GetIntId() != nil && ids.GetIntId().GetData() != nil {
return ids.GetIntId().GetData()[start : start+size]
}
return []int64{}
case *schemapb.IDs_StrId:
if ids.GetStrId() != nil && ids.GetStrId().GetData() != nil {
return ids.GetStrId().GetData()[start : start+size]
}
return []string{}
}
return nil
}
type scoreMergeFunc[T PKType] func(cols []*columns) map[T]float32
func getMergeFunc[T PKType](name string) (scoreMergeFunc[T], error) {
switch strings.ToLower(name) {
case "max":
return maxMerge[T], nil
case "avg":
return avgMerge[T], nil
case "sum":
return sumMerge[T], nil
default:
return nil, fmt.Errorf("Unsupport score mode: [%s], only supports: [max, avg, sum]", name)
}
}
func maxMerge[T PKType](cols []*columns) map[T]float32 {
srcScores := make(map[T]float32)
for _, col := range cols {
if col.size == 0 {
continue
}
scores := col.scores
ids := col.ids.([]T)
for idx, id := range ids {
if score, ok := srcScores[id]; !ok {
srcScores[id] = scores[idx]
} else {
srcScores[id] = max(score, scores[idx])
}
}
}
return srcScores
}
func avgMerge[T PKType](cols []*columns) map[T]float32 {
srcScores := make(map[T]*typeutil.Pair[float32, int32])
for _, col := range cols {
if col.size == 0 {
continue
}
scores := col.scores
ids := col.ids.([]T)
for idx, id := range ids {
if _, ok := srcScores[id]; !ok {
p := typeutil.NewPair[float32, int32](scores[idx], 1)
srcScores[id] = &p
} else {
srcScores[id].A += scores[idx]
srcScores[id].B += 1
}
}
}
retScores := make(map[T]float32, len(srcScores))
for id, item := range srcScores {
retScores[id] = item.A / float32(item.B)
}
return retScores
}
func sumMerge[T PKType](cols []*columns) map[T]float32 {
srcScores := make(map[T]float32)
for _, col := range cols {
if col.size == 0 {
continue
}
scores := col.scores
ids := col.ids.([]T)
for idx, id := range ids {
if _, ok := srcScores[id]; !ok {
srcScores[id] = scores[idx]
} else {
srcScores[id] += scores[idx]
}
}
}
return srcScores
}
func getPKType(collSchema *schemapb.CollectionSchema) (schemapb.DataType, error) {
pkType := schemapb.DataType_None
for _, field := range collSchema.Fields {
if field.IsPrimaryKey {
pkType = field.DataType
}
}
if pkType == schemapb.DataType_None {
return pkType, fmt.Errorf("Collection %s can not found pk field", collSchema.Name)
}
return pkType, nil
}
func genIdGroupingMap(multipSearchResultData []*schemapb.SearchResultData) (map[any]any, error) {
idGroupValue := map[any]any{}
for _, result := range multipSearchResultData {
if result.GetGroupByFieldValue() == nil {
log.Warn("Group value is nil, this is due to empty results in search reduce phase")
continue
}
size := typeutil.GetSizeOfIDs(result.Ids)
groupIter := typeutil.GetDataIterator(result.GetGroupByFieldValue())
for i := 0; i < size; i++ {
groupByVal := groupIter(i)
id := typeutil.GetPK(result.Ids, int64(i))
if _, exist := idGroupValue[id]; !exist {
idGroupValue[id] = groupByVal
}
}
}
return idGroupValue, nil
}
type normalizeFunc func(float32) float32
func getNormalizeFunc(normScore bool, metrics string, toGreater bool) normalizeFunc {
if !normScore {
if !toGreater {
return func(distance float32) float32 {
return distance
}
}
switch strings.ToUpper(metrics) {
case metric.COSINE, metric.IP, metric.BM25:
return func(distance float32) float32 {
return distance
}
default:
return func(distance float32) float32 {
return 1.0 - 2*float32(math.Atan(float64(distance)))/math.Pi
}
}
}
switch strings.ToUpper(metrics) {
case metric.COSINE:
return func(distance float32) float32 {
return (1 + distance) * 0.5
}
case metric.IP:
return func(distance float32) float32 {
return 0.5 + float32(math.Atan(float64(distance)))/math.Pi
}
case metric.BM25:
return func(distance float32) float32 {
return 2 * float32(math.Atan(float64(distance))) / math.Pi
}
default:
return func(distance float32) float32 {
return 1.0 - 2*float32(math.Atan(float64(distance)))/math.Pi
}
}
}
// analyzeMetricsType inspects the given metrics and determines
// whether they contain mixed types and what the sorting order should be.
//
// Parameters:
//
// metrics - A list of metric names (e.g., COSINE, IP, BM25).
//
// Returns:
//
// mixed - true if the input contains both "larger-is-more-similar"
// and "smaller-is-more-similar" metrics; false otherwise.
// sortDescending - true if results should be sorted in descending order
// (larger value = more similar, e.g., COSINE, IP, BM25);
// false if results should be sorted in ascending order
// (smaller value = more similar, e.g., L2 distance).
func classifyMetricsOrder(metrics []string) (mixed bool, sortDescending bool) {
countLargerIsBetter := 0 // Larger value = more similar
countSmallerIsBetter := 0 // Smaller value = more similar
for _, m := range metrics {
switch strings.ToUpper(m) {
case metric.COSINE, metric.IP, metric.BM25:
countLargerIsBetter++
default:
countSmallerIsBetter++
}
}
if countLargerIsBetter > 0 && countSmallerIsBetter > 0 {
return true, true
}
return false, countSmallerIsBetter == 0
}