milvus/tests/python_client/common/common_func.py
Feilong Hou 228eb0f5d0
test: add more test cases and add bulk insert scenario (#45770)
Issue: #45756 
1. add bulk insert scenario
 2. fix small issue in e2e cases
 3. add search group by test case
 4. add timestampstz to gen_all_datatype_collection_schema
5. modify partial update testcase to ensure correct result from
timestamptz field

 On branch feature/timestamps
 Changes to be committed:
	modified:   common/bulk_insert_data.py
	modified:   common/common_func.py
	modified:   common/common_type.py
	modified:   milvus_client/test_milvus_client_partial_update.py
	modified:   milvus_client/test_milvus_client_timestamptz.py
	modified:   pytest.ini
	modified:   testcases/test_bulk_insert.py

Signed-off-by: Eric Hou <eric.hou@zilliz.com>
Co-authored-by: Eric Hou <eric.hou@zilliz.com>
2025-11-24 15:21:06 +08:00

4392 lines
208 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import random
import math
import string
import json
import time
import uuid
from functools import singledispatch
import numpy as np
import pandas as pd
from ml_dtypes import bfloat16
from sklearn import preprocessing
from npy_append_array import NpyAppendArray
from faker import Faker
from pathlib import Path
from minio import Minio
from base.schema_wrapper import ApiCollectionSchemaWrapper, ApiFieldSchemaWrapper
from common import common_type as ct
from common.common_params import ExprCheckParams
from utils.util_log import test_log as log
from customize.milvus_operator import MilvusOperator
import pickle
from collections import Counter
import bm25s
import jieba
import re
import inspect
from typing import Optional, Tuple
from zoneinfo import ZoneInfo
from datetime import datetime, timedelta, timezone as tzmod
from datetime import timezone
from pymilvus import CollectionSchema, DataType, FunctionType, Function, MilvusException, MilvusClient
from bm25s.tokenization import Tokenizer
fake = Faker()
from common.common_params import Expr
"""" Methods of processing data """
try:
RNG = np.random.default_rng(seed=0)
except ValueError as e:
RNG = None
@singledispatch
def to_serializable(val):
"""Used by default."""
return str(val)
@to_serializable.register(np.float32)
def ts_float32(val):
"""Used if *val* is an instance of numpy.float32."""
return np.float64(val)
class ParamInfo:
def __init__(self):
self.param_host = ""
self.param_port = ""
self.param_handler = ""
self.param_user = ""
self.param_password = ""
self.param_secure = False
self.param_replica_num = ct.default_replica_num
self.param_uri = ""
self.param_token = ""
self.param_bucket_name = ""
def prepare_param_info(self, host, port, handler, replica_num, user, password, secure, uri, token, bucket_name):
self.param_host = host
self.param_port = port
self.param_handler = handler
self.param_user = user
self.param_password = password
self.param_secure = secure
self.param_replica_num = replica_num
self.param_uri = uri
self.param_token = token
self.param_bucket_name = bucket_name
param_info = ParamInfo()
en_vocabularies_distribution = {
"hello": 0.01,
"milvus": 0.01,
"vector": 0.01,
"database": 0.01
}
zh_vocabularies_distribution = {
"你好": 0.01,
"向量": 0.01,
"数据": 0.01,
"": 0.01
}
def patch_faker_text(fake_instance, vocabularies_distribution):
"""
Monkey patch the text() method of a Faker instance to include custom vocabulary.
Each word in vocabularies_distribution has an independent chance to be inserted.
Args:
fake_instance: Faker instance to patch
vocabularies_distribution: Dictionary where:
- key: word to insert
- value: probability (0-1) of inserting this word into each sentence
Example:
vocabularies_distribution = {
"hello": 0.1, # 10% chance to insert "hello" in each sentence
"milvus": 0.1, # 10% chance to insert "milvus" in each sentence
}
"""
original_text = fake_instance.text
def new_text(nb_sentences=100, *args, **kwargs):
sentences = []
# Split original text into sentences
original_sentences = original_text(nb_sentences).split('.')
original_sentences = [s.strip() for s in original_sentences if s.strip()]
for base_sentence in original_sentences:
words = base_sentence.split()
# Independently decide whether to insert each word
for word, probability in vocabularies_distribution.items():
if random.random() < probability:
# Choose random position to insert the word
insert_pos = random.randint(0, len(words))
words.insert(insert_pos, word)
# Reconstruct the sentence
base_sentence = ' '.join(words)
# Ensure proper capitalization
base_sentence = base_sentence[0].upper() + base_sentence[1:]
sentences.append(base_sentence)
return '. '.join(sentences) + '.'
# Replace the original text method with our custom one
fake_instance.text = new_text
def get_bm25_ground_truth(corpus, queries, top_k=100, language="en"):
"""
Get the ground truth for BM25 search.
:param corpus: The corpus of documents
:param queries: The query string or list of query strings
:return: The ground truth for BM25 search
"""
def remove_punctuation(text):
text = text.strip()
text = text.replace("\n", " ")
return re.sub(r'[^\w\s]', ' ', text)
# Tokenize the corpus
def jieba_split(text):
text_without_punctuation = remove_punctuation(text)
return jieba.lcut(text_without_punctuation)
stopwords = "english" if language in ["en", "english"] else [" "]
stemmer = None
if language in ["zh", "cn", "chinese"]:
splitter = jieba_split
tokenizer = Tokenizer(
stemmer=stemmer, splitter=splitter, stopwords=stopwords
)
else:
tokenizer = Tokenizer(
stemmer=stemmer, stopwords=stopwords
)
corpus_tokens = tokenizer.tokenize(corpus, return_as="tuple")
retriever = bm25s.BM25()
retriever.index(corpus_tokens)
query_tokens = tokenizer.tokenize(queries,return_as="tuple")
results, scores = retriever.retrieve(query_tokens, corpus=corpus, k=top_k)
return results, scores
def custom_tokenizer(language="en"):
def remove_punctuation(text):
text = text.strip()
text = text.replace("\n", " ")
return re.sub(r'[^\w\s]', ' ', text)
# Tokenize the corpus
def jieba_split(text):
text_without_punctuation = remove_punctuation(text)
return jieba.cut_for_search(text_without_punctuation)
def blank_space_split(text):
text_without_punctuation = remove_punctuation(text)
return text_without_punctuation.split()
stopwords = [" "]
stemmer = None
if language in ["zh", "cn", "chinese"]:
splitter = jieba_split
tokenizer = Tokenizer(
stemmer=stemmer, splitter=splitter, stopwords=stopwords
)
else:
splitter = blank_space_split
tokenizer = Tokenizer(
stemmer=stemmer, splitter= splitter, stopwords=stopwords
)
return tokenizer
def manual_check_text_match(df, word, col):
id_list = []
for i in range(len(df)):
row = df.iloc[i]
# log.info(f"word :{word}, row: {row[col]}")
if word in row[col]:
id_list.append(row["id"])
return id_list
def get_top_english_tokens(counter, n=10):
english_pattern = re.compile(r'^[a-zA-Z]+$')
english_tokens = {
word: freq
for word, freq in counter.items()
if english_pattern.match(str(word))
}
english_counter = Counter(english_tokens)
return english_counter.most_common(n)
def analyze_documents(texts, language="en"):
tokenizer = custom_tokenizer(language)
new_texts = []
for text in texts:
if isinstance(text, str):
new_texts.append(text)
# Tokenize the corpus
tokenized = tokenizer.tokenize(new_texts, return_as="tuple", show_progress=False)
# log.info(f"Tokenized: {tokenized}")
# Create a frequency counter
freq = Counter()
# Count the frequency of each token
for doc_ids in tokenized.ids:
freq.update(doc_ids)
# Create a reverse vocabulary mapping
id_to_word = {id: word for word, id in tokenized.vocab.items()}
# Convert token ids back to words
word_freq = Counter({id_to_word[token_id]: count for token_id, count in freq.items()})
# if language in ["zh", "cn", "chinese"], remove the long words
# this is a trick to make the text match test case verification simple, because the long word can be still split
if language in ["zh", "cn", "chinese"]:
word_freq = Counter({word: count for word, count in word_freq.items() if 1< len(word) <= 3})
log.debug(f"word freq {word_freq.most_common(10)}")
return word_freq
def analyze_documents_with_analyzer_params(texts, analyzer_params):
if param_info.param_uri:
uri = param_info.param_uri
else:
uri = "http://" + param_info.param_host + ":" + str(param_info.param_port)
client = MilvusClient(
uri = uri,
token = param_info.param_token
)
freq = Counter()
res = client.run_analyzer(texts, analyzer_params, with_detail=True, with_hash=True)
for r in res:
freq.update(t['token'] for t in r.tokens)
log.info(f"word freq {freq.most_common(10)}")
return freq
def check_token_overlap(text_a, text_b, language="en"):
word_freq_a = analyze_documents([text_a], language)
word_freq_b = analyze_documents([text_b], language)
overlap = set(word_freq_a.keys()).intersection(set(word_freq_b.keys()))
return overlap, word_freq_a, word_freq_b
def split_dataframes(df, fields, language="en"):
df_copy = df.copy()
for col in fields:
tokenizer = custom_tokenizer(language)
texts = df[col].to_list()
tokenized = tokenizer.tokenize(texts, return_as="tuple")
new_texts = []
id_vocab_map = {id: word for word, id in tokenized.vocab.items()}
for doc_ids in tokenized.ids:
new_texts.append([id_vocab_map[token_id] for token_id in doc_ids])
df_copy[col] = new_texts
return df_copy
def generate_pandas_text_match_result(expr, df):
def manual_check(expr):
if "not" in expr:
key = expr["not"]["field"]
value = expr["not"]["value"]
return lambda row: value not in row[key]
key = expr["field"]
value = expr["value"]
return lambda row: value in row[key]
if "not" in expr:
key = expr["not"]["field"]
else:
key = expr["field"]
manual_result = df[df.apply(manual_check(expr), axis=1)]
log.info(f"pandas filter result {len(manual_result)}\n{manual_result[key]}")
return manual_result
def generate_text_match_expr(query_dict):
"""
Generate a TextMatch expression with multiple logical operators and field names.
:param query_dict: A dictionary representing the query structure
:return: A string representing the TextMatch expression
"""
def process_node(node):
if isinstance(node, dict) and 'field' in node and 'value' in node:
return f"TEXT_MATCH({node['field']}, '{node['value']}')"
elif isinstance(node, dict) and 'not' in node:
return f"not {process_node(node['not'])}"
elif isinstance(node, list):
return ' '.join(process_node(item) for item in node)
elif isinstance(node, str):
return node
else:
raise ValueError(f"Invalid node type: {type(node)}")
return f"({process_node(query_dict)})"
def generate_pandas_query_string(query):
def process_node(node):
if isinstance(node, dict):
if 'field' in node and 'value' in node:
return f"('{node['value']}' in row['{node['field']}'])"
elif 'not' in node:
return f"not {process_node(node['not'])}"
elif isinstance(node, str):
return node
else:
raise ValueError(f"Invalid node type: {type(node)}")
parts = [process_node(item) for item in query]
expression = ' '.join(parts).replace('and', 'and').replace('or', 'or')
log.info(f"Generated pandas query: {expression}")
return lambda row: eval(expression)
def evaluate_expression(step_by_step_results):
# merge result of different steps to final result
def apply_operator(operators, operands):
operator = operators.pop()
right = operands.pop()
left = operands.pop()
if operator == "and":
operands.append(left.intersection(right))
elif operator == "or":
operands.append(left.union(right))
operators = []
operands = []
for item in step_by_step_results:
if isinstance(item, list):
operands.append(set(item))
elif item in ("and", "or"):
while operators and operators[-1] == "and" and item == "or":
apply_operator(operators, operands)
operators.append(item)
while operators:
apply_operator(operators, operands)
return operands[0] if operands else set()
def generate_random_query_from_freq_dict(freq_dict, min_freq=1, max_terms=3, p_not=0.2):
"""
Generate a random query expression from a dictionary of field frequencies.
:param freq_dict: A dictionary where keys are field names and values are word frequency dictionaries
:param min_freq: Minimum frequency for a word to be included in the query (default: 1)
:param max_terms: Maximum number of terms in the query (default: 3)
:param p_not: Probability of using NOT for any term (default: 0.2)
:return: A tuple of (query list, query expression string)
example:
freq_dict = {
"title": {"The": 3, "Lord": 2, "Rings": 2, "Harry": 1, "Potter": 1},
"author": {"Tolkien": 2, "Rowling": 1, "Orwell": 1},
"description": {"adventure": 4, "fantasy": 3, "magic": 1, "dystopian": 2}
}
print("Random queries from frequency dictionary:")
for _ in range(5):
query_list, expr = generate_random_query_from_freq_dict(freq_dict, min_freq=1, max_terms=4, p_not=0.2)
print(f"Query: {query_list}")
print(f"Expression: {expr}")
print()
"""
def random_term(field, words):
term = {"field": field, "value": random.choice(words)}
if random.random() < p_not:
return {"not": term}
return term
# Filter words based on min_freq
filtered_dict = {
field: [word for word, freq in words.items() if freq >= min_freq]
for field, words in freq_dict.items()
}
# Remove empty fields
filtered_dict = {k: v for k, v in filtered_dict.items() if v}
if not filtered_dict:
return [], ""
# Randomly select fields and terms
query = []
for _ in range(min(max_terms, sum(len(words) for words in filtered_dict.values()))):
if not filtered_dict:
break
field = random.choice(list(filtered_dict.keys()))
if filtered_dict[field]:
term = random_term(field, filtered_dict[field])
query.append(term)
# Insert random AND/OR between terms
if query and _ < max_terms - 1:
query.append(random.choice(["and", "or"]))
# Remove the used word to avoid repetition
used_word = term['value'] if isinstance(term, dict) and 'value' in term else term['not']['value']
filtered_dict[field].remove(used_word)
if not filtered_dict[field]:
del filtered_dict[field]
return query, generate_text_match_expr(query), generate_pandas_query_string(query)
def generate_array_dataset(size, array_length, hit_probabilities, target_values):
dataset = []
target_array_length = target_values.get('array_length_field', None)
target_array_access = target_values.get('array_access', None)
all_target_values = set(
val for sublist in target_values.values() for val in (sublist if isinstance(sublist, list) else [sublist]))
for i in range(size):
entry = {"id": i}
# Generate random arrays for each condition
for condition in hit_probabilities.keys():
available_values = [val for val in range(1, 100) if val not in all_target_values]
array = random.sample(available_values, array_length)
# Ensure the array meets the condition based on its probability
if random.random() < hit_probabilities[condition]:
if condition == 'contains':
if target_values[condition] not in array:
array[random.randint(0, array_length - 1)] = target_values[condition]
elif condition == 'contains_any':
if not any(val in array for val in target_values[condition]):
array[random.randint(0, array_length - 1)] = random.choice(target_values[condition])
elif condition == 'contains_all':
indices = random.sample(range(array_length), len(target_values[condition]))
for idx, val in zip(indices, target_values[condition]):
array[idx] = val
elif condition == 'equals':
array = target_values[condition][:]
elif condition == 'array_length_field':
array = [random.randint(0, 10) for _ in range(target_array_length)]
elif condition == 'array_access':
array = [random.randint(0, 10) for _ in range(random.randint(10, 20))]
array[target_array_access[0]] = target_array_access[1]
else:
raise ValueError(f"Unknown condition: {condition}")
entry[condition] = array
dataset.append(entry)
return dataset
def prepare_array_test_data(data_size, hit_rate=0.005, dim=128):
size = data_size # Number of arrays in the dataset
array_length = 10 # Length of each array
# Probabilities that an array hits the target condition
hit_probabilities = {
'contains': hit_rate,
'contains_any': hit_rate,
'contains_all': hit_rate,
'equals': hit_rate,
'array_length_field': hit_rate,
'array_access': hit_rate
}
# Target values for each condition
target_values = {
'contains': 42,
'contains_any': [21, 37, 42],
'contains_all': [15, 30],
'equals': [1,2,3,4,5],
'array_length_field': 5, # array length == 5
'array_access': [0, 5] # index=0, and value == 5
}
# Generate dataset
dataset = generate_array_dataset(size, array_length, hit_probabilities, target_values)
data = {
"id": pd.Series([x["id"] for x in dataset]),
"contains": pd.Series([x["contains"] for x in dataset]),
"contains_any": pd.Series([x["contains_any"] for x in dataset]),
"contains_all": pd.Series([x["contains_all"] for x in dataset]),
"equals": pd.Series([x["equals"] for x in dataset]),
"array_length_field": pd.Series([x["array_length_field"] for x in dataset]),
"array_access": pd.Series([x["array_access"] for x in dataset]),
"emb": pd.Series([np.array([random.random() for j in range(dim)], dtype=np.dtype("float32")) for _ in
range(size)])
}
# Define testing conditions
contains_value = target_values['contains']
contains_any_values = target_values['contains_any']
contains_all_values = target_values['contains_all']
equals_array = target_values['equals']
# Perform tests
contains_result = [d for d in dataset if contains_value in d["contains"]]
contains_any_result = [d for d in dataset if any(val in d["contains_any"] for val in contains_any_values)]
contains_all_result = [d for d in dataset if all(val in d["contains_all"] for val in contains_all_values)]
equals_result = [d for d in dataset if d["equals"] == equals_array]
array_length_result = [d for d in dataset if len(d["array_length_field"]) == target_values['array_length_field']]
array_access_result = [d for d in dataset if d["array_access"][0] == target_values['array_access'][1]]
# Calculate and log.info proportions
contains_ratio = len(contains_result) / size
contains_any_ratio = len(contains_any_result) / size
contains_all_ratio = len(contains_all_result) / size
equals_ratio = len(equals_result) / size
array_length_ratio = len(array_length_result) / size
array_access_ratio = len(array_access_result) / size
log.info(f"\nProportion of arrays that contain the value: {contains_ratio}")
log.info(f"Proportion of arrays that contain any of the values: {contains_any_ratio}")
log.info(f"Proportion of arrays that contain all of the values: {contains_all_ratio}")
log.info(f"Proportion of arrays that equal the target array: {equals_ratio}")
log.info(f"Proportion of arrays that have the target array length: {array_length_ratio}")
log.info(f"Proportion of arrays that have the target array access: {array_access_ratio}")
train_df = pd.DataFrame(data)
target_id = {
"contains": [r["id"] for r in contains_result],
"contains_any": [r["id"] for r in contains_any_result],
"contains_all": [r["id"] for r in contains_all_result],
"equals": [r["id"] for r in equals_result],
"array_length": [r["id"] for r in array_length_result],
"array_access": [r["id"] for r in array_access_result]
}
target_id_list = [target_id[key] for key in ["contains", "contains_any", "contains_all", "equals", "array_length", "array_access"]]
filters = [
"array_contains(contains, 42)",
"array_contains_any(contains_any, [21, 37, 42])",
"array_contains_all(contains_all, [15, 30])",
"equals == [1,2,3,4,5]",
"array_length(array_length_field) == 5",
"array_access[0] == 5"
]
query_expr = []
for i in range(len(filters)):
item = {
"expr": filters[i],
"ground_truth": target_id_list[i],
}
query_expr.append(item)
return train_df, query_expr
def gen_unique_str(str_value=None):
prefix = "".join(random.choice(string.ascii_letters + string.digits) for _ in range(8))
return "test_" + prefix if str_value is None else str_value + "_" + prefix
def gen_str_by_length(length=8, letters_only=False, contain_numbers=False):
if letters_only:
return "".join(random.choice(string.ascii_letters) for _ in range(length))
if contain_numbers:
return "".join(random.choice(string.ascii_letters) for _ in range(length-1)) + \
"".join(random.choice(string.digits))
return "".join(random.choice(string.ascii_letters + string.digits) for _ in range(length))
def generate_random_sentence(language):
language_map = {
"English": "en_US",
"French": "fr_FR",
"Spanish": "es_ES",
"German": "de_DE",
"Italian": "it_IT",
"Portuguese": "pt_PT",
"Russian": "ru_RU",
"Chinese": "zh_CN",
"Japanese": "ja_JP",
"Korean": "ko_KR",
"Arabic": "ar_SA",
"Hindi": "hi_IN"
}
lang_code = language_map.get(language, "en_US")
faker = Faker(lang_code)
return faker.sentence()
def gen_digits_by_length(length=8):
return "".join(random.choice(string.digits) for _ in range(length))
def gen_scalar_field(field_type, name=None, description=ct.default_desc, is_primary=False, **kwargs):
"""
Generate a field schema based on the field type.
Args:
field_type: DataType enum value (e.g., DataType.BOOL, DataType.VARCHAR, etc.)
name: Field name (uses default if None)
description: Field description
is_primary: Whether this is a primary field
**kwargs: Additional parameters like max_length, max_capacity, etc.
Returns:
Field schema object
"""
# Set default names based on field type
if name is None:
name = ct.default_field_name_map.get(field_type, "default_field")
# Set default parameters for specific field types
if field_type == DataType.VARCHAR and 'max_length' not in kwargs:
kwargs['max_length'] = ct.default_length
elif field_type == DataType.ARRAY:
if 'element_type' not in kwargs:
kwargs['element_type'] = DataType.INT64
if 'max_capacity' not in kwargs:
kwargs['max_capacity'] = ct.default_max_capacity
field, _ = ApiFieldSchemaWrapper().init_field_schema(
name=name,
dtype=field_type,
description=description,
is_primary=is_primary,
**kwargs
)
return field
# Convenience functions for backward compatibility
def gen_bool_field(name=ct.default_bool_field_name, description=ct.default_desc, is_primary=False, **kwargs):
return gen_scalar_field(DataType.BOOL, name=name, description=description, is_primary=is_primary, **kwargs)
def gen_string_field(name=ct.default_string_field_name, description=ct.default_desc, is_primary=False,
max_length=ct.default_length, **kwargs):
return gen_scalar_field(DataType.VARCHAR, name=name, description=description, is_primary=is_primary,
max_length=max_length, **kwargs)
def gen_json_field(name=ct.default_json_field_name, description=ct.default_desc, is_primary=False, **kwargs):
return gen_scalar_field(DataType.JSON, name=name, description=description, is_primary=is_primary, **kwargs)
def gen_geometry_field(name=ct.default_geometry_field_name, description=ct.default_desc, is_primary=False, **kwargs):
return gen_scalar_field(DataType.GEOMETRY, name=name, description=description, is_primary=is_primary, **kwargs)
def gen_geometry_field(name="geo", description=ct.default_desc, is_primary=False, **kwargs):
return gen_scalar_field(DataType.GEOMETRY, name=name, description=description, is_primary=is_primary, **kwargs)
def gen_timestamptz_field(name=ct.default_timestamptz_field_name, description=ct.default_desc, is_primary=False, **kwargs):
return gen_scalar_field(DataType.TIMESTAMPTZ, name=name, description=description, is_primary=is_primary, **kwargs)
def gen_array_field(name=ct.default_array_field_name, element_type=DataType.INT64, max_capacity=ct.default_max_capacity,
description=ct.default_desc, is_primary=False, **kwargs):
return gen_scalar_field(DataType.ARRAY, name=name, description=description, is_primary=is_primary,
element_type=element_type, max_capacity=max_capacity, **kwargs)
def gen_int8_field(name=ct.default_int8_field_name, description=ct.default_desc, is_primary=False, **kwargs):
return gen_scalar_field(DataType.INT8, name=name, description=description, is_primary=is_primary, **kwargs)
def gen_int16_field(name=ct.default_int16_field_name, description=ct.default_desc, is_primary=False, **kwargs):
return gen_scalar_field(DataType.INT16, name=name, description=description, is_primary=is_primary, **kwargs)
def gen_int32_field(name=ct.default_int32_field_name, description=ct.default_desc, is_primary=False, **kwargs):
return gen_scalar_field(DataType.INT32, name=name, description=description, is_primary=is_primary, **kwargs)
def gen_int64_field(name=ct.default_int64_field_name, description=ct.default_desc, is_primary=False, **kwargs):
return gen_scalar_field(DataType.INT64, name=name, description=description, is_primary=is_primary, **kwargs)
def gen_float_field(name=ct.default_float_field_name, is_primary=False, description=ct.default_desc, **kwargs):
return gen_scalar_field(DataType.FLOAT, name=name, description=description, is_primary=is_primary, **kwargs)
def gen_double_field(name=ct.default_double_field_name, is_primary=False, description=ct.default_desc, **kwargs):
return gen_scalar_field(DataType.DOUBLE, name=name, description=description, is_primary=is_primary, **kwargs)
def gen_float_vec_field(name=ct.default_float_vec_field_name, is_primary=False, dim=ct.default_dim,
description=ct.default_desc, vector_data_type=DataType.FLOAT_VECTOR, **kwargs):
if vector_data_type != DataType.SPARSE_FLOAT_VECTOR:
float_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=vector_data_type,
description=description, dim=dim,
is_primary=is_primary, **kwargs)
else:
# no dim for sparse vector
float_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.SPARSE_FLOAT_VECTOR,
description=description,
is_primary=is_primary, **kwargs)
return float_vec_field
def gen_binary_vec_field(name=ct.default_binary_vec_field_name, is_primary=False, dim=ct.default_dim,
description=ct.default_desc, **kwargs):
binary_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.BINARY_VECTOR,
description=description, dim=dim,
is_primary=is_primary, **kwargs)
return binary_vec_field
def gen_float16_vec_field(name=ct.default_float_vec_field_name, is_primary=False, dim=ct.default_dim,
description=ct.default_desc, **kwargs):
float_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.FLOAT16_VECTOR,
description=description, dim=dim,
is_primary=is_primary, **kwargs)
return float_vec_field
def gen_bfloat16_vec_field(name=ct.default_float_vec_field_name, is_primary=False, dim=ct.default_dim,
description=ct.default_desc, **kwargs):
float_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.BFLOAT16_VECTOR,
description=description, dim=dim,
is_primary=is_primary, **kwargs)
return float_vec_field
def gen_int8_vec_field(name=ct.default_int8_vec_field_name, is_primary=False, dim=ct.default_dim,
description=ct.default_desc, **kwargs):
int8_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.INT8_VECTOR,
description=description, dim=dim,
is_primary=is_primary, **kwargs)
return int8_vec_field
def gen_sparse_vec_field(name=ct.default_sparse_vec_field_name, is_primary=False, description=ct.default_desc, **kwargs):
sparse_vec_field, _ = ApiFieldSchemaWrapper().init_field_schema(name=name, dtype=DataType.SPARSE_FLOAT_VECTOR,
description=description,
is_primary=is_primary, **kwargs)
return sparse_vec_field
def gen_default_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name,
auto_id=False, dim=ct.default_dim, enable_dynamic_field=False, with_json=True,
multiple_dim_array=[], is_partition_key=None, vector_data_type=DataType.FLOAT_VECTOR,
nullable_fields={}, default_value_fields={}, **kwargs):
# gen primary key field
if default_value_fields.get(ct.default_int64_field_name) is None:
int64_field = gen_int64_field(is_partition_key=(is_partition_key == ct.default_int64_field_name),
nullable=(ct.default_int64_field_name in nullable_fields))
else:
int64_field = gen_int64_field(is_partition_key=(is_partition_key == ct.default_int64_field_name),
nullable=(ct.default_int64_field_name in nullable_fields),
default_value=default_value_fields.get(ct.default_int64_field_name))
if default_value_fields.get(ct.default_string_field_name) is None:
string_field = gen_string_field(is_partition_key=(is_partition_key == ct.default_string_field_name),
nullable=(ct.default_string_field_name in nullable_fields))
else:
string_field = gen_string_field(is_partition_key=(is_partition_key == ct.default_string_field_name),
nullable=(ct.default_string_field_name in nullable_fields),
default_value=default_value_fields.get(ct.default_string_field_name))
# gen vector field
if default_value_fields.get(ct.default_float_vec_field_name) is None:
float_vector_field = gen_float_vec_field(dim=dim, vector_data_type=vector_data_type,
nullable=(ct.default_float_vec_field_name in nullable_fields))
else:
float_vector_field = gen_float_vec_field(dim=dim, vector_data_type=vector_data_type,
nullable=(ct.default_float_vec_field_name in nullable_fields),
default_value=default_value_fields.get(
ct.default_float_vec_field_name))
if primary_field is ct.default_int64_field_name:
fields = [int64_field]
elif primary_field is ct.default_string_field_name:
fields = [string_field]
else:
log.error("Primary key only support int or varchar")
assert False
if enable_dynamic_field:
fields.append(float_vector_field)
else:
if default_value_fields.get(ct.default_float_field_name) is None:
float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields))
else:
float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields),
default_value=default_value_fields.get(ct.default_float_field_name))
if default_value_fields.get(ct.default_json_field_name) is None:
json_field = gen_json_field(nullable=(ct.default_json_field_name in nullable_fields))
else:
json_field = gen_json_field(nullable=(ct.default_json_field_name in nullable_fields),
default_value=default_value_fields.get(ct.default_json_field_name))
fields = [int64_field, float_field, string_field, json_field, float_vector_field]
if with_json is False:
fields.remove(json_field)
if len(multiple_dim_array) != 0:
for other_dim in multiple_dim_array:
name_prefix = "multiple_vector"
fields.append(gen_float_vec_field(gen_unique_str(name_prefix), dim=other_dim,
vector_data_type=vector_data_type))
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
primary_field=primary_field, auto_id=auto_id,
enable_dynamic_field=enable_dynamic_field, **kwargs)
return schema
def gen_all_datatype_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name,
auto_id=False, dim=ct.default_dim, enable_dynamic_field=True, nullable=True,
enable_struct_array_field=True, **kwargs):
analyzer_params = {
"tokenizer": "standard",
}
# Create schema using MilvusClient
schema = MilvusClient.create_schema(
auto_id=auto_id,
enable_dynamic_field=enable_dynamic_field,
description=description,
**kwargs
)
# Add all fields using schema.add_field()
schema.add_field(primary_field, DataType.INT64, is_primary=True)
schema.add_field(ct.default_float_field_name, DataType.FLOAT, nullable=nullable)
schema.add_field(ct.default_string_field_name, DataType.VARCHAR, max_length=ct.default_max_length, nullable=nullable)
schema.add_field("document", DataType.VARCHAR, max_length=2000, enable_analyzer=True, enable_match=True, nullable=nullable)
schema.add_field("text", DataType.VARCHAR, max_length=2000, enable_analyzer=True, enable_match=True,
analyzer_params=analyzer_params)
schema.add_field(ct.default_json_field_name, DataType.JSON, nullable=nullable)
schema.add_field(ct.default_geometry_field_name, DataType.GEOMETRY, nullable=nullable)
schema.add_field(ct.default_timestamptz_field_name, DataType.TIMESTAMPTZ, nullable=nullable)
schema.add_field("array_int", DataType.ARRAY, element_type=DataType.INT64, max_capacity=ct.default_max_capacity)
schema.add_field("array_float", DataType.ARRAY, element_type=DataType.FLOAT, max_capacity=ct.default_max_capacity)
schema.add_field("array_varchar", DataType.ARRAY, element_type=DataType.VARCHAR, max_length=200, max_capacity=ct.default_max_capacity)
schema.add_field("array_bool", DataType.ARRAY, element_type=DataType.BOOL, max_capacity=ct.default_max_capacity)
schema.add_field(ct.default_float_vec_field_name, DataType.FLOAT_VECTOR, dim=dim)
schema.add_field("image_emb", DataType.INT8_VECTOR, dim=dim)
schema.add_field("text_sparse_emb", DataType.SPARSE_FLOAT_VECTOR)
# schema.add_field("voice_emb", DataType.FLOAT_VECTOR, dim=dim)
# Add struct array field
if enable_struct_array_field:
struct_schema = MilvusClient.create_struct_field_schema()
struct_schema.add_field("name", DataType.VARCHAR, max_length=200)
struct_schema.add_field("age", DataType.INT64)
struct_schema.add_field("float_vector", DataType.FLOAT_VECTOR, dim=dim)
schema.add_field("array_struct", datatype=DataType.ARRAY, element_type=DataType.STRUCT,
struct_schema=struct_schema, max_capacity=10)
# Add BM25 function
bm25_function = Function(
name=f"text",
function_type=FunctionType.BM25,
input_field_names=["text"],
output_field_names=["text_sparse_emb"],
params={},
)
schema.add_function(bm25_function)
return schema
def gen_array_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name, auto_id=False,
dim=ct.default_dim, enable_dynamic_field=False, max_capacity=ct.default_max_capacity,
max_length=100, with_json=False, **kwargs):
if enable_dynamic_field:
if primary_field is ct.default_int64_field_name:
fields = [gen_int64_field(), gen_float_vec_field(dim=dim)]
elif primary_field is ct.default_string_field_name:
fields = [gen_string_field(), gen_float_vec_field(dim=dim)]
else:
log.error("Primary key only support int or varchar")
assert False
else:
fields = [gen_int64_field(), gen_float_vec_field(dim=dim), gen_json_field(nullable=True),
gen_array_field(name=ct.default_int32_array_field_name, element_type=DataType.INT32,
max_capacity=max_capacity),
gen_array_field(name=ct.default_float_array_field_name, element_type=DataType.FLOAT,
max_capacity=max_capacity),
gen_array_field(name=ct.default_string_array_field_name, element_type=DataType.VARCHAR,
max_capacity=max_capacity, max_length=max_length, nullable=True)]
if with_json is False:
fields.remove(gen_json_field(nullable=True))
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
primary_field=primary_field, auto_id=auto_id,
enable_dynamic_field=enable_dynamic_field, **kwargs)
return schema
def gen_bulk_insert_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name, with_varchar_field=True,
auto_id=False, dim=ct.default_dim, enable_dynamic_field=False, with_json=False):
if enable_dynamic_field:
if primary_field is ct.default_int64_field_name:
fields = [gen_int64_field(), gen_float_vec_field(dim=dim)]
elif primary_field is ct.default_string_field_name:
fields = [gen_string_field(), gen_float_vec_field(dim=dim)]
else:
log.error("Primary key only support int or varchar")
assert False
else:
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_json_field(),
gen_float_vec_field(dim=dim)]
if with_json is False:
fields.remove(gen_json_field())
if with_varchar_field is False:
fields.remove(gen_string_field())
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
primary_field=primary_field, auto_id=auto_id,
enable_dynamic_field=enable_dynamic_field)
return schema
def gen_general_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name,
auto_id=False, is_binary=False, dim=ct.default_dim, **kwargs):
if is_binary:
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_binary_vec_field(dim=dim)]
else:
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_float_vec_field(dim=dim)]
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
primary_field=primary_field, auto_id=auto_id, **kwargs)
return schema
def gen_string_pk_default_collection_schema(description=ct.default_desc, primary_field=ct.default_string_field_name,
auto_id=False, dim=ct.default_dim, **kwargs):
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_json_field(), gen_float_vec_field(dim=dim)]
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
primary_field=primary_field, auto_id=auto_id, **kwargs)
return schema
def gen_json_default_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name,
auto_id=False, dim=ct.default_dim, **kwargs):
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_json_field(), gen_float_vec_field(dim=dim)]
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
primary_field=primary_field, auto_id=auto_id, **kwargs)
return schema
def gen_multiple_json_default_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name,
auto_id=False, dim=ct.default_dim, **kwargs):
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_json_field(name="json1"),
gen_json_field(name="json2"), gen_float_vec_field(dim=dim)]
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
primary_field=primary_field, auto_id=auto_id, **kwargs)
return schema
def gen_collection_schema_all_datatype(description=ct.default_desc, primary_field=ct.default_int64_field_name,
auto_id=False, dim=ct.default_dim, enable_dynamic_field=False, with_json=True,
multiple_dim_array=[], nullable_fields={}, default_value_fields={},
**kwargs):
# gen primary key field
if default_value_fields.get(ct.default_int64_field_name) is None:
int64_field = gen_int64_field()
else:
int64_field = gen_int64_field(default_value=default_value_fields.get(ct.default_int64_field_name))
if enable_dynamic_field:
fields = [gen_int64_field()]
else:
if default_value_fields.get(ct.default_int32_field_name) is None:
int32_field = gen_int32_field(nullable=(ct.default_int32_field_name in nullable_fields))
else:
int32_field = gen_int32_field(nullable=(ct.default_int32_field_name in nullable_fields),
default_value=default_value_fields.get(ct.default_int32_field_name))
if default_value_fields.get(ct.default_int16_field_name) is None:
int16_field = gen_int16_field(nullable=(ct.default_int16_field_name in nullable_fields))
else:
int16_field = gen_int16_field(nullable=(ct.default_int16_field_name in nullable_fields),
default_value=default_value_fields.get(ct.default_int16_field_name))
if default_value_fields.get(ct.default_int8_field_name) is None:
int8_field = gen_int8_field(nullable=(ct.default_int8_field_name in nullable_fields))
else:
int8_field = gen_int8_field(nullable=(ct.default_int8_field_name in nullable_fields),
default_value=default_value_fields.get(ct.default_int8_field_name))
if default_value_fields.get(ct.default_bool_field_name) is None:
bool_field = gen_bool_field(nullable=(ct.default_bool_field_name in nullable_fields))
else:
bool_field = gen_bool_field(nullable=(ct.default_bool_field_name in nullable_fields),
default_value=default_value_fields.get(ct.default_bool_field_name))
if default_value_fields.get(ct.default_float_field_name) is None:
float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields))
else:
float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields),
default_value=default_value_fields.get(ct.default_float_field_name))
if default_value_fields.get(ct.default_double_field_name) is None:
double_field = gen_double_field(nullable=(ct.default_double_field_name in nullable_fields))
else:
double_field = gen_double_field(nullable=(ct.default_double_field_name in nullable_fields),
default_value=default_value_fields.get(ct.default_double_field_name))
if default_value_fields.get(ct.default_string_field_name) is None:
string_field = gen_string_field(nullable=(ct.default_string_field_name in nullable_fields))
else:
string_field = gen_string_field(nullable=(ct.default_string_field_name in nullable_fields),
default_value=default_value_fields.get(ct.default_string_field_name))
if default_value_fields.get(ct.default_json_field_name) is None:
json_field = gen_json_field(nullable=(ct.default_json_field_name in nullable_fields))
else:
json_field = gen_json_field(nullable=(ct.default_json_field_name in nullable_fields),
default_value=default_value_fields.get(ct.default_json_field_name))
fields = [int64_field, int32_field, int16_field, int8_field, bool_field,
float_field, double_field, string_field, json_field]
if with_json is False:
fields.remove(json_field)
if len(multiple_dim_array) == 0:
# gen vector field
if default_value_fields.get(ct.default_float_vec_field_name) is None:
float_vector_field = gen_float_vec_field(dim=dim)
else:
float_vector_field = gen_float_vec_field(dim=dim,
default_value=default_value_fields.get(ct.default_float_vec_field_name))
fields.append(float_vector_field)
else:
multiple_dim_array.insert(0, dim)
for i in range(len(multiple_dim_array)):
if ct.append_vector_type[i%3] != DataType.SPARSE_FLOAT_VECTOR:
if default_value_fields.get(ct.append_vector_type[i%3]) is None:
vector_field = gen_float_vec_field(name=f"multiple_vector_{ct.append_vector_type[i%3].name}",
dim=multiple_dim_array[i],
vector_data_type=ct.append_vector_type[i%3])
else:
vector_field = gen_float_vec_field(name=f"multiple_vector_{ct.append_vector_type[i%3].name}",
dim=multiple_dim_array[i],
vector_data_type=ct.append_vector_type[i%3],
default_value=default_value_fields.get(ct.append_vector_type[i%3].name))
fields.append(vector_field)
else:
# The field of a sparse vector cannot be dimensioned
if default_value_fields.get(ct.default_sparse_vec_field_name) is None:
sparse_vector_field = gen_sparse_vec_field(name=f"multiple_vector_{DataType.SPARSE_FLOAT_VECTOR.name}",
vector_data_type=DataType.SPARSE_FLOAT_VECTOR)
else:
sparse_vector_field = gen_sparse_vec_field(name=f"multiple_vector_{DataType.SPARSE_FLOAT_VECTOR.name}",
vector_data_type=DataType.SPARSE_FLOAT_VECTOR,
default_value=default_value_fields.get(ct.default_sparse_vec_field_name))
fields.append(sparse_vector_field)
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
primary_field=primary_field, auto_id=auto_id,
enable_dynamic_field=enable_dynamic_field, **kwargs)
return schema
def gen_collection_schema(fields, primary_field=None, description=ct.default_desc, auto_id=False, **kwargs):
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, primary_field=primary_field,
description=description, auto_id=auto_id, **kwargs)
return schema
def gen_default_binary_collection_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name,
auto_id=False, dim=ct.default_dim, nullable_fields={}, default_value_fields={},
**kwargs):
if default_value_fields.get(ct.default_int64_field_name) is None:
int64_field = gen_int64_field(nullable=(ct.default_int64_field_name in nullable_fields))
else:
int64_field = gen_int64_field(nullable=(ct.default_int64_field_name in nullable_fields),
default_value=default_value_fields.get(ct.default_int64_field_name))
if default_value_fields.get(ct.default_float_field_name) is None:
float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields))
else:
float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields),
default_value=default_value_fields.get(ct.default_float_field_name))
if default_value_fields.get(ct.default_string_field_name) is None:
string_field = gen_string_field(nullable=(ct.default_string_field_name in nullable_fields))
else:
string_field = gen_string_field(nullable=(ct.default_string_field_name in nullable_fields),
default_value=default_value_fields.get(ct.default_string_field_name))
if default_value_fields.get(ct.default_binary_vec_field_name) is None:
binary_vec_field = gen_binary_vec_field(dim=dim, nullable=(ct.default_binary_vec_field_name in nullable_fields))
else:
binary_vec_field = gen_binary_vec_field(dim=dim, nullable=(ct.default_binary_vec_field_name in nullable_fields),
default_value=default_value_fields.get(ct.default_binary_vec_field_name))
fields = [int64_field, float_field, string_field, binary_vec_field]
binary_schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
primary_field=primary_field,
auto_id=auto_id, **kwargs)
return binary_schema
def gen_default_sparse_schema(description=ct.default_desc, primary_field=ct.default_int64_field_name,
auto_id=False, with_json=False, multiple_dim_array=[], nullable_fields={},
default_value_fields={}, **kwargs):
if default_value_fields.get(ct.default_int64_field_name) is None:
int64_field = gen_int64_field(nullable=(ct.default_int64_field_name in nullable_fields))
else:
int64_field = gen_int64_field(nullable=(ct.default_int64_field_name in nullable_fields),
default_value=default_value_fields.get(ct.default_int64_field_name))
if default_value_fields.get(ct.default_float_field_name) is None:
float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields))
else:
float_field = gen_float_field(nullable=(ct.default_float_field_name in nullable_fields),
default_value=default_value_fields.get(ct.default_float_field_name))
if default_value_fields.get(ct.default_string_field_name) is None:
string_field = gen_string_field(nullable=(ct.default_string_field_name in nullable_fields))
else:
string_field = gen_string_field(nullable=(ct.default_string_field_name in nullable_fields),
default_value=default_value_fields.get(ct.default_string_field_name))
if default_value_fields.get(ct.default_sparse_vec_field_name) is None:
sparse_vec_field = gen_sparse_vec_field(nullable=(ct.default_sparse_vec_field_name in nullable_fields))
else:
sparse_vec_field = gen_sparse_vec_field(nullable=(ct.default_sparse_vec_field_name in nullable_fields),
default_value=default_value_fields.get(ct.default_sparse_vec_field_name))
fields = [int64_field, float_field, string_field, sparse_vec_field]
if with_json:
if default_value_fields.get(ct.default_json_field_name) is None:
json_field = gen_json_field(nullable=(ct.default_json_field_name in nullable_fields))
else:
json_field = gen_json_field(nullable=(ct.default_json_field_name in nullable_fields),
default_value=default_value_fields.get(ct.default_json_field_name))
fields.insert(-1, json_field)
if len(multiple_dim_array) != 0:
for i in range(len(multiple_dim_array)):
vec_name = ct.default_sparse_vec_field_name + "_" + str(i)
vec_field = gen_sparse_vec_field(name=vec_name)
fields.append(vec_field)
sparse_schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=description,
primary_field=primary_field,
auto_id=auto_id, **kwargs)
return sparse_schema
def gen_schema_multi_vector_fields(vec_fields):
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_float_vec_field()]
fields.extend(vec_fields)
primary_field = ct.default_int64_field_name
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=ct.default_desc,
primary_field=primary_field, auto_id=False)
return schema
def gen_schema_multi_string_fields(string_fields):
fields = [gen_int64_field(), gen_float_field(), gen_string_field(), gen_float_vec_field()]
fields.extend(string_fields)
primary_field = ct.default_int64_field_name
schema, _ = ApiCollectionSchemaWrapper().init_collection_schema(fields=fields, description=ct.default_desc,
primary_field=primary_field, auto_id=False)
return schema
def gen_string(nb):
string_values = [str(random.random()) for _ in range(nb)]
return string_values
def gen_binary_vectors(num, dim):
raw_vectors = []
binary_vectors = []
for _ in range(num):
raw_vector = [random.randint(0, 1) for _ in range(dim)]
raw_vectors.append(raw_vector)
# packs a binary-valued array into bits in a unit8 array, and bytes array_of_ints
binary_vectors.append(bytes(np.packbits(raw_vector, axis=-1).tolist()))
return raw_vectors, binary_vectors
def gen_default_dataframe_data(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=True,
random_primary_key=False, multiple_dim_array=[], multiple_vector_field_name=[],
vector_data_type=DataType.FLOAT_VECTOR, auto_id=False,
primary_field=ct.default_int64_field_name, nullable_fields={}, language=None):
if not random_primary_key:
int_values = pd.Series(data=[i for i in range(start, start + nb)])
else:
int_values = pd.Series(data=random.sample(range(start, start + nb), nb))
float_data = [np.float32(i) for i in range(start, start + nb)]
float_values = pd.Series(data=float_data, dtype="float32")
if ct.default_float_field_name in nullable_fields:
null_number = int(nb*nullable_fields[ct.default_float_field_name])
null_data = [None for _ in range(null_number)]
float_data = float_data[:nb-null_number] + null_data
log.debug(float_data)
float_values = pd.Series(data=float_data, dtype=object)
string_data = [str(i) for i in range(start, start + nb)]
if language:
string_data = [generate_random_sentence(language) for _ in range(nb)]
string_values = pd.Series(data=string_data, dtype="string")
if ct.default_string_field_name in nullable_fields:
null_number = int(nb*nullable_fields[ct.default_string_field_name])
null_data = [None for _ in range(null_number)]
string_data = string_data[:nb-null_number] + null_data
string_values = pd.Series(data=string_data, dtype=object)
json_values = [{"number": i, "float": i*1.0} for i in range(start, start + nb)]
if ct.default_json_field_name in nullable_fields:
null_number = int(nb * nullable_fields[ct.default_json_field_name])
null_data = [{"number": None, "float": None} for _ in range(null_number)]
json_values = json_values[:nb-null_number] + null_data
float_vec_values = gen_vectors(nb, dim, vector_data_type=vector_data_type)
df = pd.DataFrame({
ct.default_int64_field_name: int_values,
ct.default_float_field_name: float_values,
ct.default_string_field_name: string_values,
ct.default_json_field_name: json_values,
ct.default_float_vec_field_name: float_vec_values
})
if with_json is False:
df.drop(ct.default_json_field_name, axis=1, inplace=True)
if auto_id is True:
if primary_field == ct.default_int64_field_name:
df.drop(ct.default_int64_field_name, axis=1, inplace=True)
elif primary_field == ct.default_string_field_name:
df.drop(ct.default_string_field_name, axis=1, inplace=True)
if len(multiple_dim_array) != 0:
if len(multiple_vector_field_name) != len(multiple_dim_array):
log.error("multiple vector feature is enabled, please input the vector field name list "
"not including the default vector field")
assert len(multiple_vector_field_name) == len(multiple_dim_array)
for i in range(len(multiple_dim_array)):
new_float_vec_values = gen_vectors(nb, multiple_dim_array[i], vector_data_type=vector_data_type)
df[multiple_vector_field_name[i]] = new_float_vec_values
return df
def gen_default_list_data(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=True,
random_primary_key=False, multiple_dim_array=[], multiple_vector_field_name=[],
vector_data_type=DataType.FLOAT_VECTOR, auto_id=False,
primary_field=ct.default_int64_field_name, nullable_fields={}, language=None):
insert_list = []
if not random_primary_key:
int_values = pd.Series(data=[i for i in range(start, start + nb)])
else:
int_values = pd.Series(data=random.sample(range(start, start + nb), nb))
float_data = [np.float32(i) for i in range(start, start + nb)]
float_values = pd.Series(data=float_data, dtype="float32")
if ct.default_float_field_name in nullable_fields:
null_number = int(nb * nullable_fields[ct.default_float_field_name])
null_data = [None for _ in range(null_number)]
float_data = float_data[:nb - null_number] + null_data
float_values = pd.Series(data=float_data, dtype=object)
string_data = [str(i) for i in range(start, start + nb)]
if language:
string_data = [generate_random_sentence(language) for _ in range(nb)]
string_values = pd.Series(data=string_data, dtype="string")
if ct.default_string_field_name in nullable_fields:
null_number = int(nb * nullable_fields[ct.default_string_field_name])
null_data = [None for _ in range(null_number)]
string_data = string_data[:nb - null_number] + null_data
string_values = pd.Series(data=string_data, dtype=object)
json_values = [{"number": i, "float": i*1.0} for i in range(start, start + nb)]
if ct.default_json_field_name in nullable_fields:
null_number = int(nb * nullable_fields[ct.default_json_field_name])
null_data = [{"number": None, "float": None} for _ in range(null_number)]
json_values = json_values[:nb-null_number] + null_data
float_vec_values = gen_vectors(nb, dim, vector_data_type=vector_data_type)
insert_list = [int_values, float_values, string_values]
if with_json is True:
insert_list.append(json_values)
insert_list.append(float_vec_values)
if auto_id is True:
if primary_field == ct.default_int64_field_name:
index = 0
elif primary_field == ct.default_string_field_name:
index = 2
del insert_list[index]
if len(multiple_dim_array) != 0:
# if len(multiple_vector_field_name) != len(multiple_dim_array):
# log.error("multiple vector feature is enabled, please input the vector field name list "
# "not including the default vector field")
# assert len(multiple_vector_field_name) == len(multiple_dim_array)
for i in range(len(multiple_dim_array)):
new_float_vec_values = gen_vectors(nb, multiple_dim_array[i], vector_data_type=vector_data_type)
insert_list.append(new_float_vec_values)
return insert_list
def gen_default_rows_data(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=True, multiple_dim_array=[],
multiple_vector_field_name=[], vector_data_type=DataType.FLOAT_VECTOR, auto_id=False,
primary_field = ct.default_int64_field_name, nullable_fields={}, language=None):
array = []
for i in range(start, start + nb):
dict = {ct.default_int64_field_name: i,
ct.default_float_field_name: i*1.0,
ct.default_string_field_name: str(i),
ct.default_json_field_name: {"number": i, "float": i*1.0},
ct.default_float_vec_field_name: gen_vectors(1, dim, vector_data_type=vector_data_type)[0]
}
if with_json is False:
dict.pop(ct.default_json_field_name, None)
if language:
dict[ct.default_string_field_name] = generate_random_sentence(language)
if auto_id is True:
if primary_field == ct.default_int64_field_name:
dict.pop(ct.default_int64_field_name)
elif primary_field == ct.default_string_field_name:
dict.pop(ct.default_string_field_name)
array.append(dict)
if len(multiple_dim_array) != 0:
for i in range(len(multiple_dim_array)):
dict[multiple_vector_field_name[i]] = gen_vectors(1, multiple_dim_array[i],
vector_data_type=vector_data_type)[0]
if ct.default_int64_field_name in nullable_fields:
null_number = int(nb*nullable_fields[ct.default_int64_field_name])
for single_dict in array[-null_number:]:
single_dict[ct.default_int64_field_name] = None
if ct.default_float_field_name in nullable_fields:
null_number = int(nb * nullable_fields[ct.default_float_field_name])
for single_dict in array[-null_number:]:
single_dict[ct.default_float_field_name] = None
if ct.default_string_field_name in nullable_fields:
null_number = int(nb * nullable_fields[ct.default_string_field_name])
for single_dict in array[-null_number:]:
single_dict[ct.default_string_field_name] = None
if ct.default_json_field_name in nullable_fields:
null_number = int(nb * nullable_fields[ct.default_json_field_name])
for single_dict in array[-null_number:]:
single_dict[ct.default_string_field_name] = {"number": None, "float": None}
log.debug("generated default row data")
return array
def gen_json_data_for_diff_json_types(nb=ct.default_nb, start=0, json_type="json_embedded_object"):
"""
Method: gen json data for different json types. Refer to RFC7159
Note: String values should be passed as json.dumps(str) to ensure they are treated as strings,
not as serialized JSON results.
"""
if json_type == "json_embedded_object": # a json object with an embedd json object
return [{json_type: {"number": i, "level2": {"level2_number": i, "level2_float": i*1.0, "level2_str": str(i), "level2_array": [i for i in range(i, i + 10)]},
"float": i*1.0}, "str": str(i), "array": [i for i in range(i, i + 10)], "bool": bool(i)}
for i in range(start, start + nb)]
if json_type == "json_objects_array": # a json-objects array with 2 json objects
return [[{"number": i, "level2": {"level2_number": i, "level2_float": i*1.0, "level2_str": str(i)}, "float": i*1.0, "str": str(i)},
{"number": i, "level2": {"level2_number": i, "level2_float": i*1.0, "level2_str": str(i)}, "float": i*1.0, "str": str(i)}
] for i in range(start, start + nb)]
if json_type == "json_array": # single array as json value
return [[i for i in range(j, j + 10)] for j in range(start, start + nb)]
if json_type == "json_int": # single int as json value
return [i for i in range(start, start + nb)]
if json_type == "json_float": # single float as json value
return [i*1.0 for i in range(start, start + nb)]
if json_type == "json_string": # single string as json value
return [json.dumps(str(i)) for i in range(start, start + nb)]
if json_type == "json_bool": # single bool as json value
return [bool(i) for i in range(start, start + nb)]
else:
return []
def gen_default_data_for_upsert(nb=ct.default_nb, dim=ct.default_dim, start=0, size=10000):
int_values = pd.Series(data=[i for i in range(start, start + nb)])
float_values = pd.Series(data=[np.float32(i + size) for i in range(start, start + nb)], dtype="float32")
string_values = pd.Series(data=[str(i + size) for i in range(start, start + nb)], dtype="string")
json_values = [{"number": i, "string": str(i)} for i in range(start, start + nb)]
float_vec_values = gen_vectors(nb, dim)
df = pd.DataFrame({
ct.default_int64_field_name: int_values,
ct.default_float_field_name: float_values,
ct.default_string_field_name: string_values,
ct.default_json_field_name: json_values,
ct.default_float_vec_field_name: float_vec_values
})
return df, float_values
def gen_array_dataframe_data(nb=ct.default_nb, dim=ct.default_dim, start=0, auto_id=False,
array_length=ct.default_max_capacity, with_json=False, random_primary_key=False):
if not random_primary_key:
int_values = pd.Series(data=[i for i in range(start, start + nb)])
else:
int_values = pd.Series(data=random.sample(range(start, start + nb), nb))
float_vec_values = gen_vectors(nb, dim)
json_values = [{"number": i, "float": i * 1.0} for i in range(start, start + nb)]
int32_values = pd.Series(data=[[np.int32(j) for j in range(i, i + array_length)] for i in range(start, start + nb)])
float_values = pd.Series(data=[[np.float32(j) for j in range(i, i + array_length)] for i in range(start, start + nb)])
string_values = pd.Series(data=[[str(j) for j in range(i, i + array_length)] for i in range(start, start + nb)])
df = pd.DataFrame({
ct.default_int64_field_name: int_values,
ct.default_float_vec_field_name: float_vec_values,
ct.default_json_field_name: json_values,
ct.default_int32_array_field_name: int32_values,
ct.default_float_array_field_name: float_values,
ct.default_string_array_field_name: string_values,
})
if with_json is False:
df.drop(ct.default_json_field_name, axis=1, inplace=True)
if auto_id:
df.drop(ct.default_int64_field_name, axis=1, inplace=True)
return df
def gen_dataframe_multi_vec_fields(vec_fields, nb=ct.default_nb):
"""
gen dataframe data for fields: int64, float, float_vec and vec_fields
:param nb: num of entities, default default_nb
:param vec_fields: list of FieldSchema
:return: dataframe
"""
int_values = pd.Series(data=[i for i in range(0, nb)])
float_values = pd.Series(data=[float(i) for i in range(nb)], dtype="float32")
string_values = pd.Series(data=[str(i) for i in range(nb)], dtype="string")
df = pd.DataFrame({
ct.default_int64_field_name: int_values,
ct.default_float_field_name: float_values,
ct.default_string_field_name: string_values,
ct.default_float_vec_field_name: gen_vectors(nb, ct.default_dim)
})
for field in vec_fields:
dim = field.params['dim']
if field.dtype == DataType.FLOAT_VECTOR:
vec_values = gen_vectors(nb, dim)
elif field.dtype == DataType.BINARY_VECTOR:
vec_values = gen_binary_vectors(nb, dim)[1]
df[field.name] = vec_values
return df
def gen_dataframe_multi_string_fields(string_fields, nb=ct.default_nb):
"""
gen dataframe data for fields: int64, float, float_vec and vec_fields
:param nb: num of entities, default default_nb
:param vec_fields: list of FieldSchema
:return: dataframe
"""
int_values = pd.Series(data=[i for i in range(0, nb)])
float_values = pd.Series(data=[float(i) for i in range(nb)], dtype="float32")
string_values = pd.Series(data=[str(i) for i in range(nb)], dtype="string")
df = pd.DataFrame({
ct.default_int64_field_name: int_values,
ct.default_float_field_name: float_values,
ct.default_string_field_name: string_values,
ct.default_float_vec_field_name: gen_vectors(nb, ct.default_dim)
})
for field in string_fields:
if field.dtype == DataType.VARCHAR:
string_values = gen_string(nb)
df[field.name] = string_values
return df
def gen_dataframe_all_data_type(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=True,
auto_id=False, random_primary_key=False, multiple_dim_array=[],
multiple_vector_field_name=[], primary_field=ct.default_int64_field_name):
if not random_primary_key:
int64_values = pd.Series(data=[i for i in range(start, start + nb)])
else:
int64_values = pd.Series(data=random.sample(range(start, start + nb), nb))
int32_values = pd.Series(data=[np.int32(i) for i in range(start, start + nb)], dtype="int32")
int16_values = pd.Series(data=[np.int16(i) for i in range(start, start + nb)], dtype="int16")
int8_values = pd.Series(data=[np.int8(i) for i in range(start, start + nb)], dtype="int8")
bool_values = pd.Series(data=[np.bool_(i) for i in range(start, start + nb)], dtype="bool")
float_values = pd.Series(data=[np.float32(i) for i in range(start, start + nb)], dtype="float32")
double_values = pd.Series(data=[np.double(i) for i in range(start, start + nb)], dtype="double")
string_values = pd.Series(data=[str(i) for i in range(start, start + nb)], dtype="string")
json_values = [{"number": i, "string": str(i), "bool": bool(i),
"list": [j for j in range(i, i + ct.default_json_list_length)]} for i in range(start, start + nb)]
float_vec_values = gen_vectors(nb, dim)
df = pd.DataFrame({
ct.default_int64_field_name: int64_values,
ct.default_int32_field_name: int32_values,
ct.default_int16_field_name: int16_values,
ct.default_int8_field_name: int8_values,
ct.default_bool_field_name: bool_values,
ct.default_float_field_name: float_values,
ct.default_double_field_name: double_values,
ct.default_string_field_name: string_values,
ct.default_json_field_name: json_values
})
if len(multiple_dim_array) == 0:
df[ct.default_float_vec_field_name] = float_vec_values
else:
for i in range(len(multiple_dim_array)):
df[multiple_vector_field_name[i]] = gen_vectors(nb, multiple_dim_array[i], ct.append_vector_type[i%3])
if with_json is False:
df.drop(ct.default_json_field_name, axis=1, inplace=True)
if auto_id:
if primary_field == ct.default_int64_field_name:
df.drop(ct.default_int64_field_name, axis=1, inplace=True)
elif primary_field == ct.default_string_field_name:
df.drop(ct.default_string_field_name, axis=1, inplace=True)
log.debug("generated data completed")
return df
def gen_general_list_all_data_type(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=True,
auto_id=False, random_primary_key=False, multiple_dim_array=[],
multiple_vector_field_name=[], primary_field=ct.default_int64_field_name,
nullable_fields={}, language=None):
if not random_primary_key:
int64_values = pd.Series(data=[i for i in range(start, start + nb)])
else:
int64_values = pd.Series(data=random.sample(range(start, start + nb), nb))
int32_data = [np.int32(i) for i in range(start, start + nb)]
int32_values = pd.Series(data=int32_data, dtype="int32")
if ct.default_int32_field_name in nullable_fields:
null_number = int(nb * nullable_fields[ct.default_int32_field_name])
null_data = [None for _ in range(null_number)]
int32_data = int32_data[:nb - null_number] + null_data
int32_values = pd.Series(data=int32_data, dtype=object)
int16_data = [np.int16(i) for i in range(start, start + nb)]
int16_values = pd.Series(data=int16_data, dtype="int16")
if ct.default_int16_field_name in nullable_fields:
null_number = int(nb * nullable_fields[ct.default_int16_field_name])
null_data = [None for _ in range(null_number)]
int16_data = int16_data[:nb - null_number] + null_data
int16_values = pd.Series(data=int16_data, dtype=object)
int8_data = [np.int8(i) for i in range(start, start + nb)]
int8_values = pd.Series(data=int8_data, dtype="int8")
if ct.default_int8_field_name in nullable_fields:
null_number = int(nb * nullable_fields[ct.default_int8_field_name])
null_data = [None for _ in range(null_number)]
int8_data = int8_data[:nb - null_number] + null_data
int8_values = pd.Series(data=int8_data, dtype=object)
bool_data = [np.bool_(i) for i in range(start, start + nb)]
bool_values = pd.Series(data=bool_data, dtype="bool")
if ct.default_bool_field_name in nullable_fields:
null_number = int(nb * nullable_fields[ct.default_bool_field_name])
null_data = [None for _ in range(null_number)]
bool_data = bool_data[:nb - null_number] + null_data
bool_values = pd.Series(data=bool_data, dtype="bool")
float_data = [np.float32(i) for i in range(start, start + nb)]
float_values = pd.Series(data=float_data, dtype="float32")
if ct.default_float_field_name in nullable_fields:
null_number = int(nb * nullable_fields[ct.default_float_field_name])
null_data = [None for _ in range(null_number)]
float_data = float_data[:nb - null_number] + null_data
float_values = pd.Series(data=float_data, dtype=object)
double_data = [np.double(i) for i in range(start, start + nb)]
double_values = pd.Series(data=double_data, dtype="double")
if ct.default_double_field_name in nullable_fields:
null_number = int(nb * nullable_fields[ct.default_double_field_name])
null_data = [None for _ in range(null_number)]
double_data = double_data[:nb - null_number] + null_data
double_values = pd.Series(data=double_data, dtype=object)
string_data = [str(i) for i in range(start, start + nb)]
if language:
string_data = [generate_random_sentence(language) for _ in range(nb)]
string_values = pd.Series(data=string_data, dtype="string")
if ct.default_string_field_name in nullable_fields:
null_number = int(nb * nullable_fields[ct.default_string_field_name])
null_data = [None for _ in range(null_number)]
string_data = string_data[:nb - null_number] + null_data
string_values = pd.Series(data=string_data, dtype=object)
json_values = [{"number": i, "string": str(i), "bool": bool(i),
"list": [j for j in range(i, i + ct.default_json_list_length)]} for i in range(start, start + nb)]
if ct.default_json_field_name in nullable_fields:
null_number = int(nb * nullable_fields[ct.default_json_field_name])
null_data = [{"number": None, "string": None, "bool": None,
"list": [None for _ in range(i, i + ct.default_json_list_length)]} for i in range(null_number)]
json_values = json_values[:nb - null_number] + null_data
float_vec_values = gen_vectors(nb, dim)
insert_list = [int64_values, int32_values, int16_values, int8_values, bool_values, float_values, double_values,
string_values, json_values]
if len(multiple_dim_array) == 0:
insert_list.append(float_vec_values)
else:
for i in range(len(multiple_dim_array)):
insert_list.append(gen_vectors(nb, multiple_dim_array[i], ct.append_vector_type[i%3]))
if with_json is False:
# index = insert_list.index(json_values)
del insert_list[8]
if auto_id:
if primary_field == ct.default_int64_field_name:
index = insert_list.index(int64_values)
elif primary_field == ct.default_string_field_name:
index = insert_list.index(string_values)
del insert_list[index]
log.debug("generated data completed")
return insert_list
def gen_default_rows_data_all_data_type(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=True,
multiple_dim_array=[], multiple_vector_field_name=[], partition_id=0,
auto_id=False, primary_field=ct.default_int64_field_name, language=None):
array = []
for i in range(start, start + nb):
dict = {ct.default_int64_field_name: i,
ct.default_int32_field_name: i,
ct.default_int16_field_name: i,
ct.default_int8_field_name: i,
ct.default_bool_field_name: bool(i),
ct.default_float_field_name: i*1.0,
ct.default_double_field_name: i * 1.0,
ct.default_string_field_name: str(i),
ct.default_json_field_name: {"number": i, "string": str(i), "bool": bool(i),
"list": [j for j in range(i, i + ct.default_json_list_length)]}
}
if with_json is False:
dict.pop(ct.default_json_field_name, None)
if language:
dict[ct.default_string_field_name] = generate_random_sentence(language)
if auto_id is True:
if primary_field == ct.default_int64_field_name:
dict.pop(ct.default_int64_field_name, None)
elif primary_field == ct.default_string_field_name:
dict.pop(ct.default_string_field_name, None)
array.append(dict)
if len(multiple_dim_array) == 0:
dict[ct.default_float_vec_field_name] = gen_vectors(1, dim)[0]
else:
for i in range(len(multiple_dim_array)):
dict[multiple_vector_field_name[i]] = gen_vectors(nb, multiple_dim_array[i],
ct.append_vector_type[i])[0]
if len(multiple_dim_array) != 0:
with open(ct.rows_all_data_type_file_path + f'_{partition_id}' + f'_dim{dim}.txt', 'wb') as json_file:
pickle.dump(array, json_file)
log.info("generated rows data")
return array
def gen_default_binary_dataframe_data(nb=ct.default_nb, dim=ct.default_dim, start=0, auto_id=False,
primary_field=ct.default_int64_field_name, nullable_fields={}, language=None):
int_data = [i for i in range(start, start + nb)]
int_values = pd.Series(data=int_data)
if ct.default_int64_field_name in nullable_fields:
null_number = int(nb * nullable_fields[ct.default_int64_field_name])
null_data = [None for _ in range(null_number)]
int_data = int_data[:nb - null_number] + null_data
int_values = pd.Series(data=int_data, dtype=object)
float_data = [np.float32(i) for i in range(start, start + nb)]
float_values = pd.Series(data=float_data, dtype="float32")
if ct.default_float_field_name in nullable_fields:
null_number = int(nb * nullable_fields[ct.default_float_field_name])
null_data = [None for _ in range(null_number)]
float_data = float_data[:nb - null_number] + null_data
float_values = pd.Series(data=float_data, dtype=object)
string_data = [str(i) for i in range(start, start + nb)]
if language:
string_data = [generate_random_sentence(language) for _ in range(nb)]
string_values = pd.Series(data=string_data, dtype="string")
if ct.default_string_field_name in nullable_fields:
null_number = int(nb * nullable_fields[ct.default_string_field_name])
null_data = [None for _ in range(null_number)]
string_data = string_data[:nb - null_number] + null_data
string_values = pd.Series(data=string_data, dtype=object)
binary_raw_values, binary_vec_values = gen_binary_vectors(nb, dim)
df = pd.DataFrame({
ct.default_int64_field_name: int_values,
ct.default_float_field_name: float_values,
ct.default_string_field_name: string_values,
ct.default_binary_vec_field_name: binary_vec_values
})
if auto_id is True:
if primary_field == ct.default_int64_field_name:
df.drop(ct.default_int64_field_name, axis=1, inplace=True)
elif primary_field == ct.default_string_field_name:
df.drop(ct.default_string_field_name, axis=1, inplace=True)
return df, binary_raw_values
def gen_default_list_sparse_data(nb=ct.default_nb, dim=ct.default_dim, start=0, with_json=False):
int_values = [i for i in range(start, start + nb)]
float_values = [np.float32(i) for i in range(start, start + nb)]
string_values = [str(i) for i in range(start, start + nb)]
json_values = [{"number": i, "string": str(i), "bool": bool(i), "list": [j for j in range(0, i)]}
for i in range(start, start + nb)]
sparse_vec_values = gen_vectors(nb, dim, vector_data_type=DataType.SPARSE_FLOAT_VECTOR)
if with_json:
data = [int_values, float_values, string_values, json_values, sparse_vec_values]
else:
data = [int_values, float_values, string_values, sparse_vec_values]
return data
def gen_default_list_data_for_bulk_insert(nb=ct.default_nb, varchar_len=2000, with_varchar_field=True):
str_value = gen_str_by_length(length=varchar_len)
int_values = [i for i in range(nb)]
float_values = [np.float32(i) for i in range(nb)]
string_values = [f"{str(i)}_{str_value}" for i in range(nb)]
# in case of large nb, float_vec_values will be too large in memory
# then generate float_vec_values in each loop instead of generating all at once during generate npy or json file
float_vec_values = [] # placeholder for float_vec
data = [int_values, float_values, string_values, float_vec_values]
if with_varchar_field is False:
data = [int_values, float_values, float_vec_values]
return data
def prepare_bulk_insert_data(schema=None,
nb=ct.default_nb,
file_type="npy",
minio_endpoint="127.0.0.1:9000",
bucket_name="milvus-bucket"):
schema = gen_default_collection_schema() if schema is None else schema
dim = get_dim_by_schema(schema=schema)
log.info(f"start to generate raw data for bulk insert")
t0 = time.time()
data = get_column_data_by_schema(schema=schema, nb=nb, skip_vectors=True)
log.info(f"generate raw data for bulk insert cost {time.time() - t0} s")
data_dir = "/tmp/bulk_insert_data"
Path(data_dir).mkdir(parents=True, exist_ok=True)
log.info(f"schema:{schema}, nb:{nb}, file_type:{file_type}, minio_endpoint:{minio_endpoint}, bucket_name:{bucket_name}")
files = []
log.info(f"generate {file_type} files for bulk insert")
if file_type == "json":
files = gen_json_files_for_bulk_insert(data, schema, data_dir)
if file_type == "npy":
files = gen_npy_files_for_bulk_insert(data, schema, data_dir)
log.info(f"generated {len(files)} {file_type} files for bulk insert, cost {time.time() - t0} s")
log.info("upload file to minio")
client = Minio(minio_endpoint, access_key="minioadmin", secret_key="minioadmin", secure=False)
for file_name in files:
file_size = os.path.getsize(os.path.join(data_dir, file_name)) / 1024 / 1024
t0 = time.time()
client.fput_object(bucket_name, file_name, os.path.join(data_dir, file_name))
log.info(f"upload file {file_name} to minio, size: {file_size:.2f} MB, cost {time.time() - t0:.2f} s")
return files
def gen_column_data_by_schema(nb=ct.default_nb, schema=None, skip_vectors=False, start=0):
return get_column_data_by_schema(nb=nb, schema=schema, skip_vectors=skip_vectors, start=start)
def get_column_data_by_schema(nb=ct.default_nb, schema=None, skip_vectors=False, start=0, random_pk=False):
"""
Generates column data based on the given schema.
Args:
nb (int): Number of rows to generate. Defaults to ct.default_nb.
schema (Schema): Collection schema. If None, uses default schema.
skip_vectors (bool): Whether to skip vector fields. Defaults to False.
start (int): Starting value for primary key fields (default: 0)
random_pk (bool, optional): Whether to generate random primary key values (default: False)
Returns:
list: List of column data arrays matching the schema fields (excluding auto_id fields).
"""
if schema is None:
schema = gen_default_collection_schema()
fields = schema.fields
fields_to_gen = []
for field in fields:
if not field.auto_id and not field.is_function_output:
fields_to_gen.append(field)
data = []
for field in fields_to_gen:
if field.dtype in ct.all_vector_types and skip_vectors is True:
tmp = []
else:
tmp = gen_data_by_collection_field(field, nb=nb, start=start, random_pk=random_pk)
data.append(tmp)
return data
def convert_orm_schema_to_dict_schema(orm_schema):
"""
Convert ORM CollectionSchema object to dict format (same as describe_collection output).
Args:
orm_schema: CollectionSchema object from pymilvus.orm
Returns:
dict: Schema in dict format compatible with MilvusClient describe_collection output
"""
# Use the built-in to_dict() method which already provides the right structure
schema_dict = orm_schema.to_dict()
# to_dict() already includes:
# - auto_id
# - description
# - fields (with each field's to_dict())
# - enable_dynamic_field
# - functions (if present)
# - struct_fields (if present)
return schema_dict
def gen_row_data_by_schema(nb=ct.default_nb, schema=None, start=0, random_pk=False, skip_field_names=[], desired_field_names=[]):
"""
Generates row data based on the given schema.
Args:
nb (int): Number of rows to generate. Defaults to ct.default_nb.
schema (Schema): Collection schema or collection info. Can be:
- dict (from client.describe_collection())
- CollectionSchema object (from ORM)
- None (uses default schema)
start (int): Starting value for primary key fields. Defaults to 0.
random_pk (bool, optional): Whether to generate random primary key values (default: False)
skip_field_names(list, optional): whether to skip some field to gen data manually (default: [])
desired_field_names(list, optional): only generate data for specified field names (default: [])
Returns:
list[dict]: List of dictionaries where each dictionary represents a row,
with field names as keys and generated data as values.
Notes:
- Skips auto_id fields and function output fields.
- For primary key fields, generates sequential values starting from 'start'.
- For non-primary fields, generates random data based on field type.
- Supports struct array fields in both dict and ORM schema formats.
"""
# if both skip_field_names and desired_field_names are specified, raise an exception
if skip_field_names and desired_field_names:
raise Exception(f"Cannot specify both skip_field_names and desired_field_names")
if schema is None:
schema = gen_default_collection_schema()
# Convert ORM schema to dict schema for unified processing
if not isinstance(schema, dict):
schema = convert_orm_schema_to_dict_schema(schema)
# Now schema is always a dict after conversion, process it uniformly
# Get all fields from schema
all_fields = schema.get('fields', [])
fields = []
for field in all_fields:
# if desired_field_names is specified, only generate the fields in desired_field_names
if field.get('name', None) in desired_field_names:
fields.append(field)
# elif desired_field_names is not specified, generate all fields
elif not desired_field_names:
fields.append(field)
# Get struct_fields from schema
struct_fields = schema.get('struct_fields', [])
log.debug(f"[gen_row_data_by_schema] struct_fields from schema: {len(struct_fields)} items")
if struct_fields:
log.debug(f"[gen_row_data_by_schema] First struct_field: {struct_fields[0]}")
# If struct_fields is not present, extract struct array fields from fields list
# This happens when using client.describe_collection()
if not struct_fields:
struct_fields = []
for field in fields:
if field.get('type') == DataType.ARRAY and field.get('element_type') == DataType.STRUCT:
# Convert field format to struct_field format
struct_field_dict = {
'name': field.get('name'),
'max_capacity': field.get('params', {}).get('max_capacity', 100),
'fields': []
}
# Get struct fields from field - key can be 'struct_fields' or 'struct_schema'
struct_field_list = field.get('struct_fields') or field.get('struct_schema')
if struct_field_list:
# If it's a dict with 'fields' key, get the fields
if isinstance(struct_field_list, dict) and 'fields' in struct_field_list:
struct_field_dict['fields'] = struct_field_list['fields']
# If it's already a list, use it directly
elif isinstance(struct_field_list, list):
struct_field_dict['fields'] = struct_field_list
struct_fields.append(struct_field_dict)
# Get function output fields to skip
func_output_fields = []
functions = schema.get('functions', [])
for func in functions:
output_field_names = func.get('output_field_names', [])
func_output_fields.extend(output_field_names)
func_output_fields = list(set(func_output_fields))
# Filter fields that need data generation
fields_needs_data = []
for field in fields:
field_name = field.get('name', None)
if field.get('auto_id', False):
continue
if field_name in func_output_fields or field_name in skip_field_names:
continue
# Skip struct array fields as they are handled separately via struct_fields
if field.get('type') == DataType.ARRAY and field.get('element_type') == DataType.STRUCT:
continue
fields_needs_data.append(field)
# Generate data for each row
data = []
for i in range(nb):
tmp = {}
# Generate data for regular fields
for field in fields_needs_data:
tmp[field.get('name', None)] = gen_data_by_collection_field(field, random_pk=random_pk)
# Handle primary key fields specially
if field.get('is_primary', False) is True and field.get('type', None) == DataType.INT64:
tmp[field.get('name', None)] = start
start += 1
if field.get('is_primary', False) is True and field.get('type', None) == DataType.VARCHAR:
tmp[field.get('name', None)] = str(start)
start += 1
# Generate data for struct array fields
for struct_field in struct_fields:
field_name = struct_field.get('name', None)
struct_data = gen_struct_array_data(struct_field, start=start, random_pk=random_pk)
tmp[field_name] = struct_data
data.append(tmp)
log.debug(f"[gen_row_data_by_schema] Generated {len(data)} rows, first row keys: {list(data[0].keys()) if data else []}")
return data
def get_fields_map(schema=None):
if schema is None:
schema = gen_default_collection_schema()
fields = schema.fields
fields_map = {}
for field in fields:
fields_map[field.name] = field.dtype
return fields_map
def get_int64_field_name(schema=None):
if schema is None:
schema = gen_default_collection_schema()
fields = schema.fields
for field in fields:
if field.dtype == DataType.INT64:
return field.name
return None
def get_varchar_field_name(schema=None):
if schema is None:
schema = gen_default_collection_schema()
fields = schema.fields
for field in fields:
if field.dtype == DataType.VARCHAR:
return field.name
return None
def get_text_field_name(schema=None):
if schema is None:
schema = gen_default_collection_schema()
if not hasattr(schema, "functions"):
return []
functions = schema.functions
bm25_func = [func for func in functions if func.type == FunctionType.BM25]
bm25_inputs = []
for func in bm25_func:
bm25_inputs.extend(func.input_field_names)
bm25_inputs = list(set(bm25_inputs))
return bm25_inputs
def get_text_match_field_name(schema=None):
if schema is None:
schema = gen_default_collection_schema()
text_match_field_list = []
fields = schema.fields
for field in fields:
if field.dtype == DataType.VARCHAR and field.params.get("enable_match", False):
text_match_field_list.append(field.name)
return text_match_field_list
def get_float_field_name(schema=None):
if schema is None:
schema = gen_default_collection_schema()
fields = schema.fields
for field in fields:
if field.dtype == DataType.FLOAT or field.dtype == DataType.DOUBLE:
return field.name
return None
def get_float_vec_field_name(schema=None):
if schema is None:
schema = gen_default_collection_schema()
fields = schema.fields
for field in fields:
if field.dtype == DataType.FLOAT_VECTOR:
return field.name
return None
def get_float_vec_field_name_list(schema=None):
vec_fields = []
if schema is None:
schema = gen_default_collection_schema()
fields = schema.fields
for field in fields:
if field.dtype in [DataType.FLOAT_VECTOR, DataType.FLOAT16_VECTOR, DataType.BFLOAT16_VECTOR]:
vec_fields.append(field.name)
return vec_fields
def get_scalar_field_name_list(schema=None):
vec_fields = []
if schema is None:
schema = gen_default_collection_schema()
fields = schema.fields
for field in fields:
if field.dtype in [DataType.BOOL, DataType.INT8, DataType.INT16, DataType.INT32, DataType.INT64, DataType.FLOAT,
DataType.DOUBLE, DataType.VARCHAR]:
vec_fields.append(field.name)
return vec_fields
def get_json_field_name_list(schema=None):
json_fields = []
if schema is None:
schema = gen_default_collection_schema()
fields = schema.fields
for field in fields:
if field.dtype == DataType.JSON:
json_fields.append(field.name)
return json_fields
def get_geometry_field_name_list(schema=None):
geometry_fields = []
if schema is None:
schema = gen_default_collection_schema()
fields = schema.fields
for field in fields:
if field.dtype == DataType.GEOMETRY:
geometry_fields.append(field.name)
return geometry_fields
def get_binary_vec_field_name(schema=None):
if schema is None:
schema = gen_default_collection_schema()
fields = schema.fields
for field in fields:
if field.dtype == DataType.BINARY_VECTOR:
return field.name
return None
def get_binary_vec_field_name_list(schema=None):
vec_fields = []
if schema is None:
schema = gen_default_collection_schema()
fields = schema.fields
for field in fields:
if field.dtype in [DataType.BINARY_VECTOR]:
vec_fields.append(field.name)
return vec_fields
def get_int8_vec_field_name_list(schema=None):
vec_fields = []
if schema is None:
schema = gen_default_collection_schema()
fields = schema.fields
for field in fields:
if field.dtype in [DataType.INT8_VECTOR]:
vec_fields.append(field.name)
return vec_fields
def get_emb_list_field_name_list(schema=None):
vec_fields = []
if schema is None:
schema = gen_default_collection_schema()
struct_fields = schema.struct_fields
for struct_field in struct_fields:
for field in struct_field.fields:
if field.dtype in [DataType.FLOAT_VECTOR]:
vec_fields.append(f"{struct_field.name}[{field.name}]")
return vec_fields
def get_bm25_vec_field_name_list(schema=None):
if not hasattr(schema, "functions"):
return []
functions = schema.functions
bm25_func = [func for func in functions if func.type == FunctionType.BM25]
bm25_outputs = []
for func in bm25_func:
bm25_outputs.extend(func.output_field_names)
bm25_outputs = list(set(bm25_outputs))
return bm25_outputs
def get_dim_by_schema(schema=None):
if schema is None:
schema = gen_default_collection_schema()
fields = schema.fields
for field in fields:
if field.dtype == DataType.FLOAT_VECTOR or field.dtype == DataType.BINARY_VECTOR:
dim = field.params['dim']
return dim
return None
def get_dense_anns_field_name_list(schema=None):
if schema is None:
schema = gen_default_collection_schema()
fields = schema.fields
anns_fields = []
for field in fields:
if field.dtype in [DataType.FLOAT_VECTOR,DataType.FLOAT16_VECTOR,DataType.BFLOAT16_VECTOR, DataType.INT8_VECTOR, DataType.BINARY_VECTOR]:
item = {
"name": field.name,
"dtype": field.dtype,
"dim": field.params['dim']
}
anns_fields.append(item)
return anns_fields
def get_struct_array_vector_field_list(schema=None):
if schema is None:
schema = gen_default_collection_schema()
struct_fields = schema.struct_fields
struct_vector_fields = []
for struct_field in struct_fields:
struct_field_name = struct_field.name
# Check each sub-field for vector types
for sub_field in struct_field.fields:
sub_field_name = sub_field.name if hasattr(sub_field, 'name') else sub_field.get('name')
sub_field_dtype = sub_field.dtype if hasattr(sub_field, 'dtype') else sub_field.get('type')
if sub_field_dtype in [DataType.FLOAT_VECTOR, DataType.FLOAT16_VECTOR,
DataType.BFLOAT16_VECTOR, DataType.INT8_VECTOR,
DataType.BINARY_VECTOR]:
# Get dimension
if hasattr(sub_field, 'params'):
dim = sub_field.params.get('dim')
else:
dim = sub_field.get('params', {}).get('dim')
item = {
"struct_field": struct_field_name,
"vector_field": sub_field_name,
"anns_field": f"{struct_field_name}[{sub_field_name}]",
"dtype": sub_field_dtype,
"dim": dim
}
struct_vector_fields.append(item)
return struct_vector_fields
def gen_varchar_data(length: int, nb: int, text_mode=False):
if text_mode:
return [fake.text() for _ in range(nb)]
else:
return ["".join([chr(random.randint(97, 122)) for _ in range(length)]) for _ in range(nb)]
def gen_struct_array_data(struct_field, start=0, random_pk=False):
"""
Generates struct array data based on the struct field schema.
Args:
struct_field: Either a dict (from dict schema) or StructFieldSchema object (from ORM schema)
start: Starting value for primary key fields
random_pk: Whether to generate random primary key values
Returns:
List of struct data dictionaries
"""
struct_array_data = []
# Handle both dict and object formats
if isinstance(struct_field, dict):
max_capacity = struct_field.get('max_capacity', 100)
fields = struct_field.get('fields', [])
else:
# StructFieldSchema object
max_capacity = getattr(struct_field, 'max_capacity', 100) or 100
fields = struct_field.fields
arr_len = random.randint(1, max_capacity)
for _ in range(arr_len):
struct_data = {}
for field in fields:
field_name = field.get('name') if isinstance(field, dict) else field.name
struct_data[field_name] = gen_data_by_collection_field(field, nb=None, start=start, random_pk=random_pk)
struct_array_data.append(struct_data)
return struct_array_data
def gen_data_by_collection_field(field, nb=None, start=0, random_pk=False):
"""
Generates test data for a given collection field based on its data type and properties.
Args:
field (dict or Field): Field information, either as a dictionary (v2 client) or Field object (ORM client)
nb (int, optional): Bumber of data batch to generate. If None, returns a single value which usually used by row data generation
start (int, optional): Starting value for primary key fields (default: 0)
random_pk (bool, optional): Whether to generate random primary key values (default: False)
Returns:
Single value if nb is None, otherwise returns a list of generated values
Notes:
- Handles various data types including primitive types, vectors, arrays and JSON
- For nullable fields, generates None values approximately 20% of the time
- Special handling for primary key fields (sequential values)
- For varchar field, use min(20, max_length) to gen data
- For vector fields, generates random vectors of specified dimension
- For array fields, generates arrays filled with random values of element type
"""
if isinstance(field, dict):
# for v2 client, it accepts a dict of field info
nullable = field.get('nullable', False)
data_type = field.get('type', None)
params = field.get('params', {}) or {}
enable_analyzer = params.get("enable_analyzer", False)
is_primary = field.get('is_primary', False)
else:
# for ORM client, it accepts a field object
nullable = field.nullable
data_type = field.dtype
enable_analyzer = field.params.get("enable_analyzer", False)
is_primary = field.is_primary
# generate data according to the data type
if data_type == DataType.BOOL:
if nb is None:
return random.choice([True, False]) if random.random() < 0.8 or nullable is False else None
if nullable is False:
return [random.choice([True, False]) for _ in range(nb)]
else:
# gen 20% none data for nullable field
return [None if i % 2 == 0 and random.random() < 0.4 else random.choice([True, False]) for i in range(nb)]
elif data_type == DataType.INT8:
if nb is None:
return random.randint(-128, 127) if random.random() < 0.8 or nullable is False else None
if nullable is False:
return [random.randint(-128, 127) for _ in range(nb)]
else:
# gen 20% none data for nullable field
return [None if i % 2 == 0 and random.random() < 0.4 else random.randint(-128, 127) for i in range(nb)]
elif data_type == DataType.INT16:
if nb is None:
return random.randint(-32768, 32767) if random.random() < 0.8 or nullable is False else None
if nullable is False:
return [random.randint(-32768, 32767) for _ in range(nb)]
else:
# gen 20% none data for nullable field
return [None if i % 2 == 0 and random.random() < 0.4 else random.randint(-32768, 32767) for i in range(nb)]
elif data_type == DataType.INT32:
if nb is None:
return random.randint(-2147483648, 2147483647) if random.random() < 0.8 or nullable is False else None
if nullable is False:
return [random.randint(-2147483648, 2147483647) for _ in range(nb)]
else:
# gen 20% none data for nullable field
return [None if i % 2 == 0 and random.random() < 0.4 else random.randint(-2147483648, 2147483647) for i in range(nb)]
elif data_type == DataType.INT64:
if nb is None:
return random.randint(-9223372036854775808, 9223372036854775807) if random.random() < 0.8 or nullable is False else None
if nullable is False:
if is_primary is True and random_pk is False:
return [i for i in range(start, start+nb)]
else:
return [random.randint(-9223372036854775808, 9223372036854775807) for _ in range(nb)]
else:
# gen 20% none data for nullable field
return [None if i % 2 == 0 and random.random() < 0.4 else random.randint(-9223372036854775808, 9223372036854775807) for i in range(nb)]
elif data_type == DataType.FLOAT:
if nb is None:
return np.float32(random.random()) if random.random() < 0.8 or nullable is False else None
if nullable is False:
return [np.float32(random.random()) for _ in range(nb)]
else:
# gen 20% none data for nullable field
return [None if i % 2 == 0 and random.random() < 0.4 else np.float32(random.random()) for i in range(nb)]
elif data_type == DataType.DOUBLE:
if nb is None:
return np.float64(random.random()) if random.random() < 0.8 or nullable is False else None
if nullable is False:
return [np.float64(random.random()) for _ in range(nb)]
else:
# gen 20% none data for nullable field
return [None if i % 2 == 0 and random.random() < 0.4 else np.float64(random.random()) for i in range(nb)]
elif data_type == DataType.VARCHAR:
if isinstance(field, dict):
max_length = field.get('params')['max_length']
else:
max_length = field.params['max_length']
max_length = min(20, max_length-1)
length = random.randint(0, max_length)
if nb is None:
return gen_varchar_data(length=length, nb=1, text_mode=enable_analyzer)[0] if random.random() < 0.8 or nullable is False else None
if nullable is False:
if is_primary is True and random_pk is False:
return [str(i) for i in range(start, start+nb)]
else:
return gen_varchar_data(length=length, nb=nb, text_mode=enable_analyzer)
else:
# gen 20% none data for nullable field
return [None if i % 2 == 0 and random.random() < 0.4 else gen_varchar_data(length=length, nb=1, text_mode=enable_analyzer)[0] for i in range(nb)]
elif data_type == DataType.JSON:
if nb is None:
return {"name": fake.name(), "address": fake.address(), "count": random.randint(0, 100)} if random.random() < 0.8 or nullable is False else None
if nullable is False:
return [{"name": str(i), "address": i, "count": random.randint(0, 100)} for i in range(nb)]
else:
# gen 20% none data for nullable field
return [None if i % 2 == 0 and random.random() < 0.4 else {"name": str(i), "address": i, "count": random.randint(0, 100)} for i in range(nb)]
elif data_type == DataType.GEOMETRY:
if nb is None:
lon = random.uniform(-180, 180)
lat = random.uniform(-90, 90)
return f"POINT({lon} {lat})" if random.random() < 0.8 or nullable is False else None
if nullable is False:
return [f"POINT({random.uniform(-180, 180)} {random.uniform(-90, 90)})" for _ in range(nb)]
else:
# gen 20% none data for nullable field
return [None if i % 2 == 0 and random.random() < 0.4 else f"POINT({random.uniform(-180, 180)} {random.uniform(-90, 90)})" for i in range(nb)]
elif data_type in ct.all_vector_types:
if isinstance(field, dict):
dim = ct.default_dim if data_type == DataType.SPARSE_FLOAT_VECTOR else field.get('params')['dim']
else:
dim = ct.default_dim if data_type == DataType.SPARSE_FLOAT_VECTOR else field.params['dim']
if nb is None:
return gen_vectors(1, dim, vector_data_type=data_type)[0]
if nullable is False:
return gen_vectors(nb, dim, vector_data_type=data_type)
else:
raise MilvusException(message=f"gen data failed, vector field does not support nullable")
elif data_type == DataType.ARRAY:
if isinstance(field, dict):
max_capacity = field.get('params')['max_capacity']
element_type = field.get('element_type')
else:
max_capacity = field.params['max_capacity']
element_type = field.element_type
# Struct array fields are handled separately in gen_row_data_by_schema
# by processing struct_fields, so skip here
if element_type == DataType.STRUCT:
return None
if element_type == DataType.INT8:
if nb is None:
return [random.randint(-128, 127) for _ in range(max_capacity)] if random.random() < 0.8 or nullable is False else None
if nullable is False:
return [[random.randint(-128, 127) for _ in range(max_capacity)] for _ in range(nb)]
else:
# gen 20% none data for nullable field
return [None if i % 2 == 0 and random.random() < 0.4 else random.randint(-128, 127) for i in range(nb)]
if element_type == DataType.INT16:
if nb is None:
return [random.randint(-32768, 32767) for _ in range(max_capacity)] if random.random() < 0.8 or nullable is False else None
if nullable is False:
return [[random.randint(-32768, 32767) for _ in range(max_capacity)] for _ in range(nb)]
else:
# gen 20% none data for nullable field
return [None if i % 2 == 0 and random.random() < 0.4 else random.randint(-32768, 32767) for i in range(nb)]
if element_type == DataType.INT32:
if nb is None:
return [random.randint(-2147483648, 2147483647) for _ in range(max_capacity)] if random.random() < 0.8 or nullable is False else None
if nullable is False:
return [[random.randint(-2147483648, 2147483647) for _ in range(max_capacity)] for _ in range(nb)]
else:
# gen 20% none data for nullable field
return [None if i % 2 == 0 and random.random() < 0.4 else random.randint(-2147483648, 2147483647) for i in range(nb)]
if element_type == DataType.INT64:
if nb is None:
return [random.randint(-9223372036854775808, 9223372036854775807) for _ in range(max_capacity)] if random.random() < 0.8 or nullable is False else None
if nullable is False:
return [[random.randint(-9223372036854775808, 9223372036854775807) for _ in range(max_capacity)] for _ in range(nb)]
else:
# gen 20% none data for nullable field
return [None if i % 2 == 0 and random.random() < 0.4 else random.randint(-9223372036854775808, 9223372036854775807) for i in range(nb)]
if element_type == DataType.BOOL:
if nb is None:
return [random.choice([True, False]) for _ in range(max_capacity)] if random.random() < 0.8 or nullable is False else None
if nullable is False:
return [[random.choice([True, False]) for _ in range(max_capacity)] for _ in range(nb)]
else:
# gen 20% none data for nullable field
return [None if i % 2 == 0 and random.random() < 0.4 else random.choice([True, False]) for i in range(nb)]
if element_type == DataType.FLOAT:
if nb is None:
return [np.float32(random.random()) for _ in range(max_capacity)] if random.random() < 0.8 or nullable is False else None
if nullable is False:
return [[np.float32(random.random()) for _ in range(max_capacity)] for _ in range(nb)]
else:
# gen 20% none data for nullable field
return [None if i % 2 == 0 and random.random() < 0.4 else np.float32(random.random()) for i in range(nb)]
if element_type == DataType.DOUBLE:
if nb is None:
return [np.float64(random.random()) for _ in range(max_capacity)] if random.random() < 0.8 or nullable is False else None
if nullable is False:
return [[np.float64(random.random()) for _ in range(max_capacity)] for _ in range(nb)]
else:
# gen 20% none data for nullable field
return [None if i % 2 == 0 and random.random() < 0.4 else np.float64(random.random()) for i in range(nb)]
if element_type == DataType.VARCHAR:
if isinstance(field, dict):
max_length = field.get('params')['max_length']
else:
max_length = field.params['max_length']
max_length = min(20, max_length - 1)
length = random.randint(0, max_length)
if nb is None:
return ["".join([chr(random.randint(97, 122)) for _ in range(length)]) for _ in range(max_capacity)] if random.random() < 0.8 or nullable is False else None
if nullable is False:
return [["".join([chr(random.randint(97, 122)) for _ in range(length)]) for _ in range(max_capacity)] for _ in range(nb)]
else:
# gen 20% none data for nullable field
return [None if i % 2 == 0 and random.random() < 0.4 else "".join([chr(random.randint(97, 122)) for _ in range(length)]) for i in range(nb)]
elif data_type == DataType.TIMESTAMPTZ:
if nb is None:
return gen_timestamptz_str() if random.random() < 0.8 or nullable is False else None
if nullable is False:
return [gen_timestamptz_str() for _ in range(nb)]
# gen 20% none data for nullable field
return [None if i % 2 == 0 and random.random() < 0.4 else gen_timestamptz_str() for i in range(nb)]
else:
raise MilvusException(message=f"gen data failed, data type {data_type} not implemented")
return None
def gen_timestamptz_str():
"""
Generate a timestamptz string
Example:
"2024-12-31 22:00:00"
"2024-12-31T22:00:00"
"2024-12-31T22:00:00+08:00"
"2024-12-31T22:00:00-08:00"
"2024-12-31T22:00:00Z"
"""
base = datetime(2024, 1, 1, tzinfo=timezone.utc) + timedelta(
days=random.randint(0, 365 * 3), seconds=random.randint(0, 86399)
)
# 2/3 chance to generate timezone-aware string, otherwise naive
if random.random() < 2 / 3:
# 20% chance to use 'Z' (UTC), always RFC3339 with 'T'
if random.random() < 0.2:
return base.strftime("%Y-%m-%dT%H:%M:%S") + "Z"
# otherwise use explicit offset
offset_hours = random.randint(-12, 14)
if offset_hours == -12 or offset_hours == 14:
offset_minutes = 0
else:
offset_minutes = random.choice([0, 30])
tz = timezone(timedelta(hours=offset_hours, minutes=offset_minutes))
local_dt = base.astimezone(tz)
tz_str = local_dt.strftime("%z") # "+0800"
tz_str = tz_str[:3] + ":" + tz_str[3:] # "+08:00"
dt_str = local_dt.strftime("%Y-%m-%dT%H:%M:%S")
return dt_str + tz_str
else:
# naive time string (no timezone), e.g. "2024-12-31 22:00:00"
return base.strftime("%Y-%m-%d %H:%M:%S")
def gen_varchar_values(nb: int, length: int = 0):
return ["".join([chr(random.randint(97, 122)) for _ in range(length)]) for _ in range(nb)]
def gen_values(schema: CollectionSchema, nb, start_id=0, default_values: dict = {}, random_pk=False):
"""
generate default value according to the collection fields,
which can replace the value of the specified field
"""
data = []
for field in schema.fields:
default_value = default_values.get(field.name, None)
if default_value is not None:
data.append(default_value)
elif field.auto_id is False:
data.append(gen_data_by_collection_field(field, nb, start_id, random_pk=random_pk))
return data
def gen_field_values(schema: CollectionSchema, nb, start_id=0, default_values: dict = {}, random_pk=False) -> dict:
"""
generate default value according to the collection fields,
which can replace the value of the specified field
return: <dict>
<field name>: <value list>
"""
data = {}
for field in schema.fields:
default_value = default_values.get(field.name, None)
if default_value is not None:
data[field.name] = default_value
elif field.auto_id is False:
data[field.name] = gen_data_by_collection_field(field, nb, start_id * nb, random_pk=random_pk)
return data
def gen_json_files_for_bulk_insert(data, schema, data_dir):
for d in data:
if len(d) > 0:
nb = len(d)
dim = get_dim_by_schema(schema)
vec_field_name = get_float_vec_field_name(schema)
fields_name = [field.name for field in schema.fields]
# get vec field index
vec_field_index = fields_name.index(vec_field_name)
uuid_str = str(uuid.uuid4())
log.info(f"file dir name: {uuid_str}")
file_name = f"{uuid_str}/bulk_insert_data_source_dim_{dim}_nb_{nb}.json"
files = [file_name]
data_source = os.path.join(data_dir, file_name)
Path(data_source).parent.mkdir(parents=True, exist_ok=True)
log.info(f"file name: {data_source}")
with open(data_source, "w") as f:
f.write("{")
f.write("\n")
f.write('"rows":[')
f.write("\n")
for i in range(nb):
entity_value = [None for _ in range(len(fields_name))]
for j in range(len(data)):
if j == vec_field_index:
entity_value[j] = [random.random() for _ in range(dim)]
else:
entity_value[j] = data[j][i]
entity = dict(zip(fields_name, entity_value))
f.write(json.dumps(entity, indent=4, default=to_serializable))
if i != nb - 1:
f.write(",")
f.write("\n")
f.write("]")
f.write("\n")
f.write("}")
return files
def gen_npy_files_for_bulk_insert(data, schema, data_dir):
for d in data:
if len(d) > 0:
nb = len(d)
dim = get_dim_by_schema(schema)
vec_field_name = get_float_vec_field_name(schema)
fields_name = [field.name for field in schema.fields]
files = []
uuid_str = uuid.uuid4()
for field in fields_name:
files.append(f"{uuid_str}/{field}.npy")
for i, file in enumerate(files):
data_source = os.path.join(data_dir, file)
# mkdir for npy file
Path(data_source).parent.mkdir(parents=True, exist_ok=True)
log.info(f"save file {data_source}")
if vec_field_name in file:
log.info(f"generate {nb} vectors with dim {dim} for {data_source}")
with NpyAppendArray(data_source, "wb") as npaa:
for j in range(nb):
vector = np.array([[random.random() for _ in range(dim)]])
npaa.append(vector)
elif isinstance(data[i][0], dict):
tmp = []
for d in data[i]:
tmp.append(json.dumps(d))
data[i] = tmp
np.save(data_source, np.array(data[i]))
else:
np.save(data_source, np.array(data[i]))
return files
def gen_default_tuple_data(nb=ct.default_nb, dim=ct.default_dim):
int_values = [i for i in range(nb)]
float_values = [np.float32(i) for i in range(nb)]
string_values = [str(i) for i in range(nb)]
float_vec_values = gen_vectors(nb, dim)
data = (int_values, float_values, string_values, float_vec_values)
return data
def gen_numpy_data(nb=ct.default_nb, dim=ct.default_dim):
int_values = np.arange(nb, dtype='int64')
float_values = np.arange(nb, dtype='float32')
string_values = [np.str_(i) for i in range(nb)]
json_values = [{"number": i, "string": str(i), "bool": bool(i),
"list": [j for j in range(i, i + ct.default_json_list_length)]} for i in range(nb)]
float_vec_values = gen_vectors(nb, dim)
data = [int_values, float_values, string_values, json_values, float_vec_values]
return data
def gen_default_binary_list_data(nb=ct.default_nb, dim=ct.default_dim):
int_values = [i for i in range(nb)]
float_values = [np.float32(i) for i in range(nb)]
string_values = [str(i) for i in range(nb)]
binary_raw_values, binary_vec_values = gen_binary_vectors(nb, dim)
data = [int_values, float_values, string_values, binary_vec_values]
return data, binary_raw_values
def gen_autoindex_params():
index_params = [
{},
{"metric_type": "IP"},
{"metric_type": "L2"},
{"metric_type": "COSINE"},
{"index_type": "AUTOINDEX"},
{"index_type": "AUTOINDEX", "metric_type": "L2"},
{"index_type": "AUTOINDEX", "metric_type": "COSINE"},
{"index_type": "IVF_FLAT", "metric_type": "L2", "nlist": "1024", "m": "100"},
{"index_type": "DISKANN", "metric_type": "L2"},
{"index_type": "IVF_PQ", "nlist": "128", "m": "16", "nbits": "8", "metric_type": "IP"},
{"index_type": "IVF_SQ8", "nlist": "128", "metric_type": "COSINE"}
]
return index_params
def gen_invalid_field_types():
field_types = [
6,
1.0,
[[]],
{},
(),
"",
"a"
]
return field_types
def gen_invalid_search_params_type():
invalid_search_key = 100
search_params = []
for index_type in ct.all_index_types:
if index_type == "FLAT":
continue
# search_params.append({"index_type": index_type, "search_params": {"invalid_key": invalid_search_key}})
if index_type in ["IVF_FLAT", "IVF_SQ8", "IVF_PQ", "BIN_FLAT", "BIN_IVF_FLAT"]:
for nprobe in ct.get_invalid_ints:
ivf_search_params = {"index_type": index_type, "search_params": {"nprobe": nprobe}}
search_params.append(ivf_search_params)
elif index_type in ["HNSW"]:
for ef in ct.get_invalid_ints:
hnsw_search_param = {"index_type": index_type, "search_params": {"ef": ef}}
search_params.append(hnsw_search_param)
elif index_type == "ANNOY":
for search_k in ct.get_invalid_ints:
if isinstance(search_k, int):
continue
annoy_search_param = {"index_type": index_type, "search_params": {"search_k": search_k}}
search_params.append(annoy_search_param)
elif index_type == "SCANN":
for reorder_k in ct.get_invalid_ints:
if isinstance(reorder_k, int):
continue
scann_search_param = {"index_type": index_type, "search_params": {"nprobe": 8, "reorder_k": reorder_k}}
search_params.append(scann_search_param)
elif index_type == "DISKANN":
for search_list in ct.get_invalid_ints[1:]:
diskann_search_param = {"index_type": index_type, "search_params": {"search_list": search_list}}
search_params.append(diskann_search_param)
return search_params
# def gen_search_param(index_type, metric_type="L2"):
# search_params = []
# if index_type in ["FLAT", "IVF_FLAT", "IVF_SQ8", "IVF_PQ", "GPU_IVF_FLAT", "GPU_IVF_PQ"]:
# if index_type in ["GPU_FLAT"]:
# ivf_search_params = {"metric_type": metric_type, "params": {}}
# search_params.append(ivf_search_params)
# else:
# search_params.append({"metric_type": index_type, "params": {"nprobe": 100}})
# search_params.append({"metric_type": index_type, "nprobe": 100})
# search_params.append({"metric_type": index_type})
# search_params.append({"params": {"nprobe": 100}})
# search_params.append({"nprobe": 100})
# search_params.append({})
# elif index_type in ["BIN_FLAT", "BIN_IVF_FLAT"]:
# if metric_type not in ct.binary_metrics:
# log.error("Metric type error: binary index only supports distance type in (%s)" % ct.binary_metrics)
# # default metric type for binary index
# metric_type = "JACCARD"
# for nprobe in [64, 128]:
# binary_search_params = {"metric_type": metric_type, "params": {"nprobe": nprobe}}
# search_params.append(binary_search_params)
# elif index_type in ["HNSW"]:
# for ef in [64, 1500, 32768]:
# hnsw_search_param = {"metric_type": metric_type, "params": {"ef": ef}}
# search_params.append(hnsw_search_param)
# elif index_type == "ANNOY":
# for search_k in [1000, 5000]:
# annoy_search_param = {"metric_type": metric_type, "params": {"search_k": search_k}}
# search_params.append(annoy_search_param)
# elif index_type == "SCANN":
# for reorder_k in [1200, 3000]:
# scann_search_param = {"metric_type": metric_type, "params": {"nprobe": 64, "reorder_k": reorder_k}}
# search_params.append(scann_search_param)
# elif index_type == "DISKANN":
# for search_list in [20, 300, 1500]:
# diskann_search_param = {"metric_type": metric_type, "params": {"search_list": search_list}}
# search_params.append(diskann_search_param)
# elif index_type == "IVF_RABITQ":
# for rbq_bits_query in [7]:
# ivf_rabitq_search_param = {"metric_type": metric_type,
# "params": {"rbq_bits_query": rbq_bits_query, "nprobe": 8, "refine_k": 10.0}}
# search_params.append(ivf_rabitq_search_param)
# else:
# log.error("Invalid index_type.")
# raise Exception("Invalid index_type.")
# log.debug(search_params)
#
# return search_params
#
def gen_autoindex_search_params():
search_params = [
{},
{"metric_type": "IP"},
{"nlist": "1024"},
{"efSearch": "100"},
{"search_k": "1000"}
]
return search_params
def gen_all_type_fields():
fields = []
for k, v in DataType.__members__.items():
if v != DataType.UNKNOWN:
field, _ = ApiFieldSchemaWrapper().init_field_schema(name=k.lower(), dtype=v)
fields.append(field)
return fields
def gen_normal_expressions_and_templates():
"""
Gen a list of filter in expression-format(as a string) and template-format(as a dict)
The two formats equals to each other.
"""
expressions = [
["", {"expr": "", "expr_params": {}}],
["int64 > 0", {"expr": "int64 > {value_0}", "expr_params": {"value_0": 0}}],
["(int64 > 0 && int64 < 400) or (int64 > 500 && int64 < 1000)",
{"expr": "(int64 > {value_0} && int64 < {value_1}) or (int64 > {value_2} && int64 < {value_3})",
"expr_params": {"value_0": 0, "value_1": 400, "value_2": 500, "value_3": 1000}}],
["int64 not in [1, 2, 3]", {"expr": "int64 not in {value_0}", "expr_params": {"value_0": [1, 2, 3]}}],
["int64 in [1, 2, 3] and float != 2", {"expr": "int64 in {value_0} and float != {value_1}",
"expr_params": {"value_0": [1, 2, 3], "value_1": 2}}],
["int64 == 0 || float == 10**2 || (int64 + 1) == 3",
{"expr": "int64 == {value_0} || float == {value_1} || (int64 + {value_2}) == {value_3}",
"expr_params": {"value_0": 0, "value_1": 10**2, "value_2": 1, "value_3": 3}}],
["0 <= int64 < 400 and int64 % 100 == 0",
{"expr": "{value_0} <= int64 < {value_1} and int64 % {value_2} == {value_0}",
"expr_params": {"value_0": 0, "value_1": 400, "value_2": 100}}],
["200+300 < int64 <= 500+500", {"expr": "{value_0} < int64 <= {value_1}",
"expr_params": {"value_1": 500+500, "value_0": 200+300}}],
["int64 > 400 && int64 < 200", {"expr": "int64 > {value_0} && int64 < {value_1}",
"expr_params": {"value_0": 400, "value_1": 200}}],
["int64 in [300/2, 900%40, -10*30+800, (100+200)*2] or float in [+3**6, 2**10/2]",
{"expr": "int64 in {value_0} or float in {value_1}",
"expr_params": {"value_0": [int(300/2), 900%40, -10*30+800, (100+200)*2], "value_1": [+3**6*1.0, 2**10/2*1.0]}}],
["float <= -4**5/2 && float > 500-1 && float != 500/2+260",
{"expr": "float <= {value_0} && float > {value_1} && float != {value_2}",
"expr_params": {"value_0": -4**5/2, "value_1": 500-1, "value_2": 500/2+260}}],
]
return expressions
def gen_json_field_expressions_and_templates():
"""
Gen a list of filter in expression-format(as a string) and template-format(as a dict)
The two formats equals to each other.
"""
expressions = [
["json_field['number'] > 0", {"expr": "json_field['number'] > {value_0}", "expr_params": {"value_0": 0}}],
["0 <= json_field['number'] < 400 or 1000 > json_field['number'] >= 500",
{"expr": "{value_0} <= json_field['number'] < {value_1} or {value_2} > json_field['number'] >= {value_3}",
"expr_params": {"value_0": 0, "value_1": 400, "value_2": 1000, "value_3": 500}}],
["json_field['number'] not in [1, 2, 3]", {"expr": "json_field['number'] not in {value_0}",
"expr_params": {"value_0": [1, 2, 3]}}],
["json_field['number'] in [1, 2, 3] and json_field['float'] != 2",
{"expr": "json_field['number'] in {value_0} and json_field['float'] != {value_1}",
"expr_params": {"value_0": [1, 2, 3], "value_1": 2}}],
["json_field['number'] == 0 || json_field['float'] == 10**2 || json_field['number'] + 1 == 3",
{"expr": "json_field['number'] == {value_0} || json_field['float'] == {value_1} || json_field['number'] + {value_2} == {value_3}",
"expr_params": {"value_0": 0, "value_1": 10**2, "value_2": 1, "value_3": 3}}],
["json_field['number'] < 400 and json_field['number'] >= 100 and json_field['number'] % 100 == 0",
{"expr": "json_field['number'] < {value_0} and json_field['number'] >= {value_1} and json_field['number'] % {value_1} == 0",
"expr_params": {"value_0": 400, "value_1": 100}}],
["json_field['float'] > 400 && json_field['float'] < 200", {"expr": "json_field['float'] > {value_0} && json_field['float'] < {value_1}",
"expr_params": {"value_0": 400, "value_1": 200}}],
["json_field['number'] in [300/2, -10*30+800, (100+200)*2] or json_field['float'] in [+3**6, 2**10/2]",
{"expr": "json_field['number'] in {value_0} or json_field['float'] in {value_1}",
"expr_params": {"value_0": [int(300/2), -10*30+800, (100+200)*2], "value_1": [+3**6*1.0, 2**10/2*1.0]}}],
["json_field['float'] <= -4**5/2 && json_field['float'] > 500-1 && json_field['float'] != 500/2+260",
{"expr": "json_field['float'] <= {value_0} && json_field['float'] > {value_1} && json_field['float'] != {value_2}",
"expr_params": {"value_0": -4**5/2, "value_1": 500-1, "value_2": 500/2+260}}],
]
return expressions
def gen_json_field_expressions_all_single_operator(json_cast_type=None):
"""
Gen a list of filter in expression-format(as a string)
:param json_cast_type: Optional parameter to specify the JSON cast type (e.g., "ARRAY_DOUBLE")
"""
if json_cast_type == "ARRAY_DOUBLE":
# For ARRAY_DOUBLE type, use array-specific expressions
expressions = [
"json_contains(json_field['a'], 1)", "JSON_CONTAINS(json_field['a'], 1)",
"json_contains(json_field['a'], 1.0)", "json_contains(json_field['a'], 2)",
"json_contains_all(json_field['a'], [1, 2])", "JSON_CONTAINS_ALL(json_field['a'], [1, 2])",
"json_contains_all(json_field['a'], [1.0, 2.0])", "json_contains_all(json_field['a'], [2, 4])",
"json_contains_any(json_field['a'], [1, 2])", "JSON_CONTAINS_ANY(json_field['a'], [1, 2])",
"json_contains_any(json_field['a'], [1.0, 2.0])", "json_contains_any(json_field['a'], [2, 4])",
"array_contains(json_field['a'], 1)", "ARRAY_CONTAINS(json_field['a'], 1)",
"array_contains(json_field['a'], 1.0)", "array_contains(json_field['a'], 2)",
"array_contains_all(json_field['a'], [1, 2])", "ARRAY_CONTAINS_ALL(json_field['a'], [1, 2])",
"array_contains_all(json_field['a'], [1.0, 2.0])", "array_contains_all(json_field['a'], [2, 4])",
"array_contains_any(json_field['a'], [1, 2])", "ARRAY_CONTAINS_ANY(json_field['a'], [1, 2])",
"array_contains_any(json_field['a'], [1.0, 2.0])", "array_contains_any(json_field['a'], [2, 4])",
"array_length(json_field['a']) < 10", "ARRAY_LENGTH(json_field['a']) < 10"
]
else:
expressions = ["json_field['a'] <= 1", "json_field['a'] <= 1.0", "json_field['a'] >= 1", "json_field['a'] >= 1.0",
"json_field['a'] < 2", "json_field['a'] < 2.0", "json_field['a'] > 0", "json_field['a'] > 0.0",
"json_field['a'] <= '1'", "json_field['a'] >= '1'", "json_field['a'] < '2'", "json_field['a'] > '0'",
"json_field['a'] == 1", "json_field['a'] == 1.0", "json_field['a'] == True",
"json_field['a'] == 9707199254740993.0", "json_field['a'] == 9707199254740992",
"json_field['a'] == '1'",
"json_field['a'] != '1'", "json_field['a'] like '1%'", "json_field['a'] like '%1'",
"json_field['a'] like '%1%'", "json_field['a'] LIKE '1%'", "json_field['a'] LIKE '%1'",
"json_field['a'] LIKE '%1%'", "EXISTS json_field['a']", "exists json_field['a']",
"EXISTS json_field['a']['b']", "exists json_field['a']['b']", "json_field['a'] + 1 >= 2",
"json_field['a'] - 1 <= 0", "json_field['a'] + 1.0 >= 2", "json_field['a'] - 1.0 <= 0",
"json_field['a'] * 2 == 2", "json_field['a'] * 1.0 == 1.0", "json_field / 1 == 1",
"json_field['a'] / 1.0 == 1", "json_field['a'] % 10 == 1", "json_field['a'] == 1**2",
"json_field['a'][0] == 1 && json_field['a'][1] == 2",
"json_field['a'][0] == 1 and json_field['a'][1] == 2",
"json_field['a'][0]['b'] >=1 && json_field['a'][2] == 3",
"json_field['a'][0]['b'] >=1 and json_field['a'][2] == 3",
"json_field['a'] == 1 || json_field['a'] == '1'", "json_field['a'] == 1 or json_field['a'] == '1'",
"json_field['a'][0]['b'] >=1 || json_field['a']['b'] >=1",
"json_field['a'][0]['b'] >=1 or json_field['a']['b'] >=1",
"json_field['a'] in [1]", "json_field is null", "json_field IS NULL", "json_field is not null", "json_field IS NOT NULL",
"json_field['a'] is null", "json_field['a'] IS NULL", "json_field['a'] is not null", "json_field['a'] IS NOT NULL"
]
return expressions
def gen_field_expressions_all_single_operator_each_field(field = ct.default_int64_field_name):
"""
Gen a list of filter in expression-format(as a string)
"""
if field in [ct.default_int8_field_name, ct.default_int16_field_name, ct.default_int32_field_name,
ct.default_int64_field_name]:
expressions = [f"{field} <= 1", f"{field} >= 1",
f"{field} < 2", f"{field} > 0",
f"{field} == 1", f"{field} != 1",
f"{field} == 9707199254740992", f"{field} != 9707199254740992",
f"{field} + 1 >= 2", f"{field} - 1 <= 0",
f"{field} * 2 == 2", f"{field} / 1 == 1",
f"{field} % 10 == 1", f"{field} == 1 || {field} == 2",
f"{field} == 1 or {field} == 2",
f"{field} in [1]", f"{field} not in [1]",
f"{field} is null", f"{field} IS NULL",
f"{field} is not null", f"{field} IS NOT NULL"
]
elif field in [ct.default_bool_field_name]:
expressions = [f"{field} == True", f"{field} == False",
f"{field} != True", f"{field} != False",
f"{field} <= True", f"{field} >= True",
f"{field} <= False", f"{field} >= False",
f"{field} < True", f"{field} > True",
f"{field} < False", f"{field} > False",
f"{field} == True && {field} == False",
f"{field} == True and {field} == False ",
f"{field} == True || {field} == False",
f"{field} == True or {field} == False",
f"{field} in [True]", f"{field} in [False]", f"{field} in [True, False]",
f"{field} is null", f"{field} IS NULL", f"{field} is not null", f"{field} IS NOT NULL"]
elif field in [ct.default_float_field_name, ct.default_double_field_name]:
expressions = [f"{field} <= 1", f"{field} >= 1",
f"{field} < 2", f"{field} > 0",
f"{field} == 1", f"{field} != 1",
f"{field} == 9707199254740992", f"{field} != 9707199254740992",
f"{field} <= 1.0", f"{field} >= 1.0",
f"{field} < 2.0", f"{field} > 0.0",
f"{field} == 1.0", f"{field} != 1.0",
f"{field} == 9707199254740992.0", f"{field} != 9707199254740992.0",
f"{field} - 1 <= 0", f"{field} + 1.0 >= 2",
f"{field} - 1.0 <= 0", f"{field} * 2 == 2",
f"{field} * 1.0 == 1.0", f"{field} / 1 == 1",
f"{field} / 1.0 == 1.0", f"{field} == 1**2",
f"{field} == 1 && {field} == 2",
f"{field} == 1 and {field} == 2.0",
f"{field} >=1 && {field} == 3.0",
f"{field} >=1 and {field} == 3",
f"{field} == 1 || {field} == 2.0",
f"{field} == 1 or {field} == 2.0",
f"{field} >= 1 || {field} <=2.0",
f"{field} >= 1.0 or {field} <= 2.0",
f"{field} in [1]", f"{field} in [1, 2]",
f"{field} in [1.0]", f"{field} in [1.0, 2.0]",
f"{field} is null", f"{field} IS NULL", f"{field} is not null", f"{field} IS NOT NULL"
]
elif field in [ct.default_string_field_name]:
expressions = [f"{field} <= '1'", f"{field} >= '1'", f"{field} < '2'", f"{field} > '0'",
f"{field} == '1'", f"{field} != '1'", f"{field} like '1%'", f"{field} like '%1'",
f"{field} like '%1%'", f"{field} LIKE '1%'", f"{field} LIKE '%1'",
f"{field} LIKE '%1%'",
f"{field} == '1' && {field} == '2'",
f"{field} == '1' and {field} == '2'",
f"{field} == '1' || {field} == '2'",
f"{field} == '1' or {field} == '2'",
f"{field} >= '1' || {field} <= '2'",
f"{field} >= '1' or {field} <= '2'",
f"{field} in ['1']", f"{field} in ['1', '2']",
f"{field} is null", f"{field} IS NULL", f"{field} is not null", f"{field} IS NOT NULL"
]
elif field in [ct.default_int8_array_field_name, ct.default_int16_array_field_name,
ct.default_int32_array_field_name, ct.default_int64_array_field_name]:
expressions = [f"{field}[0] <= 1", f"{field}[0] >= 1",
f"{field}[0] < 2", f"{field}[0] > 0",
f"{field}[1] == 1", f"{field}[1] != 1",
f"{field}[0] == 9707199254740992", f"{field}[0] != 9707199254740992",
f"{field}[0] + 1 >= 2", f"{field}[0] - 1 <= 0",
f"{field}[0] + 1.0 >= 2", f"{field}[0] - 1.0 <= 0",
f"{field}[0] * 2 == 2", f"{field}[1] * 1.0 == 1.0",
f"{field}[1] / 1 == 1", f"{field}[0] / 1.0 == 1", f"{field}[1] % 10 == 1",
f"{field}[0] == 1 && {field}[1] == 2", f"{field}[0] == 1 and {field}[1] == 2",
f"{field}[0] >=1 && {field}[2] <= 3", f"{field}[0] >=1 and {field}[1] == 2",
f"{field}[0] >=1 || {field}[1] <=2", f"{field}[0] >=1 or {field}[1] <=2",
f"{field}[0] in [1]", f"json_contains({field}, 1)", f"JSON_CONTAINS({field}, 1)",
f"json_contains_all({field}, [1, 2])", f"JSON_CONTAINS_ALL({field}, [1, 2])",
f"json_contains_any({field}, [1, 2])", f"JSON_CONTAINS_ANY({field}, [1, 2])",
f"array_contains({field}, 2)", f"ARRAY_CONTAINS({field}, 2)",
f"array_contains_all({field}, [1, 2])", f"ARRAY_CONTAINS_ALL({field}, [1, 2])",
f"array_contains_any({field}, [1, 2])", f"ARRAY_CONTAINS_ANY({field}, [1, 2])",
f"array_length({field}) < 10", f"ARRAY_LENGTH({field}) < 10",
f"{field} is null", f"{field} IS NULL", f"{field} is not null", f"{field} IS NOT NULL"
]
elif field in [ct.default_float_array_field_name, ct.default_double_array_field_name]:
expressions = [f"{field}[0] <= 1", f"{field}[0] >= 1",
f"{field}[0] < 2", f"{field}[0] > 0",
f"{field}[1] == 1", f"{field}[1] != 1",
f"{field}[0] == 9707199254740992", f"{field}[0] != 9707199254740992",
f"{field}[0] <= 1.0", f"{field}[0] >= 1.0",
f"{field}[0] < 2.0", f"{field}[0] > 0.0",
f"{field}[1] == 1.0", f"{field}[1] != 1.0",
f"{field}[0] == 9707199254740992.0",
f"{field}[0] - 1 <= 0", f"{field}[0] + 1.0 >= 2",
f"{field}[0] - 1.0 <= 0", f"{field}[0] * 2 == 2",
f"{field}[0] * 1.0 == 1.0", f"{field}[0] / 1 == 1",
f"{field}[0] / 1.0 == 1.0", f"{field}[0] == 1**2",
f"{field}[0] == 1 && {field}[1] == 2",
f"{field}[0] == 1 and {field}[1] == 2.0",
f"{field}[0] >=1 && {field}[2] == 3.0",
f"{field}[0] >=1 and {field}[2] == 3",
f"{field}[0] == 1 || {field}[1] == 2.0",
f"{field}[0] == 1 or {field}[1] == 2.0",
f"{field}[0] >= 1 || {field}[1] <=2.0",
f"{field}[0] >= 1.0 or {field}[1] <= 2.0",
f"{field}[0] in [1]", f"{field}[0] in [1.0]", f"json_contains({field}, 1.0)",
f"JSON_CONTAINS({field}, 1.0)", f"json_contains({field}, 1.0)", f"JSON_CONTAINS({field}, 1.0)",
f"json_contains_all({field}, [2.0, 4.0])", f"JSON_CONTAINS_ALL({field}, [2.0, 4.0])",
f"json_contains_any({field}, [2.0, 4.0])", f"JSON_CONTAINS_ANY({field}, [2.0, 4.0])",
f"array_contains({field}, 2.0)", f"ARRAY_CONTAINS({field}, 2.0)",
f"array_contains({field}, 2.0)", f"ARRAY_CONTAINS({field}, 2.0)",
f"array_contains_all({field}, [1.0, 2.0])", f"ARRAY_CONTAINS_ALL({field}, [1.0, 2.0])",
f"array_contains_any({field}, [1.0, 2.0])", f"ARRAY_CONTAINS_ANY({field}, [1.0, 2.0])",
f"array_length({field}) < 10", f"ARRAY_LENGTH({field}) < 10",
f"{field} is null", f"{field} IS NULL", f"{field} is not null", f"{field} IS NOT NULL"
]
elif field in [ct.default_bool_array_field_name]:
expressions = [f"{field}[0] == True", f"{field}[0] == False",
f"{field}[0] != True", f"{field}[0] != False",
f"{field}[0] <= True", f"{field}[0] >= True",
f"{field}[1] <= False", f"{field}[1] >= False",
f"{field}[0] < True", f"{field}[1] > True",
f"{field}[0] < False", f"{field}[0] > False",
f"{field}[0] == True && {field}[1] == False",
f"{field}[0] == True and {field}[1] == False ",
f"{field}[0] == True || {field}[1] == False",
f"{field}[0] == True or {field}[1] == False",
f"{field}[0] in [True]", f"{field}[1] in [False]", f"{field}[0] in [True, False]",
f"{field} is null", f"{field} IS NULL", f"{field} is not null", f"{field} IS NOT NULL"
]
elif field in [ct.default_string_array_field_name]:
expressions = [f"{field}[0] <= '1'", f"{field}[0] >= '1'",
f"{field}[0] < '2'", f"{field}[0] > '0'",
f"{field}[1] == '1'", f"{field}[1] != '1'",
f"{field}[1] like '1%'", f"{field}[1] like '%1'",
f"{field}[1] like '%1%'", f"{field}[1] LIKE '1%'",
f"{field}[1] LIKE '%1'", f"{field}[1] LIKE '%1%'",
f"{field}[1] == '1' && {field}[2] == '2'",
f"{field}[1] == '1' and {field}[2] == '2'",
f"{field}[0] == '1' || {field}[2] == '2'",
f"{field}[0] == '1' or {field}[2] == '2'",
f"{field}[1] >= '1' || {field}[2] <= '2'",
f"{field}[1] >= '1' or {field}[2] <= '2'",
f"{field}[0] in ['0']", f"{field}[1] in ['1', '2']",
f"{field} is null", f"{field} IS NULL", f"{field} is not null", f"{field} IS NOT NULL"
]
else:
raise Exception("Invalid field name")
return expressions
def concatenate_uneven_arrays(arr1, arr2):
"""
concatenate the element in two arrays with different length
"""
max_len = max(len(arr1), len(arr2))
result = []
op_list = ["and", "or", "&&", "||"]
for i in range(max_len):
a = arr1[i] if i < len(arr1) else ""
b = arr2[i] if i < len(arr2) else ""
if a == "" or b == "":
result.append(a + b)
else:
random_op = op_list[random.randint(0, len(op_list)-1)]
result.append( a + " " + random_op + " " + b)
return result
def gen_multiple_field_expressions(field_name_list=[], random_field_number=0, expr_number=1):
"""
Gen an expression including multiple fields
parameters:
field_name_list: the field names to be filtered. And the names should be in the following field name list if this
parameter is specified: (both repeated or non-repeated field name are supported)
all_fields = [ct.default_int8_field_name, ct.default_int16_field_name,
ct.default_int32_field_name, ct.default_int64_field_name,
ct.default_float_field_name, ct.default_double_field_name,
ct.default_string_field_name, ct.default_bool_field_name,
ct.default_int8_array_field_name, ct.default_int16_array_field_name,
ct.default_int32_array_field_name,ct.default_int64_array_field_name,
ct.default_bool_array_field_name, ct.default_float_array_field_name,
ct.default_double_array_field_name, ct.default_string_array_field_name]
random_field_number: the random field numbers to be filtered. The filtered fields will be randomly selected in
the above field name list (all_fields) if this parameter is specified.
And if random_field_number <= len(all_fields), the fields will be randomly selected without
repeat. If random_field_number > len(all_fields), there will be repeated fields
for (random_field_number - len(all_fields)) part.
expr_number: the number of expressions for each field
return:
expressions_fields: all the expressions for multiple fields
field_name_list: the field name list used for the filtered expressions
"""
if not isinstance(field_name_list, list):
raise Exception("parameter field_name_list should be a list of all the fields to be filtered")
if random_field_number < 0:
raise Exception(f"random_field_number should be greater than or equal with 0]")
if not isinstance(expr_number, int):
raise Exception("parameter parameter should be an interger")
log.info(field_name_list)
log.info(random_field_number)
if len(field_name_list) != 0 and random_field_number != 0:
raise Exception("Not support both field_name_list and random_field_number are specified")
field_name_list_cp = field_name_list.copy()
all_fields = [ct.default_int8_field_name, ct.default_int16_field_name,
ct.default_int32_field_name, ct.default_int64_field_name,
ct.default_float_field_name, ct.default_double_field_name,
ct.default_string_field_name, ct.default_bool_field_name,
ct.default_int8_array_field_name, ct.default_int16_array_field_name,
ct.default_int32_array_field_name,ct.default_int64_array_field_name,
ct.default_bool_array_field_name, ct.default_float_array_field_name,
ct.default_double_array_field_name, ct.default_string_array_field_name]
if len(field_name_list) == 0 and random_field_number != 0:
if random_field_number <= len(all_fields):
random_array = random.sample(range(len(all_fields)), random_field_number)
else:
random_array = random.sample(range(len(all_fields)), len(all_fields))
for _ in range(random_field_number - len(all_fields)):
random_array.append(random.randint(0, len(all_fields)-1))
for i in random_array:
field_name_list_cp.append(all_fields[i])
if len(field_name_list) == 0 and random_field_number == 0:
field_name_list_cp = all_fields
expressions_fields = gen_field_expressions_all_single_operator_each_field(field_name_list_cp[0])
if len(field_name_list_cp) > 1:
for field in field_name_list[1:]:
expressions = gen_field_expressions_all_single_operator_each_field(field)
expressions_fields = concatenate_uneven_arrays(expressions_fields, expressions)
return expressions_fields, field_name_list_cp
def gen_array_field_expressions_and_templates():
"""
Gen a list of filter in expression-format(as a string) and template-format(as a dict) for a field.
The two formats equals to each other.
"""
expressions = [
["int32_array[0] > 0", {"expr": "int32_array[0] > {value_0}", "expr_params": {"value_0": 0}}],
["0 <= int32_array[0] < 400 or 1000 > float_array[1] >= 500",
{"expr": "{value_0} <= int32_array[0] < {value_1} or {value_2} > float_array[1] >= {value_3}",
"expr_params": {"value_0": 0, "value_1": 400, "value_2": 1000, "value_3": 500}}],
["int32_array[1] not in [1, 2, 3]", {"expr": "int32_array[1] not in {value_0}", "expr_params": {"value_0": [1, 2, 3]}}],
["int32_array[1] in [1, 2, 3] and string_array[1] != '2'",
{"expr": "int32_array[1] in {value_0} and string_array[1] != {value_2}",
"expr_params": {"value_0": [1, 2, 3], "value_2": "2"}}],
["int32_array == [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]", {"expr": "int32_array == {value_0}",
"expr_params": {"value_0": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}}],
["int32_array[1] + 1 == 3 && int32_array[0] - 1 != 1",
{"expr": "int32_array[1] + {value_0} == {value_2} && int32_array[0] - {value_0} != {value_0}",
"expr_params": {"value_0": 1, "value_2": 3}}],
["int32_array[1] % 100 == 0 && string_array[1] in ['1', '2']",
{"expr": "int32_array[1] % {value_0} == {value_1} && string_array[1] in {value_2}",
"expr_params": {"value_0": 100, "value_1": 0, "value_2": ["1", "2"]}}],
["int32_array[1] in [300/2, -10*30+800, (200-100)*2] or (float_array[1] <= -4**5/2 || 100 <= int32_array[1] < 200)",
{"expr": "int32_array[1] in {value_0} or (float_array[1] <= {value_1} || {value_2} <= int32_array[1] < {value_3})",
"expr_params": {"value_0": [int(300/2), -10*30+800, (200-100)*2], "value_1": -4**5/2, "value_2": 100, "value_3": 200}}]
]
return expressions
def gen_field_compare_expressions(fields1=None, fields2=None):
if fields1 is None:
fields1 = ["int64_1"]
fields2 = ["int64_2"]
expressions = []
for field1, field2 in zip(fields1, fields2):
expression = [
f"{field1} | {field2} == 1",
f"{field1} + {field2} <= 10 || {field1} - {field2} == 2",
f"{field1} * {field2} >= 8 && {field1} / {field2} < 2",
f"{field1} ** {field2} != 4 and {field1} + {field2} > 5",
f"{field1} not in {field2}",
f"{field1} in {field2}",
]
expressions.extend(expression)
return expressions
def gen_normal_string_expressions(fields=None):
if fields is None:
fields = [ct.default_string_field_name]
expressions = []
for field in fields:
expression = [
f"\"0\"< {field} < \"3\"",
f"{field} >= \"0\"",
f"({field} > \"0\" && {field} < \"100\") or ({field} > \"200\" && {field} < \"300\")",
f"\"0\" <= {field} <= \"100\"",
f"{field} == \"0\"|| {field} == \"1\"|| {field} ==\"2\"",
f"{field} != \"0\"",
f"{field} not in [\"0\", \"1\", \"2\"]",
f"{field} in [\"0\", \"1\", \"2\"]"
]
expressions.extend(expression)
return expressions
def gen_invalid_string_expressions():
expressions = [
"varchar in [0, \"1\"]",
"varchar not in [\"0\", 1, 2]"
]
return expressions
def gen_normal_expressions_and_templates_field(field):
"""
Gen a list of filter in expression-format(as a string) and template-format(as a dict) for a field.
The two formats equals to each other.
"""
expressions_and_templates = [
["", {"expr": "", "expr_params": {}}],
[f"{field} > 0", {"expr": f"{field} > {{value_0}}", "expr_params": {"value_0": 0}}],
[f"({field} > 0 && {field} < 400) or ({field} > 500 && {field} < 1000)",
{"expr": f"({field} > {{value_0}} && {field} < {{value_1}}) or ({field} > {{value_2}} && {field} < {{value_3}})",
"expr_params": {"value_0": 0, "value_1": 400, "value_2": 500, "value_3": 1000}}],
[f"{field} not in [1, 2, 3]", {"expr": f"{field} not in {{value_0}}", "expr_params": {"value_0": [1, 2, 3]}}],
[f"{field} in [1, 2, 3] and {field} != 2", {"expr": f"{field} in {{value_0}} and {field} != {{value_1}}", "expr_params": {"value_0": [1, 2, 3], "value_1": 2}}],
[f"{field} == 0 || {field} == 1 || {field} == 2", {"expr": f"{field} == {{value_0}} || {field} == {{value_1}} || {field} == {{value_2}}",
"expr_params": {"value_0": 0, "value_1": 1, "value_2": 2}}],
[f"0 < {field} < 400", {"expr": f"{{value_0}} < {field} < {{value_1}}", "expr_params": {"value_0": 0, "value_1": 400}}],
[f"500 <= {field} <= 1000", {"expr": f"{{value_0}} <= {field} <= {{value_1}}", "expr_params": {"value_0": 500, "value_1": 1000}}],
[f"200+300 <= {field} <= 500+500", {"expr": f"{{value_0}} <= {field} <= {{value_1}}", "expr_params": {"value_0": 200+300, "value_1": 500+500}}],
[f"{field} in [300/2, 900%40, -10*30+800, 2048/2%200, (100+200)*2]", {"expr": f"{field} in {{value_0}}", "expr_params": {"value_0": [300*1.0/2, 900*1.0%40, -10*30*1.0+800, 2048*1.0/2%200, (100+200)*1.0*2]}}],
[f"{field} in [+3**6, 2**10/2]", {"expr": f"{field} in {{value_0}}", "expr_params": {"value_0": [+3**6*1.0, 2**10*1.0/2]}}],
[f"{field} <= 4**5/2 && {field} > 500-1 && {field} != 500/2+260", {"expr": f"{field} <= {{value_0}} && {field} > {{value_1}} && {field} != {{value_2}}",
"expr_params": {"value_0": 4**5/2, "value_1": 500-1, "value_2": 500/2+260}}],
[f"{field} > 400 && {field} < 200", {"expr": f"{field} > {{value_0}} && {field} < {{value_1}}", "expr_params": {"value_0": 400, "value_1": 200}}],
[f"{field} < -2**8", {"expr": f"{field} < {{value_0}}", "expr_params": {"value_0": -2**8}}],
[f"({field} + 1) == 3 || {field} * 2 == 64 || {field} == 10**2", {"expr": f"({field} + {{value_0}}) == {{value_1}} || {field} * {{value_2}} == {{value_3}} || {field} == {{value_4}}",
"expr_params": {"value_0": 1, "value_1": 3, "value_2": 2, "value_3": 64, "value_4": 10**2}}]
]
return expressions_and_templates
def get_expr_from_template(template={}):
return template.get("expr", None)
def get_expr_params_from_template(template={}):
return template.get("expr_params", None)
def gen_integer_overflow_expressions():
expressions = [
"int8 < - 128",
"int8 > 127",
"int8 > -129 && int8 < 128",
"int16 < -32768",
"int16 >= 32768",
"int16 > -32769 && int16 <32768",
"int32 < -2147483648",
"int32 == 2147483648",
"int32 < 2147483648 || int32 == -2147483648",
"int8 in [-129, 1] || int16 in [32769] || int32 in [2147483650, 0]"
]
return expressions
def gen_modulo_expression(expr_fields):
exprs = []
for field in expr_fields:
exprs.extend([
(Expr.EQ(Expr.MOD(field, 10).subset, 1).value, field),
(Expr.LT(Expr.MOD(field, 17).subset, 9).value, field),
(Expr.LE(Expr.MOD(field, 100).subset, 50).value, field),
(Expr.GT(Expr.MOD(field, 50).subset, 40).value, field),
(Expr.GE(Expr.MOD(field, 29).subset, 15).value, field),
(Expr.NE(Expr.MOD(field, 29).subset, 10).value, field),
])
return exprs
def count_match_expr(values_l: list, rex_l: str, op: str, values_r: list, rex_r: str) -> list:
if len(values_l) != len(values_r):
raise ValueError(f"[count_match_expr] values not equal: {len(values_l)} != {len(values_r)}")
res = []
if op in ['and', '&&']:
for i in range(len(values_l)):
if re.search(rex_l, values_l[i]) and re.search(rex_r, values_r[i]):
res.append(i)
elif op in ['or', '||']:
for i in range(len(values_l)):
if re.search(rex_l, values_l[i]) or re.search(rex_r, values_r[i]):
res.append(i)
else:
raise ValueError(f"[count_match_expr] Not support op: {op}")
return res
def gen_varchar_expression(expr_fields):
exprs = []
for field in expr_fields:
exprs.extend([
(Expr.like(field, "a%").value, field, r'^a.*'),
(Expr.LIKE(field, "%b").value, field, r'.*b$'),
(Expr.AND(Expr.like(field, "%b").subset, Expr.LIKE(field, "z%").subset).value, field, r'^z.*b$'),
(Expr.And(Expr.like(field, "i%").subset, Expr.LIKE(field, "%j").subset).value, field, r'^i.*j$'),
(Expr.OR(Expr.like(field, "%h%").subset, Expr.LIKE(field, "%jo").subset).value, field, fr'(?:h.*|.*jo$)'),
(Expr.Or(Expr.like(field, "ip%").subset, Expr.LIKE(field, "%yu%").subset).value, field, fr'(?:^ip.*|.*yu)'),
])
return exprs
def gen_varchar_operation(expr_fields):
exprs = []
for field in expr_fields:
exprs.extend([
(Expr.EQ(field, '"a"').value, field, r'a'),
(Expr.GT(field, '"a"').value, field, r'[^a]'),
(Expr.GE(field, '"a"').value, field, r'.*'),
(Expr.LT(field, '"z"').value, field, r'[^z]'),
(Expr.LE(field, '"z"').value, field, r'.*')
])
return exprs
def gen_varchar_unicode_expression(expr_fields):
exprs = []
for field in expr_fields:
exprs.extend([
(Expr.like(field, "%").value, field, r'^国.*'),
(Expr.LIKE(field, "%").value, field, r'.*中$'),
(Expr.AND(Expr.like(field, "%").subset, Expr.LIKE(field, "%").subset).value, field, r'^麚.*江$'),
(Expr.And(Expr.like(field, "%").subset, Expr.LIKE(field, "%").subset).value, field, r'^鄷.*薞$'),
(Expr.OR(Expr.like(field, "%%").subset, Expr.LIKE(field, "%臥蜜").subset).value, field, fr'(?:核.*|.*臥蜜$)'),
(Expr.Or(Expr.like(field, "咴矷%").subset, Expr.LIKE(field, "%濉蠬%").subset).value, field, fr'(?:^咴矷.*|.*濉蠬)'),
])
return exprs
def gen_varchar_unicode_expression_array(expr_fields):
exprs = []
for field in expr_fields:
exprs.extend([
ExprCheckParams(field, Expr.ARRAY_CONTAINS(field, '""').value, 'set([""]).issubset({0})'),
ExprCheckParams(field, Expr.array_contains(field, '""').value, 'set([""]).issubset({0})'),
ExprCheckParams(field, Expr.ARRAY_CONTAINS_ALL(field, [""]).value, 'set([""]).issubset({0})'),
ExprCheckParams(field, Expr.array_contains_all(field, ["", ""]).value, 'set(["", ""]).issubset({0})'),
ExprCheckParams(field, Expr.ARRAY_CONTAINS_ANY(field, [""]).value, 'not set([""]).isdisjoint({0})'),
ExprCheckParams(field, Expr.array_contains_any(field, ["", "", "", ""]).value,
'not set(["", "", "", ""]).isdisjoint({0})'),
ExprCheckParams(field, Expr.AND(Expr.ARRAY_CONTAINS(field, '""').value,
Expr.ARRAY_CONTAINS_ANY(field, ["", "", ""]).value).value,
'set([""]).issubset({0}) and not set(["", "", ""]).isdisjoint({0})'),
ExprCheckParams(field, Expr.And(Expr.ARRAY_CONTAINS_ALL(field, [""]).value,
Expr.array_contains_any(field, ["", "", "", ""]).value).value,
'set([""]).issubset({0}) and not set(["", "", "", ""]).isdisjoint({0})'),
ExprCheckParams(field, Expr.OR(Expr.array_contains(field, '""').value,
Expr.array_contains_all(field, ["", ""]).value).value,
'set([""]).issubset({0}) or set(["", ""]).issubset({0})'),
ExprCheckParams(field, Expr.Or(Expr.ARRAY_CONTAINS_ANY(field, ["", "", "", "", "", ""]).value,
Expr.array_contains_any(field, ["", "", "", "", ""]).value).value,
'not set(["", "", "", "", "", ""]).isdisjoint({0}) or ' +
'not set(["", "", "", "", ""]).isdisjoint({0})')
])
return exprs
def gen_number_operation(expr_fields):
exprs = []
for field in expr_fields:
exprs.extend([
(Expr.LT(Expr.ADD(field, 23), 100).value, field),
(Expr.LT(Expr.ADD(-23, field), 121).value, field),
(Expr.LE(Expr.SUB(field, 123), 99).value, field),
(Expr.GT(Expr.MUL(field, 2), 88).value, field),
(Expr.GT(Expr.MUL(3, field), 137).value, field),
(Expr.GE(Expr.DIV(field, 30), 20).value, field),
])
return exprs
def l2(x, y):
return np.linalg.norm(np.array(x) - np.array(y))
def ip(x, y):
return np.inner(np.array(x), np.array(y))
def cosine(x, y):
return np.dot(x, y)/(np.linalg.norm(x)*np.linalg.norm(y))
def jaccard(x, y):
x = np.asarray(x, np.bool_)
y = np.asarray(y, np.bool_)
return 1 - np.double(np.bitwise_and(x, y).sum()) / np.double(np.bitwise_or(x, y).sum())
def hamming(x, y):
x = np.asarray(x, np.bool_)
y = np.asarray(y, np.bool_)
return np.bitwise_xor(x, y).sum()
def tanimoto(x, y):
x = np.asarray(x, np.bool_)
y = np.asarray(y, np.bool_)
res = np.double(np.bitwise_and(x, y).sum()) / np.double(np.bitwise_or(x, y).sum())
if res == 0:
value = float("inf")
else:
value = -np.log2(res)
return value
def tanimoto_calc(x, y):
x = np.asarray(x, np.bool_)
y = np.asarray(y, np.bool_)
return np.double((len(x) - np.bitwise_xor(x, y).sum())) / (len(y) + np.bitwise_xor(x, y).sum())
def substructure(x, y):
x = np.asarray(x, np.bool_)
y = np.asarray(y, np.bool_)
return 1 - np.double(np.bitwise_and(x, y).sum()) / np.count_nonzero(y)
def superstructure(x, y):
x = np.asarray(x, np.bool_)
y = np.asarray(y, np.bool_)
return 1 - np.double(np.bitwise_and(x, y).sum()) / np.count_nonzero(x)
def compare_distance_2d_vector(x, y, distance, metric, sqrt):
for i in range(len(x)):
for j in range(len(y)):
if metric == "L2":
distance_i = l2(x[i], y[j])
if not sqrt:
distance_i = math.pow(distance_i, 2)
elif metric == "IP":
distance_i = ip(x[i], y[j])
elif metric == "HAMMING":
distance_i = hamming(x[i], y[j])
elif metric == "TANIMOTO":
distance_i = tanimoto_calc(x[i], y[j])
elif metric == "JACCARD":
distance_i = jaccard(x[i], y[j])
else:
raise Exception("metric type is invalid")
assert abs(distance_i - distance[i][j]) < ct.epsilon
return True
def compare_distance_vector_and_vector_list(x, y, metric, distance):
"""
target: compare the distance between x and y[i] with the expected distance array
method: compare the distance between x and y[i] with the expected distance array
expected: return true if all distances are matched
"""
if not isinstance(y, list):
log.error("%s is not a list." % str(y))
assert False
for i in range(len(y)):
if metric == "L2":
distance_i = (l2(x, y[i]))**2
elif metric == "IP":
distance_i = ip(x, y[i])
elif metric == "COSINE":
distance_i = cosine(x, y[i])
else:
raise Exception("metric type is invalid")
if abs(distance_i - distance[i]) > ct.epsilon:
log.error(f"The distance between {x} and {y[i]} does not equal {distance[i]}, expected: {distance_i}")
assert abs(distance_i - distance[i]) < ct.epsilon
return True
def modify_file(file_path_list, is_modify=False, input_content=""):
"""
file_path_list : file list -> list[<file_path>]
is_modify : does the file need to be reset
input_content the content that need to insert to the file
"""
if not isinstance(file_path_list, list):
log.error("[modify_file] file is not a list.")
for file_path in file_path_list:
folder_path, file_name = os.path.split(file_path)
if not os.path.isdir(folder_path):
log.debug("[modify_file] folder(%s) is not exist." % folder_path)
os.makedirs(folder_path)
if not os.path.isfile(file_path):
log.error("[modify_file] file(%s) is not exist." % file_path)
else:
if is_modify is True:
log.debug("[modify_file] start modifying file(%s)..." % file_path)
with open(file_path, "r+") as f:
f.seek(0)
f.truncate()
f.write(input_content)
f.close()
log.info("[modify_file] file(%s) modification is complete." % file_path_list)
def index_to_dict(index):
return {
"collection_name": index.collection_name,
"field_name": index.field_name,
# "name": index.name,
"params": index.params
}
def get_index_params_params(index_type):
"""get default params of index params by index type"""
params = ct.default_all_indexes_params[ct.all_index_types.index(index_type)].copy()
return params
def get_search_params_params(index_type):
"""get default params of search params by index type"""
params = ct.default_all_search_params_params[ct.all_index_types.index(index_type)].copy()
return params
def get_default_metric_for_vector_type(vector_type=DataType.FLOAT_VECTOR):
"""get default metric for vector type"""
return ct.default_metric_for_vector_type[vector_type]
def assert_json_contains(expr, list_data):
opposite = False
if expr.startswith("not"):
opposite = True
expr = expr.split("not ", 1)[1]
result_ids = []
expr_prefix = expr.split('(', 1)[0]
exp_ids = eval(expr.split(', ', 1)[1].split(')', 1)[0])
if expr_prefix in ["json_contains", "JSON_CONTAINS", "array_contains", "ARRAY_CONTAINS"]:
for i in range(len(list_data)):
if exp_ids in list_data[i]:
result_ids.append(i)
elif expr_prefix in ["json_contains_all", "JSON_CONTAINS_ALL", "array_contains_all", "ARRAY_CONTAINS_ALL"]:
for i in range(len(list_data)):
set_list_data = set(tuple(element) if isinstance(element, list) else element for element in list_data[i])
if set(exp_ids).issubset(set_list_data):
result_ids.append(i)
elif expr_prefix in ["json_contains_any", "JSON_CONTAINS_ANY", "array_contains_any", "ARRAY_CONTAINS_ANY"]:
for i in range(len(list_data)):
set_list_data = set(tuple(element) if isinstance(element, list) else element for element in list_data[i])
if set(exp_ids) & set_list_data:
result_ids.append(i)
else:
log.warning("unknown expr: %s" % expr)
if opposite:
result_ids = [i for i in range(len(list_data)) if i not in result_ids]
return result_ids
def assert_equal_index(index_1, index_2):
return index_to_dict(index_1) == index_to_dict(index_2)
def gen_partitions(collection_w, partition_num=1):
"""
target: create extra partitions except for _default
method: create more than one partitions
expected: return collection and raw data
"""
log.info("gen_partitions: creating partitions")
for i in range(partition_num):
partition_name = "search_partition_" + str(i)
collection_w.create_partition(partition_name=partition_name,
description="search partition")
par = collection_w.partitions
assert len(par) == (partition_num + 1)
log.info("gen_partitions: created partitions %s" % par)
def insert_data(collection_w, nb=ct.default_nb, is_binary=False, is_all_data_type=False,
auto_id=False, dim=ct.default_dim, insert_offset=0, enable_dynamic_field=False, with_json=True,
random_primary_key=False, multiple_dim_array=[], primary_field=ct.default_int64_field_name,
vector_data_type=DataType.FLOAT_VECTOR, nullable_fields={}, language=None):
"""
target: insert non-binary/binary data
method: insert non-binary/binary data into partitions if any
expected: return collection and raw data
"""
par = collection_w.partitions
num = len(par)
vectors = []
binary_raw_vectors = []
insert_ids = []
start = insert_offset
log.info(f"inserting {nb} data into collection {collection_w.name}")
# extract the vector field name list
vector_name_list = extract_vector_field_name_list(collection_w)
# prepare data
for i in range(num):
log.debug("Dynamic field is enabled: %s" % enable_dynamic_field)
if not is_binary:
if not is_all_data_type:
if not enable_dynamic_field:
if vector_data_type == DataType.FLOAT_VECTOR:
default_data = gen_default_dataframe_data(nb // num, dim=dim, start=start, with_json=with_json,
random_primary_key=random_primary_key,
multiple_dim_array=multiple_dim_array,
multiple_vector_field_name=vector_name_list,
vector_data_type=vector_data_type,
auto_id=auto_id, primary_field=primary_field,
nullable_fields=nullable_fields, language=language)
elif vector_data_type in ct.append_vector_type:
default_data = gen_default_list_data(nb // num, dim=dim, start=start, with_json=with_json,
random_primary_key=random_primary_key,
multiple_dim_array=multiple_dim_array,
multiple_vector_field_name=vector_name_list,
vector_data_type=vector_data_type,
auto_id=auto_id, primary_field=primary_field,
nullable_fields=nullable_fields, language=language)
else:
default_data = gen_default_rows_data(nb // num, dim=dim, start=start, with_json=with_json,
multiple_dim_array=multiple_dim_array,
multiple_vector_field_name=vector_name_list,
vector_data_type=vector_data_type,
auto_id=auto_id, primary_field=primary_field,
nullable_fields=nullable_fields, language=language)
else:
if not enable_dynamic_field:
if vector_data_type == DataType.FLOAT_VECTOR:
default_data = gen_general_list_all_data_type(nb // num, dim=dim, start=start, with_json=with_json,
random_primary_key=random_primary_key,
multiple_dim_array=multiple_dim_array,
multiple_vector_field_name=vector_name_list,
auto_id=auto_id, primary_field=primary_field,
nullable_fields=nullable_fields, language=language)
elif vector_data_type == DataType.FLOAT16_VECTOR or vector_data_type == DataType.BFLOAT16_VECTOR:
default_data = gen_general_list_all_data_type(nb // num, dim=dim, start=start, with_json=with_json,
random_primary_key=random_primary_key,
multiple_dim_array=multiple_dim_array,
multiple_vector_field_name=vector_name_list,
auto_id=auto_id, primary_field=primary_field,
nullable_fields=nullable_fields, language=language)
else:
if os.path.exists(ct.rows_all_data_type_file_path + f'_{i}' + f'_dim{dim}.txt'):
with open(ct.rows_all_data_type_file_path + f'_{i}' + f'_dim{dim}.txt', 'rb') as f:
default_data = pickle.load(f)
else:
default_data = gen_default_rows_data_all_data_type(nb // num, dim=dim, start=start,
with_json=with_json,
multiple_dim_array=multiple_dim_array,
multiple_vector_field_name=vector_name_list,
partition_id=i, auto_id=auto_id,
primary_field=primary_field,
language=language)
else:
default_data, binary_raw_data = gen_default_binary_dataframe_data(nb // num, dim=dim, start=start,
auto_id=auto_id,
primary_field=primary_field,
nullable_fields=nullable_fields,
language=language)
binary_raw_vectors.extend(binary_raw_data)
insert_res = collection_w.insert(default_data, par[i].name)[0]
log.info(f"inserted {nb // num} data into collection {collection_w.name}")
time_stamp = insert_res.timestamp
insert_ids.extend(insert_res.primary_keys)
vectors.append(default_data)
start += nb // num
return collection_w, vectors, binary_raw_vectors, insert_ids, time_stamp
def _check_primary_keys(primary_keys, nb):
if primary_keys is None:
raise Exception("The primary_keys is None")
assert len(primary_keys) == nb
for i in range(nb - 1):
if primary_keys[i] >= primary_keys[i + 1]:
return False
return True
def get_segment_distribution(res):
"""
Get segment distribution
"""
from collections import defaultdict
segment_distribution = defaultdict(lambda: {"sealed": []})
for r in res:
for node_id in r.nodeIds:
if r.state == 3:
segment_distribution[node_id]["sealed"].append(r.segmentID)
return segment_distribution
def percent_to_int(string):
"""
transform percent(0%--100%) to int
"""
new_int = -1
if not isinstance(string, str):
log.error("%s is not a string" % string)
return new_int
if "%" not in string:
log.error("%s is not a percent" % string)
else:
new_int = int(string.strip("%"))
return new_int
def gen_grant_list(collection_name):
grant_list = [{"object": "Collection", "object_name": collection_name, "privilege": "Load"},
{"object": "Collection", "object_name": collection_name, "privilege": "Release"},
{"object": "Collection", "object_name": collection_name, "privilege": "Compaction"},
{"object": "Collection", "object_name": collection_name, "privilege": "Delete"},
{"object": "Collection", "object_name": collection_name, "privilege": "GetStatistics"},
{"object": "Collection", "object_name": collection_name, "privilege": "CreateIndex"},
{"object": "Collection", "object_name": collection_name, "privilege": "IndexDetail"},
{"object": "Collection", "object_name": collection_name, "privilege": "DropIndex"},
{"object": "Collection", "object_name": collection_name, "privilege": "Search"},
{"object": "Collection", "object_name": collection_name, "privilege": "Flush"},
{"object": "Collection", "object_name": collection_name, "privilege": "Query"},
{"object": "Collection", "object_name": collection_name, "privilege": "LoadBalance"},
{"object": "Collection", "object_name": collection_name, "privilege": "Import"},
{"object": "Global", "object_name": "*", "privilege": "All"},
{"object": "Global", "object_name": "*", "privilege": "CreateCollection"},
{"object": "Global", "object_name": "*", "privilege": "DropCollection"},
{"object": "Global", "object_name": "*", "privilege": "DescribeCollection"},
{"object": "Global", "object_name": "*", "privilege": "ShowCollections"},
{"object": "Global", "object_name": "*", "privilege": "CreateOwnership"},
{"object": "Global", "object_name": "*", "privilege": "DropOwnership"},
{"object": "Global", "object_name": "*", "privilege": "SelectOwnership"},
{"object": "Global", "object_name": "*", "privilege": "ManageOwnership"},
{"object": "User", "object_name": "*", "privilege": "UpdateUser"},
{"object": "User", "object_name": "*", "privilege": "SelectUser"}]
return grant_list
def install_milvus_operator_specific_config(namespace, milvus_mode, release_name, image,
rate_limit_enable, collection_rate_limit):
"""
namespace : str
milvus_mode : str -> standalone or cluster
release_name : str
image: str -> image tag including repository
rate_limit_enable: str -> true or false, switch for rate limit
collection_rate_limit: int -> collection rate limit numbers
input_content the content that need to insert to the file
return: milvus host name
"""
if not isinstance(namespace, str):
log.error("[namespace] is not a string.")
if not isinstance(milvus_mode, str):
log.error("[milvus_mode] is not a string.")
if not isinstance(release_name, str):
log.error("[release_name] is not a string.")
if not isinstance(image, str):
log.error("[image] is not a string.")
if not isinstance(rate_limit_enable, str):
log.error("[rate_limit_enable] is not a string.")
if not isinstance(collection_rate_limit, int):
log.error("[collection_rate_limit] is not an integer.")
if milvus_mode not in ["standalone", "cluster"]:
log.error("[milvus_mode] is not 'standalone' or 'cluster'")
if rate_limit_enable not in ["true", "false"]:
log.error("[rate_limit_enable] is not 'true' or 'false'")
data_config = {
'metadata.namespace': namespace,
'spec.mode': milvus_mode,
'metadata.name': release_name,
'spec.components.image': image,
'spec.components.proxy.serviceType': 'LoadBalancer',
'spec.components.dataNode.replicas': 2,
'spec.config.common.retentionDuration': 60,
'spec.config.quotaAndLimits.enable': rate_limit_enable,
'spec.config.quotaAndLimits.ddl.collectionRate': collection_rate_limit,
}
mil = MilvusOperator()
mil.install(data_config)
if mil.wait_for_healthy(release_name, namespace, timeout=1800):
host = mil.endpoint(release_name, namespace).split(':')[0]
else:
raise MilvusException(message=f'Milvus healthy timeout 1800s')
return host
def get_wildcard_output_field_names(collection_w, output_fields):
"""
Processes output fields with wildcard ('*') expansion for collection queries.
Args:
collection_w (Union[dict, CollectionWrapper]): Collection information,
either as a dict (v2 client) or ORM wrapper.
output_fields (List[str]): List of requested output fields, may contain '*' wildcard.
Returns:
List[str]: Expanded list of output fields with wildcard replaced by all available field names.
"""
if not isinstance(collection_w, dict):
# in orm, it accepts a collection wrapper
field_names = [field.name for field in collection_w.schema.fields]
else:
# in client v2, it accepts a dict of collection info
fields = collection_w.get('fields', None)
field_names = [field.get('name') for field in fields]
output_fields = output_fields.copy()
if "*" in output_fields:
output_fields.remove("*")
output_fields.extend(field_names)
return output_fields
def extract_vector_field_name_list(collection_w):
"""
extract the vector field name list
collection_w : the collection object to be extracted thea name of all the vector fields
return: the vector field name list without the default float vector field name
"""
schema_dict = collection_w.schema.to_dict()
fields = schema_dict.get('fields')
vector_name_list = []
for field in fields:
if field['type'] == DataType.FLOAT_VECTOR \
or field['type'] == DataType.FLOAT16_VECTOR \
or field['type'] == DataType.BFLOAT16_VECTOR \
or field['type'] == DataType.SPARSE_FLOAT_VECTOR\
or field['type'] == DataType.INT8_VECTOR:
if field['name'] != ct.default_float_vec_field_name:
vector_name_list.append(field['name'])
return vector_name_list
def get_field_dtype_by_field_name(collection_w, field_name):
"""
get the vector field data type by field name
collection_w : the collection object to be extracted
return: the field data type of the field name
"""
schema_dict = collection_w.schema.to_dict()
fields = schema_dict.get('fields')
for field in fields:
if field['name'] == field_name:
return field['type']
return None
def get_activate_func_from_metric_type(metric_type):
activate_function = lambda x: x
if metric_type == "COSINE":
activate_function = lambda x: (1 + x) * 0.5
elif metric_type == "IP":
activate_function = lambda x: 0.5 + math.atan(x)/ math.pi
elif metric_type == "BM25":
activate_function = lambda x: 2 * math.atan(x) / math.pi
else:
activate_function = lambda x: 1.0 - 2*math.atan(x) / math.pi
return activate_function
def get_hybrid_search_base_results_rrf(search_res_dict_array, round_decimal=-1):
"""
merge the element in the dicts array
search_res_dict_array : the dict array in which the elements to be merged
return: the sorted id and score answer
"""
# calculate hybrid search base line
search_res_dict_merge = {}
ids_answer = []
score_answer = []
for i, result in enumerate(search_res_dict_array, 0):
for key, distance in result.items():
search_res_dict_merge[key] = search_res_dict_merge.get(key, 0) + distance
if round_decimal != -1 :
for k, v in search_res_dict_merge.items():
multiplier = math.pow(10.0, round_decimal)
v = math.floor(v*multiplier+0.5) / multiplier
search_res_dict_merge[k] = v
sorted_list = sorted(search_res_dict_merge.items(), key=lambda x: x[1], reverse=True)
for sort in sorted_list:
ids_answer.append(int(sort[0]))
score_answer.append(float(sort[1]))
return ids_answer, score_answer
def get_hybrid_search_base_results(search_res_dict_array, weights, metric_types, round_decimal=-1):
"""
merge the element in the dicts array
search_res_dict_array : the dict array in which the elements to be merged
return: the sorted id and score answer
"""
# calculate hybrid search base line
search_res_dict_merge = {}
ids_answer = []
score_answer = []
for i, result in enumerate(search_res_dict_array, 0):
activate_function = get_activate_func_from_metric_type(metric_types[i])
for key, distance in result.items():
activate_distance = activate_function(distance)
weight = weights[i]
search_res_dict_merge[key] = search_res_dict_merge.get(key, 0) + activate_function(distance) * weights[i]
if round_decimal != -1 :
for k, v in search_res_dict_merge.items():
multiplier = math.pow(10.0, round_decimal)
v = math.floor(v*multiplier+0.5) / multiplier
search_res_dict_merge[k] = v
sorted_list = sorted(search_res_dict_merge.items(), key=lambda x: x[1], reverse=True)
for sort in sorted_list:
ids_answer.append(int(sort[0]))
score_answer.append(float(sort[1]))
return ids_answer, score_answer
def gen_bf16_vectors(num, dim):
"""
generate brain float16 vector data
raw_vectors : the vectors
bf16_vectors: the bytes used for insert
return: raw_vectors and bf16_vectors
"""
raw_vectors = []
bf16_vectors = []
for _ in range(num):
raw_vector = [random.random() for _ in range(dim)]
raw_vectors.append(raw_vector)
bf16_vector = np.array(raw_vector, dtype=bfloat16)
bf16_vectors.append(bf16_vector)
return raw_vectors, bf16_vectors
def gen_fp16_vectors(num, dim):
"""
generate float16 vector data
raw_vectors : the vectors
fp16_vectors: the bytes used for insert
return: raw_vectors and fp16_vectors
"""
raw_vectors = []
fp16_vectors = []
for _ in range(num):
raw_vector = [random.random() for _ in range(dim)]
raw_vectors.append(raw_vector)
fp16_vector = np.array(raw_vector, dtype=np.float16)
fp16_vectors.append(fp16_vector)
return raw_vectors, fp16_vectors
def gen_sparse_vectors(nb, dim=1000, sparse_format="dok", empty_percentage=0):
# default sparse format is dok, dict of keys
# another option is coo, coordinate List
rng = np.random.default_rng()
vectors = [{
d: rng.random() for d in list(set(random.sample(range(dim), random.randint(20, 30)) + [0, 1]))
} for _ in range(nb)]
if empty_percentage > 0:
empty_nb = int(nb * empty_percentage / 100)
empty_ids = random.sample(range(nb), empty_nb)
for i in empty_ids:
vectors[i] = {}
if sparse_format == "coo":
vectors = [
{"indices": list(x.keys()), "values": list(x.values())} for x in vectors
]
return vectors
def gen_vectors(nb, dim, vector_data_type=DataType.FLOAT_VECTOR):
vectors = []
if vector_data_type == DataType.FLOAT_VECTOR:
vectors = [[random.uniform(-1, 1) for _ in range(dim)] for _ in range(nb)]
elif vector_data_type == DataType.FLOAT16_VECTOR:
vectors = gen_fp16_vectors(nb, dim)[1]
elif vector_data_type == DataType.BFLOAT16_VECTOR:
vectors = gen_bf16_vectors(nb, dim)[1]
elif vector_data_type == DataType.SPARSE_FLOAT_VECTOR:
vectors = gen_sparse_vectors(nb, dim)
elif vector_data_type == ct.text_sparse_vector:
vectors = gen_text_vectors(nb) # for Full Text Search
elif vector_data_type == DataType.BINARY_VECTOR:
vectors = gen_binary_vectors(nb, dim)[1]
elif vector_data_type == DataType.INT8_VECTOR:
vectors = gen_int8_vectors(nb, dim)[1]
else:
log.error(f"Invalid vector data type: {vector_data_type}")
raise Exception(f"Invalid vector data type: {vector_data_type}")
if dim > 1:
if vector_data_type == DataType.FLOAT_VECTOR:
vectors = preprocessing.normalize(vectors, axis=1, norm='l2')
vectors = vectors.tolist()
return vectors
def gen_int8_vectors(num, dim):
raw_vectors = []
int8_vectors = []
for _ in range(num):
raw_vector = [random.randint(-128, 127) for _ in range(dim)]
raw_vectors.append(raw_vector)
int8_vector = np.array(raw_vector, dtype=np.int8)
int8_vectors.append(int8_vector)
return raw_vectors, int8_vectors
def gen_text_vectors(nb, language="en"):
fake = Faker("en_US")
if language == "zh":
fake = Faker("zh_CN")
vectors = [" milvus " + fake.text() for _ in range(nb)]
return vectors
def field_types() -> dict:
return dict(sorted(dict(DataType.__members__).items(), key=lambda item: item[0], reverse=True))
def get_array_element_type(data_type: str):
if hasattr(DataType, "ARRAY") and data_type.startswith(DataType.ARRAY.name):
element_type = data_type.lstrip(DataType.ARRAY.name).lstrip("_")
for _field in field_types().keys():
if str(element_type).upper().startswith(_field):
return _field, getattr(DataType, _field)
raise ValueError(f"[get_array_data_type] Can't find element type:{element_type} for array:{data_type}")
raise ValueError(f"[get_array_data_type] Data type is not start with array: {data_type}")
def set_field_schema(field: str, params: dict):
for k, v in field_types().items():
if str(field).upper().startswith(k):
_kwargs = {}
_field_element, _data_type = k, DataType.NONE
if hasattr(DataType, "ARRAY") and _field_element == DataType.ARRAY.name:
_field_element, _data_type = get_array_element_type(field)
_kwargs.update({"max_capacity": ct.default_max_capacity, "element_type": _data_type})
if _field_element in [DataType.STRING.name, DataType.VARCHAR.name]:
_kwargs.update({"max_length": ct.default_length})
elif _field_element in [DataType.BINARY_VECTOR.name, DataType.FLOAT_VECTOR.name,
DataType.FLOAT16_VECTOR.name, DataType.BFLOAT16_VECTOR.name]:
_kwargs.update({"dim": ct.default_dim})
if isinstance(params, dict):
_kwargs.update(params)
else:
raise ValueError(
f"[set_field_schema] Field `{field}` params is not a dict, type: {type(params)}, params: {params}")
return ApiFieldSchemaWrapper().init_field_schema(name=field, dtype=v, **_kwargs)[0]
raise ValueError(f"[set_field_schema] Can't set field:`{field}` schema: {params}")
def set_collection_schema(fields: list, field_params: dict = {}, **kwargs):
"""
:param fields: List[str]
:param field_params: {<field name>: dict<field params>}
int64_1:
is_primary: bool
description: str
varchar_1:
is_primary: bool
description: str
max_length: int = 65535
varchar_2:
max_length: int = 100
is_partition_key: bool
array_int8_1:
max_capacity: int = 100
array_varchar_1:
max_capacity: int = 100
max_length: int = 65535
float_vector:
dim: int = 128
:param kwargs: <params for collection schema>
description: str
primary_field: str
auto_id: bool
enable_dynamic_field: bool
num_partitions: int
"""
field_schemas = [set_field_schema(field=field, params=field_params.get(field, {})) for field in fields]
return ApiCollectionSchemaWrapper().init_collection_schema(fields=field_schemas, **kwargs)[0]
def check_key_exist(source: dict, target: dict):
global flag
flag = True
def check_keys(_source, _target):
global flag
for key, value in _source.items():
if key in _target and isinstance(value, dict):
check_keys(_source[key], _target[key])
elif key not in _target:
log.error("[check_key_exist] Key: '{0}' not in target: {1}".format(key, _target))
flag = False
check_keys(source, target)
return flag
def gen_unicode_string():
return chr(random.randint(0x4e00, 0x9fbf))
def gen_unicode_string_batch(nb, string_len: int = 1):
return [''.join([gen_unicode_string() for _ in range(string_len)]) for _ in range(nb)]
def gen_unicode_string_array_batch(nb, string_len: int = 1, max_capacity: int = ct.default_max_capacity):
return [[''.join([gen_unicode_string() for _ in range(min(random.randint(1, string_len), 50))]) for _ in
range(random.randint(0, max_capacity))] for _ in range(nb)]
def iter_insert_list_data(data: list, batch: int, total_len: int):
nb_list = [batch for _ in range(int(total_len / batch))]
if total_len % batch > 0:
nb_list.append(total_len % batch)
data_obj = [iter(d) for d in data]
for n in nb_list:
yield [[next(o) for _ in range(n)] for o in data_obj]
def gen_collection_name_by_testcase_name(module_index=1):
"""
Gen a unique collection name by testcase name
if calling from the test base class, module_index=2
if calling from the testcase, module_index=1
"""
return inspect.stack()[module_index][3] + gen_unique_str("_")
def parse_fmod(x: int, y: int) -> int:
"""
Computes the floating-point remainder of x/y with the same sign as x.
This function mimics the behavior of the C fmod() function for integer inputs,
where the result has the same sign as the dividend (x).
Args:
x (int): The dividend
y (int): The divisor
Returns:
int: The remainder of x/y with the same sign as x
Raises:
ValueError: If y is 0 (division by zero)
Examples:
parse_fmod(5, 3) -> 2
parse_fmod(-5, 3) -> -2
parse_fmod(5, -3) -> 2
parse_fmod(-5, -3) -> -2
"""
if y == 0:
raise ValueError(f'[parse_fmod] Math domain error, `y` can not bt `0`')
v = abs(x) % abs(y)
return v if x >= 0 else -v
def convert_timestamptz(rows, timestamptz_field_name, timezone="UTC"):
"""
Convert timestamptz string to desired timezone string
Args:
rows: list of rows data with timestamptz string
timestamptz_field_name: name of the timestamptz field
timezone: timezone to convert to (default: UTC)
Returns:
list of rows data with timestamptz string converted to desired timezone string
Note:
Naive timestamps (e.g. ``YYYY-MM-DD HH:MM:SS`` with no offset information)
are treated as already expressed in the desired timezone. In those cases we
simply append the correct offset for the provided timezone instead of
converting from UTC first.
"""
iso_offset_re = re.compile(r"([+-])(\d{2}):(\d{2})$")
def _days_in_month(year: int, month: int) -> int:
if month in (1, 3, 5, 7, 9, 10, 12):
return 31
if month in (4, 6, 8, 11):
return 30
# February
is_leap = (year % 4 == 0 and (year % 100 != 0 or year % 400 == 0))
return 29 if is_leap else 28
def _parse_basic(ts: str) -> Tuple[int, int, int, int, int, int, Optional[Tuple[str, int, int]], bool]:
s = ts.strip()
s = s.replace(" ", "T", 1)
has_z = False
if s.endswith("Z") or s.endswith("z"):
has_z = True
s = s[:-1]
# split offset if present
m = iso_offset_re.search(s)
offset = None
if m:
sign, hh, mm = m.groups()
offset = (sign, int(hh), int(mm))
s = s[:m.start()]
# now s like YYYY-MM-DDTHH:MM:SS or with fractional seconds
if "T" not in s:
raise ValueError(f"Invalid timestamp string: {ts}")
date_part, time_part = s.split("T", 1)
y_str, mon_str, d_str = date_part.split("-")
# strip fractional seconds
if "." in time_part:
time_part = time_part.split(".", 1)[0]
hh_str, mi_str, se_str = time_part.split(":")
return int(y_str), int(mon_str), int(d_str), int(hh_str), int(mi_str), int(se_str), offset, has_z
def _apply_offset_to_utc(year: int, month: int, day: int, hour: int, minute: int, second: int, offset: Tuple[str, int, int]) -> Tuple[int, int, int, int, int, int]:
sign, oh, om = offset
# local time -> UTC
delta_minutes = oh * 60 + om
if sign == '+':
# UTC = local - offset
delta_minutes = -delta_minutes
else:
# sign '-' means local is behind UTC; UTC = local + offset
delta_minutes = +delta_minutes
# apply minutes
total_minutes = hour * 60 + minute + delta_minutes
new_hour = hour
new_minute = minute
carry_days = 0
# normalize down
if total_minutes < 0:
carry_days = (total_minutes - 59) // (60 * 24) # negative floor division
total_minutes -= carry_days * 60 * 24
else:
carry_days = total_minutes // (60 * 24)
total_minutes = total_minutes % (60 * 24)
new_hour = total_minutes // 60
new_minute = total_minutes % 60
# seconds unchanged here
# apply day carry
day += carry_days
# normalize date
while True:
if day <= 0:
month -= 1
if month == 0:
month = 12
year -= 1
day += _days_in_month(year, month)
else:
dim = _days_in_month(year, month)
if day > dim:
day -= dim
month += 1
if month == 13:
month = 1
year += 1
else:
break
return year, month, day, new_hour, new_minute, second
def _format_with_offset_str(dt: datetime) -> str:
# format with colon in tz offset
if dt.tzinfo is not None and dt.utcoffset() == tzmod.utc.utcoffset(dt):
return dt.strftime('%Y-%m-%dT%H:%M:%SZ')
s = dt.strftime('%Y-%m-%dT%H:%M:%S%z') # +0800
if len(s) >= 5:
return s[:-5] + s[-5:-2] + ':' + s[-2:]
return s
def _format_fixed(y: int, m: int, d: int, hh: int, mi: int, ss: int, offset_minutes: int) -> str:
if offset_minutes == 0:
return f"{y:04d}-{m:02d}-{d:02d}T{hh:02d}:{mi:02d}:{ss:02d}Z"
sign = '+' if offset_minutes >= 0 else '-'
total = abs(offset_minutes)
oh, om = divmod(total, 60)
return f"{y:04d}-{m:02d}-{d:02d}T{hh:02d}:{mi:02d}:{ss:02d}{sign}{oh:02d}:{om:02d}"
def convert_one(ts: str) -> str:
# Try python builtins first for typical range 1..9999
raw = ts.strip()
# normalize space separator and 'Z'
norm = raw.replace(' ', 'T', 1)
if norm.endswith('Z') or norm.endswith('z'):
norm = norm[:-1] + '+00:00'
try:
dt = None
if iso_offset_re.search(norm):
# aware input; convert to target zone
dt = datetime.fromisoformat(norm)
dt_target = dt.astimezone(ZoneInfo(timezone))
return _format_with_offset_str(dt_target)
else:
y, mo, d, hh, mi, ss, _, _ = _parse_basic(raw)
if not (1 <= y <= 9999):
raise ValueError("year out of range for datetime")
tzinfo = ZoneInfo(timezone)
dt_local = datetime(y, mo, d, hh, mi, ss, tzinfo=tzinfo)
return _format_with_offset_str(dt_local)
except Exception:
# manual fallback (handles year 0 and overflow beyond 9999)
y, mo, d, hh, mi, ss, offset, has_z = _parse_basic(raw)
if offset is None and not has_z:
# naive input outside datetime supported range; attach offset only
target_minutes = 0
try:
tzinfo = ZoneInfo(timezone)
ref_year = 2004 # leap year to keep Feb 29 valid
ref_dt = datetime(ref_year, mo, d, hh, mi, ss, tzinfo=tzinfo)
off_td = ref_dt.utcoffset()
if off_td is not None:
target_minutes = int(off_td.total_seconds() // 60)
except Exception:
if timezone == 'Asia/Shanghai':
target_minutes = 480
return _format_fixed(y, mo, d, hh, mi, ss, target_minutes)
# compute UTC components first
if offset is None and has_z:
uy, um, ud, uh, umi, uss = y, mo, d, hh, mi, ss
elif offset is None:
# already handled above, but keep safety fallback to just append offset
if 1 <= y <= 9999:
tzinfo = ZoneInfo(timezone)
dt_local = datetime(y, mo, d, hh, mi, ss, tzinfo=tzinfo)
return _format_with_offset_str(dt_local)
target_minutes = 480 if timezone == 'Asia/Shanghai' else 0
return _format_fixed(y, mo, d, hh, mi, ss, target_minutes)
else:
uy, um, ud, uh, umi, uss = _apply_offset_to_utc(y, mo, d, hh, mi, ss, offset)
# convert UTC to target timezone if feasible
try:
if 1 <= uy <= 9999:
dt_utc = datetime(uy, um, ud, uh, umi, uss, tzinfo=tzmod.utc)
dt_target = dt_utc.astimezone(ZoneInfo(timezone))
return _format_with_offset_str(dt_target)
except Exception:
pass
# fallback: manually apply timezone offset when datetime conversion fails
# Get target timezone offset
target_minutes = 480 if timezone == 'Asia/Shanghai' else 0
try:
# Try to get actual offset from timezone if possible
if 1 <= uy <= 9999:
test_dt = datetime(uy, um, ud, uh, umi, uss, tzinfo=tzmod.utc)
test_target = test_dt.astimezone(ZoneInfo(timezone))
off_td = test_target.utcoffset() or tzmod.utc.utcoffset(test_target)
target_minutes = int(off_td.total_seconds() // 60)
except Exception:
pass
# Convert UTC to local time: UTC + offset = local
# Reverse the offset sign to convert UTC->local (opposite of local->UTC)
reverse_sign = '-' if target_minutes >= 0 else '+'
ty, tm, td, th, tmi, ts = _apply_offset_to_utc(uy, um, ud, uh, umi, uss, (reverse_sign, abs(target_minutes) // 60, abs(target_minutes) % 60))
return _format_fixed(ty, tm, td, th, tmi, ts, target_minutes)
new_rows = []
for row in rows:
if isinstance(row, dict) and timestamptz_field_name in row and isinstance(row[timestamptz_field_name], str):
row = row.copy()
row[timestamptz_field_name] = convert_one(row[timestamptz_field_name])
new_rows.append(row)
return new_rows