yihao.dai 9ff023ee35
fix: Fix filtering by partition key fails for importing data (#33274)
Before executing the import, partition IDs should be reordered according
to partition names. Otherwise, the data might be hashed to the wrong
partition during import. This PR corrects this error.

issue: https://github.com/milvus-io/milvus/issues/33237

---------

Signed-off-by: bigsheeper <yihao.dai@zilliz.com>
2024-05-23 11:13:40 +08:00

283 lines
9.5 KiB
Go

// Licensed to the LF AI & Data foundation under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package importv2
import (
"context"
"encoding/json"
"fmt"
"os"
"testing"
"time"
"github.com/apache/arrow/go/v12/arrow/array"
"github.com/apache/arrow/go/v12/parquet"
"github.com/apache/arrow/go/v12/parquet/pqarrow"
"github.com/samber/lo"
"github.com/sbinet/npyio"
"github.com/stretchr/testify/assert"
"go.uber.org/zap"
"github.com/milvus-io/milvus-proto/go-api/v2/schemapb"
"github.com/milvus-io/milvus/internal/proto/internalpb"
"github.com/milvus-io/milvus/internal/storage"
pq "github.com/milvus-io/milvus/internal/util/importutilv2/parquet"
"github.com/milvus-io/milvus/internal/util/testutil"
"github.com/milvus-io/milvus/pkg/log"
"github.com/milvus-io/milvus/pkg/util/merr"
"github.com/milvus-io/milvus/pkg/util/typeutil"
"github.com/milvus-io/milvus/tests/integration"
)
const dim = 128
func GenerateParquetFile(filePath string, schema *schemapb.CollectionSchema, numRows int) error {
_, err := GenerateParquetFileAndReturnInsertData(filePath, schema, numRows)
return err
}
func GenerateParquetFileAndReturnInsertData(filePath string, schema *schemapb.CollectionSchema, numRows int) (*storage.InsertData, error) {
w, err := os.OpenFile(filePath, os.O_RDWR|os.O_CREATE, 0o666)
if err != nil {
return nil, err
}
pqSchema, err := pq.ConvertToArrowSchema(schema)
if err != nil {
return nil, err
}
fw, err := pqarrow.NewFileWriter(pqSchema, w, parquet.NewWriterProperties(parquet.WithMaxRowGroupLength(int64(numRows))), pqarrow.DefaultWriterProps())
if err != nil {
return nil, err
}
defer fw.Close()
insertData, err := testutil.CreateInsertData(schema, numRows)
if err != nil {
return nil, err
}
columns, err := testutil.BuildArrayData(schema, insertData)
if err != nil {
return nil, err
}
recordBatch := array.NewRecord(pqSchema, columns, int64(numRows))
return insertData, fw.Write(recordBatch)
}
func GenerateNumpyFiles(cm storage.ChunkManager, schema *schemapb.CollectionSchema, rowCount int) (*internalpb.ImportFile, error) {
writeFn := func(path string, data interface{}) error {
f, err := os.Create(path)
if err != nil {
return err
}
defer f.Close()
err = npyio.Write(f, data)
if err != nil {
return err
}
return nil
}
insertData, err := testutil.CreateInsertData(schema, rowCount)
if err != nil {
return nil, err
}
var data interface{}
paths := make([]string, 0)
for _, field := range schema.GetFields() {
if field.GetAutoID() && field.GetIsPrimaryKey() {
continue
}
path := fmt.Sprintf("%s/%s.npy", cm.RootPath(), field.GetName())
fieldID := field.GetFieldID()
dType := field.GetDataType()
switch dType {
case schemapb.DataType_Bool:
data = insertData.Data[fieldID].(*storage.BoolFieldData).Data
case schemapb.DataType_Int8:
data = insertData.Data[fieldID].(*storage.Int8FieldData).Data
case schemapb.DataType_Int16:
data = insertData.Data[fieldID].(*storage.Int16FieldData).Data
case schemapb.DataType_Int32:
data = insertData.Data[fieldID].(*storage.Int32FieldData).Data
case schemapb.DataType_Int64:
data = insertData.Data[fieldID].(*storage.Int64FieldData).Data
case schemapb.DataType_Float:
data = insertData.Data[fieldID].(*storage.FloatFieldData).Data
case schemapb.DataType_Double:
data = insertData.Data[fieldID].(*storage.DoubleFieldData).Data
case schemapb.DataType_String, schemapb.DataType_VarChar:
data = insertData.Data[fieldID].(*storage.StringFieldData).Data
case schemapb.DataType_BinaryVector:
vecData := insertData.Data[fieldID].(*storage.BinaryVectorFieldData).Data
if dim != insertData.Data[fieldID].(*storage.BinaryVectorFieldData).Dim {
panic(fmt.Sprintf("dim mis-match: %d, %d", dim, insertData.Data[fieldID].(*storage.BinaryVectorFieldData).Dim))
}
const rowBytes = dim / 8
rows := len(vecData) / rowBytes
binVecData := make([][rowBytes]byte, 0, rows)
for i := 0; i < rows; i++ {
rowVec := [rowBytes]byte{}
copy(rowVec[:], vecData[i*rowBytes:(i+1)*rowBytes])
binVecData = append(binVecData, rowVec)
}
data = binVecData
case schemapb.DataType_FloatVector:
vecData := insertData.Data[fieldID].(*storage.FloatVectorFieldData).Data
if dim != insertData.Data[fieldID].(*storage.FloatVectorFieldData).Dim {
panic(fmt.Sprintf("dim mis-match: %d, %d", dim, insertData.Data[fieldID].(*storage.FloatVectorFieldData).Dim))
}
rows := len(vecData) / dim
floatVecData := make([][dim]float32, 0, rows)
for i := 0; i < rows; i++ {
rowVec := [dim]float32{}
copy(rowVec[:], vecData[i*dim:(i+1)*dim])
floatVecData = append(floatVecData, rowVec)
}
data = floatVecData
case schemapb.DataType_Float16Vector:
vecData := insertData.Data[fieldID].(*storage.Float16VectorFieldData).Data
if dim != insertData.Data[fieldID].(*storage.Float16VectorFieldData).Dim {
panic(fmt.Sprintf("dim mis-match: %d, %d", dim, insertData.Data[fieldID].(*storage.Float16VectorFieldData).Dim))
}
const rowBytes = dim * 2
rows := len(vecData) / rowBytes
float16VecData := make([][rowBytes]byte, 0, rows)
for i := 0; i < rows; i++ {
rowVec := [rowBytes]byte{}
copy(rowVec[:], vecData[i*rowBytes:(i+1)*rowBytes])
float16VecData = append(float16VecData, rowVec)
}
data = float16VecData
case schemapb.DataType_BFloat16Vector:
vecData := insertData.Data[fieldID].(*storage.BFloat16VectorFieldData).Data
if dim != insertData.Data[fieldID].(*storage.BFloat16VectorFieldData).Dim {
panic(fmt.Sprintf("dim mis-match: %d, %d", dim, insertData.Data[fieldID].(*storage.BFloat16VectorFieldData).Dim))
}
const rowBytes = dim * 2
rows := len(vecData) / rowBytes
bfloat16VecData := make([][rowBytes]byte, 0, rows)
for i := 0; i < rows; i++ {
rowVec := [rowBytes]byte{}
copy(rowVec[:], vecData[i*rowBytes:(i+1)*rowBytes])
bfloat16VecData = append(bfloat16VecData, rowVec)
}
data = bfloat16VecData
case schemapb.DataType_SparseFloatVector:
data = insertData.Data[fieldID].(*storage.SparseFloatVectorFieldData).GetContents()
case schemapb.DataType_JSON:
data = insertData.Data[fieldID].(*storage.JSONFieldData).Data
case schemapb.DataType_Array:
data = insertData.Data[fieldID].(*storage.ArrayFieldData).Data
default:
panic(fmt.Sprintf("unsupported data type: %s", dType.String()))
}
err := writeFn(path, data)
if err != nil {
return nil, err
}
paths = append(paths, path)
}
return &internalpb.ImportFile{
Paths: paths,
}, nil
}
func GenerateJSONFile(t *testing.T, filePath string, schema *schemapb.CollectionSchema, count int) {
insertData, err := testutil.CreateInsertData(schema, count)
assert.NoError(t, err)
rows := make([]map[string]any, 0, count)
fieldIDToField := lo.KeyBy(schema.GetFields(), func(field *schemapb.FieldSchema) int64 {
return field.GetFieldID()
})
for i := 0; i < count; i++ {
data := make(map[int64]interface{})
for fieldID, v := range insertData.Data {
dataType := fieldIDToField[fieldID].GetDataType()
if fieldIDToField[fieldID].GetAutoID() {
continue
}
switch dataType {
case schemapb.DataType_Array:
data[fieldID] = v.GetRow(i).(*schemapb.ScalarField).GetIntData().GetData()
case schemapb.DataType_JSON:
data[fieldID] = string(v.GetRow(i).([]byte))
case schemapb.DataType_BinaryVector:
bytes := v.GetRow(i).([]byte)
ints := make([]int, 0, len(bytes))
for _, b := range bytes {
ints = append(ints, int(b))
}
data[fieldID] = ints
case schemapb.DataType_Float16Vector:
bytes := v.GetRow(i).([]byte)
data[fieldID] = typeutil.Float16BytesToFloat32Vector(bytes)
case schemapb.DataType_BFloat16Vector:
bytes := v.GetRow(i).([]byte)
data[fieldID] = typeutil.BFloat16BytesToFloat32Vector(bytes)
case schemapb.DataType_SparseFloatVector:
bytes := v.GetRow(i).([]byte)
data[fieldID] = typeutil.SparseFloatBytesToMap(bytes)
default:
data[fieldID] = v.GetRow(i)
}
}
row := lo.MapKeys(data, func(_ any, fieldID int64) string {
return fieldIDToField[fieldID].GetName()
})
rows = append(rows, row)
}
jsonBytes, err := json.Marshal(rows)
assert.NoError(t, err)
err = os.WriteFile(filePath, jsonBytes, 0o644) // nolint
assert.NoError(t, err)
}
func WaitForImportDone(ctx context.Context, c *integration.MiniClusterV2, jobID string) error {
for {
resp, err := c.Proxy.GetImportProgress(ctx, &internalpb.GetImportProgressRequest{
JobID: jobID,
})
if err != nil {
return err
}
if err = merr.Error(resp.GetStatus()); err != nil {
return err
}
switch resp.GetState() {
case internalpb.ImportJobState_Completed:
return nil
case internalpb.ImportJobState_Failed:
return merr.WrapErrImportFailed(resp.GetReason())
default:
log.Info("import progress", zap.String("jobID", jobID),
zap.Int64("progress", resp.GetProgress()),
zap.String("state", resp.GetState().String()))
time.Sleep(1 * time.Second)
}
}
}