mirror of
https://gitee.com/milvus-io/milvus.git
synced 2026-01-07 19:31:51 +08:00
Issue: #46424 test:add_collection_field(invalid_default_value) hybrid_search(NOT supported_ simplify some test cases using one single collection to save time. query with different time shift and timezone settings <!-- This is an auto-generated comment: release notes by coderabbit.ai --> - Core invariant: TIMESTAMPTZ values are treated as absolute instants (timezone-preserving). Tests assume conversions between stored instants and display timezones/time-shifts are deterministic and reversible; the PR validates queries/reads across different timezone and time-shift settings against that invariant. - Removed/simplified logic: duplicated per-test create/insert/teardown flows and several isolated timestamptz unit cases (edge_case, Feb_29, partial_update, standalone query) were consolidated into a module-scoped fixture that creates a single COLLECTION_NAME, inserts ROWS, and handles teardown. This removes redundant setup/teardown code and repeated scaffolding while preserving the same API exercise points (create_collection, insert, query, alter_collection_properties, alter_database_properties, describe_collection, describe_database). - No data loss or behavior regression: only test code was reorganized and new assertions exercise the same production APIs and code paths used previously (create_collection → insert → query / alter_properties → describe). The fixture inserts the same ROWS and tests still convert/compare timestamptz values via cf.convert_timestamptz and query check routines; the new invalid-default-value test only asserts error handling when adding a TIMESTAMPTZ field with an invalid default and does not mutate persisted data or change production logic. - PR type (Enhancement/Test): expands and reorganizes E2E test coverage for TIMESTAMPTZ—centralizes collection setup to reduce runtime and flakiness, adds explicit coverage for invalid-default-value behavior, and increases timezone/time-shift query scenarios without altering product behavior. <!-- end of auto-generated comment: release notes by coderabbit.ai --> --------- Signed-off-by: Eric Hou <eric.hou@zilliz.com> Co-authored-by: Eric Hou <eric.hou@zilliz.com>
1395 lines
78 KiB
Python
1395 lines
78 KiB
Python
import pytest
|
|
|
|
from base.client_v2_base import TestMilvusClientV2Base
|
|
from utils.util_log import test_log as log
|
|
from common import common_func as cf
|
|
from common import common_type as ct
|
|
from common.common_type import CaseLabel, CheckTasks
|
|
from utils.util_pymilvus import *
|
|
|
|
prefix = "client_insert"
|
|
epsilon = ct.epsilon
|
|
default_nb = ct.default_nb
|
|
default_nb_medium = ct.default_nb_medium
|
|
default_nq = ct.default_nq
|
|
default_dim = ct.default_dim
|
|
default_limit = ct.default_limit
|
|
default_search_exp = "id >= 0"
|
|
exp_res = "exp_res"
|
|
default_search_string_exp = "varchar >= \"0\""
|
|
default_search_mix_exp = "int64 >= 0 && varchar >= \"0\""
|
|
default_invaild_string_exp = "varchar >= 0"
|
|
default_json_search_exp = "json_field[\"number\"] >= 0"
|
|
perfix_expr = 'varchar like "0%"'
|
|
default_search_field = ct.default_float_vec_field_name
|
|
default_search_params = ct.default_search_params
|
|
default_primary_key_field_name = "id"
|
|
default_vector_field_name = "vector"
|
|
default_dynamic_field_name = "field_new"
|
|
default_float_field_name = ct.default_float_field_name
|
|
default_bool_field_name = ct.default_bool_field_name
|
|
default_string_field_name = ct.default_string_field_name
|
|
default_int32_array_field_name = ct.default_int32_array_field_name
|
|
default_string_array_field_name = ct.default_string_array_field_name
|
|
default_int32_field_name = ct.default_int32_field_name
|
|
default_int32_value = ct.default_int32_value
|
|
default_timestamp_field_name = "timestamp"
|
|
|
|
class TestMilvusClientTimestamptzValid(TestMilvusClientV2Base):
|
|
|
|
"""
|
|
******************************************************************
|
|
# The following are valid base cases
|
|
******************************************************************
|
|
"""
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_milvus_client_timestamptz_UTC(self):
|
|
"""
|
|
target: Test timestamptz can be successfully inserted and queried
|
|
method:
|
|
1. Create a collection
|
|
2. Generate rows with timestamptz and insert the rows
|
|
3. Insert the rows
|
|
expected: Step 3 should result success
|
|
"""
|
|
# step 1: create collection
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_timestamp_field_name, DataType.TIMESTAMPTZ, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_timestamp_field_name, index_type="AUTOINDEX")
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: generate rows and insert the rows
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.insert(client, collection_name, rows)
|
|
|
|
# step 3: query the rows
|
|
rows = cf.convert_timestamptz(rows, default_timestamp_field_name, "UTC")
|
|
self.query(client, collection_name, filter=f"{default_primary_key_field_name} >= 0",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_milvus_client_timestamptz_alter_database_property(self):
|
|
"""
|
|
target: Test timestamptz can be successfully inserted and queried
|
|
method:
|
|
1. Create a collection and alter database properties
|
|
2. Generate rows with timestamptz and insert the rows
|
|
3. Insert the rows
|
|
expected: Step 3 should result success
|
|
"""
|
|
# step 1: create collection
|
|
IANA_timezone = "America/New_York"
|
|
client = self._client()
|
|
db_name = cf.gen_unique_str("db")
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_timestamp_field_name, DataType.TIMESTAMPTZ, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_timestamp_field_name, index_type="AUTOINDEX")
|
|
|
|
self.create_database(client, db_name)
|
|
self.use_database(client, db_name)
|
|
self.alter_database_properties(client, db_name, properties={"timezone": IANA_timezone})
|
|
prop = self.describe_database(client, db_name)
|
|
assert prop[0]["timezone"] == IANA_timezone
|
|
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
prop = self.describe_collection(client, collection_name)[0].get("properties")
|
|
assert prop["timezone"] == IANA_timezone
|
|
|
|
# step 2: generate rows and insert the rows
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.insert(client, collection_name, rows)
|
|
|
|
# step 3: query the rows
|
|
new_rows = cf.convert_timestamptz(rows, default_timestamp_field_name, IANA_timezone)
|
|
self.query(client, collection_name, filter=f"{default_primary_key_field_name} >= 0",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: new_rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
self.drop_collection(client, collection_name)
|
|
self.drop_database(client, db_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_milvus_client_timestamptz_alter_collection_property(self):
|
|
"""
|
|
target: Test timestamptz can be successfully inserted and queried
|
|
method:
|
|
1. Create a collection and alter collection properties
|
|
2. Generate rows with timestamptz and insert the rows
|
|
3. Insert the rows
|
|
expected: Step 3 should result success
|
|
"""
|
|
# step 1: create collection
|
|
IANA_timezone = "America/New_York"
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_timestamp_field_name, DataType.TIMESTAMPTZ, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_timestamp_field_name, index_type="AUTOINDEX")
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: alter collection properties
|
|
self.alter_collection_properties(client, collection_name, properties={"timezone": IANA_timezone})
|
|
prop = self.describe_collection(client, collection_name)[0].get("properties")
|
|
assert prop["timezone"] == IANA_timezone
|
|
|
|
# step 3: query the rows
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.insert(client, collection_name, rows)
|
|
|
|
# step 4: query the rows
|
|
new_rows = cf.convert_timestamptz(rows, default_timestamp_field_name, IANA_timezone)
|
|
self.query(client, collection_name, filter=f"{default_primary_key_field_name} >= 0",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: new_rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_timestamptz_alter_collection_property_after_insert(self):
|
|
"""
|
|
target: Test timestamptz can be successfully inserted and queried after alter collection properties
|
|
method:
|
|
1. Create a collection and insert the rows
|
|
2. Alter collection properties
|
|
3. Insert the rows
|
|
expected: Step 3 should result success
|
|
"""
|
|
# step 1: create collection
|
|
IANA_timezone = "America/New_York"
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_timestamp_field_name, DataType.TIMESTAMPTZ, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_timestamp_field_name, index_type="AUTOINDEX")
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: insert the rows
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.insert(client, collection_name, rows)
|
|
|
|
# verify the rows are in UTC time
|
|
rows = cf.convert_timestamptz(rows, default_timestamp_field_name, "UTC")
|
|
self.query(client, collection_name, filter=f"{default_primary_key_field_name} >= 0",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
# step 3: alter collection properties
|
|
self.alter_collection_properties(client, collection_name, properties={"timezone": IANA_timezone})
|
|
prop = self.describe_collection(client, collection_name)[0].get("properties")
|
|
assert prop["timezone"] == IANA_timezone
|
|
|
|
# step 4: query the rows
|
|
new_rows = cf.convert_timestamptz(rows, default_timestamp_field_name, IANA_timezone)
|
|
self.query(client, collection_name, filter=f"{default_primary_key_field_name} >= 0",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: new_rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_timestamptz_alter_two_collections_property_after_alter_database_property(self):
|
|
"""
|
|
target: Test timestamptz can be successfully inserted and queried after alter database and collection property
|
|
method:
|
|
1. Alter database property and then create 2 collections
|
|
2. Alter collection properties of the 2 collections
|
|
3. Insert the rows into the 2 collections
|
|
4. Query the rows from the 2 collections
|
|
expected: Step 4 should result success
|
|
"""
|
|
# step 1: alter database property and then create 2 collections
|
|
IANA_timezone_1 = "America/New_York"
|
|
IANA_timezone_2 = "Asia/Shanghai"
|
|
client = self._client()
|
|
db_name = cf.gen_unique_str("db")
|
|
self.create_database(client, db_name)
|
|
self.use_database(client, db_name)
|
|
collection_name1 = cf.gen_collection_name_by_testcase_name() + "_1"
|
|
collection_name2 = cf.gen_collection_name_by_testcase_name() + "_2"
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_timestamp_field_name, DataType.TIMESTAMPTZ, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_timestamp_field_name, index_type="AUTOINDEX")
|
|
self.alter_database_properties(client, db_name, properties={"timezone": IANA_timezone_1})
|
|
self.create_collection(client, collection_name1, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params, database_name=db_name)
|
|
self.create_collection(client, collection_name2, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params, database_name=db_name)
|
|
|
|
# step 2: alter collection properties of the 1 collections
|
|
prop = self.describe_collection(client, collection_name1)[0].get("properties")
|
|
assert prop["timezone"] == IANA_timezone_1
|
|
|
|
self.alter_collection_properties(client, collection_name2, properties={"timezone": IANA_timezone_2})
|
|
prop = self.describe_collection(client, collection_name2)[0].get("properties")
|
|
assert prop["timezone"] == IANA_timezone_2
|
|
|
|
self.alter_database_properties(client, db_name, properties={"timezone": "America/Los_Angeles"})
|
|
prop = self.describe_database(client, db_name)[0]
|
|
assert prop["timezone"] == "America/Los_Angeles"
|
|
# step 3: insert the rows into the 2 collections
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.insert(client, collection_name1, rows)
|
|
self.insert(client, collection_name2, rows)
|
|
|
|
# step 4: query the rows from the 2 collections
|
|
new_rows1 = cf.convert_timestamptz(rows, default_timestamp_field_name, IANA_timezone_1)
|
|
new_rows2 = cf.convert_timestamptz(rows, default_timestamp_field_name, IANA_timezone_2)
|
|
self.query(client, collection_name1, filter=f"{default_primary_key_field_name} >= 0",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: new_rows1,
|
|
"pk_name": default_primary_key_field_name})
|
|
self.query(client, collection_name2, filter=f"{default_primary_key_field_name} >= 0",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: new_rows2,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
self.drop_collection(client, collection_name1)
|
|
self.drop_collection(client, collection_name2)
|
|
self.drop_database(client, db_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_timestamptz_alter_database_property_after_alter_collection_property(self):
|
|
"""
|
|
target: Test timestamptz can be successfully queried after alter database property
|
|
method:
|
|
1. Create a database and collection
|
|
2. Alter collection properties
|
|
3. Insert the rows and query the rows in UTC time
|
|
4. Alter database property
|
|
5. Query the rows and result should be the collection's timezone
|
|
expected: Step 2-5 should result success
|
|
"""
|
|
# step 1: alter collection properties and then alter database property
|
|
IANA_timezone = "America/New_York"
|
|
client = self._client()
|
|
db_name = cf.gen_unique_str("db")
|
|
self.create_database(client, db_name)
|
|
self.use_database(client, db_name)
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_timestamp_field_name, DataType.TIMESTAMPTZ, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_timestamp_field_name, index_type="AUTOINDEX")
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: alter collection properties
|
|
self.alter_collection_properties(client, collection_name, properties={"timezone": IANA_timezone})
|
|
prop = self.describe_collection(client, collection_name)[0].get("properties")
|
|
assert prop["timezone"] == IANA_timezone
|
|
|
|
# step 3: insert the rows
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.insert(client, collection_name, rows)
|
|
rows = cf.convert_timestamptz(rows, default_timestamp_field_name, IANA_timezone)
|
|
self.query(client, collection_name, filter=f"{default_primary_key_field_name} >= 0",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
# step 4: alter database property
|
|
new_timezone = "Asia/Shanghai"
|
|
self.alter_database_properties(client, db_name, properties={"timezone": new_timezone})
|
|
prop = self.describe_database(client, db_name)[0]
|
|
assert prop["timezone"] == new_timezone
|
|
|
|
# step 5: query the rows
|
|
self.query(client, collection_name, filter=f"{default_primary_key_field_name} >= 0",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
self.drop_collection(client, collection_name)
|
|
self.drop_database(client, db_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_timestamptz_alter_collection_property_and_query_from_different_timezone(self):
|
|
"""
|
|
target: Test timestamptz can be successfully queried from different timezone
|
|
method:
|
|
1. Create a collection
|
|
2. Alter collection properties to America/New_York timezone
|
|
3. Insert the rows and query the rows in UTC time
|
|
4. Query the rows from the Asia/Shanghai timezone
|
|
expected: Step 4 should result success
|
|
"""
|
|
# step 1: create collection
|
|
IANA_timezone_1 = "America/New_York"
|
|
IANA_timezone_2 = "Asia/Shanghai"
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_timestamp_field_name, DataType.TIMESTAMPTZ, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_timestamp_field_name, index_type="AUTOINDEX")
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: Alter collection properties
|
|
self.alter_collection_properties(client, collection_name, properties={"timezone": IANA_timezone_1})
|
|
prop = self.describe_collection(client, collection_name)[0].get("properties")
|
|
assert prop["timezone"] == IANA_timezone_1
|
|
|
|
# step 3: insert the rows
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.insert(client, collection_name, rows)
|
|
rows = cf.convert_timestamptz(rows, default_timestamp_field_name, IANA_timezone_1)
|
|
self.query(client, collection_name, filter=f"{default_primary_key_field_name} >= 0",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
# step 4: query the rows
|
|
rows = cf.convert_timestamptz(rows, default_timestamp_field_name, IANA_timezone_2)
|
|
self.query(client, collection_name, filter=f"{default_primary_key_field_name} >= 0",
|
|
check_task=CheckTasks.check_query_results,
|
|
timezone=IANA_timezone_2,
|
|
check_items={exp_res: rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_timestamptz_default_value(self):
|
|
"""
|
|
target: Test timestamptz can be successfully inserted and queried with default value
|
|
method:
|
|
1. Create a collection
|
|
2. Generate rows without timestamptz and insert the rows
|
|
3. Insert the rows
|
|
expected: Step 3 should result success
|
|
"""
|
|
# step 1: create collection
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_timestamp_field_name, DataType.TIMESTAMPTZ, nullable=True, default_value="2025-01-01T00:00:00")
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_timestamp_field_name, index_type="AUTOINDEX")
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: generate rows without timestamptz and insert the rows
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema, skip_field_names=[default_timestamp_field_name])
|
|
self.insert(client, collection_name, rows)
|
|
|
|
# step 3: query the rows
|
|
for row in rows:
|
|
row[default_timestamp_field_name] = "2025-01-01T00:00:00"
|
|
rows = cf.convert_timestamptz(rows, default_timestamp_field_name, "UTC")
|
|
self.query(client, collection_name, filter=f"{default_primary_key_field_name} >= 0",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_timestamptz_search(self):
|
|
"""
|
|
target: Milvus can search with timestamptz expr
|
|
method:
|
|
1. Create a collection
|
|
2. Generate rows with timestamptz and insert the rows
|
|
3. Search with timestamptz expr
|
|
expected: Step 3 should result success
|
|
"""
|
|
# step 1: create collection
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_timestamp_field_name, DataType.TIMESTAMPTZ, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_timestamp_field_name, index_type="AUTOINDEX")
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: generate rows with timestamptz and insert the rows
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.insert(client, collection_name, rows)
|
|
|
|
# step 3: search with timestamptz expr
|
|
vectors_to_search = cf.gen_vectors(1, default_dim, vector_data_type=DataType.FLOAT_VECTOR)
|
|
insert_ids = [i for i in range(default_nb)]
|
|
self.search(client, collection_name, vectors_to_search,
|
|
timezone="Asia/Shanghai",
|
|
time_fields="year, month, day, hour, minute, second, microsecond",
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"pk_name": default_primary_key_field_name,
|
|
"limit": default_limit})
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_timestamptz_search_group_by(self):
|
|
"""
|
|
target: test search with group by and timestamptz
|
|
method:
|
|
1. Create a collection
|
|
2. Generate rows with timestamptz and insert the rows
|
|
3. Search with group by timestamptz
|
|
expected: Step 3 should result success
|
|
"""
|
|
# step 1: create collection
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_timestamp_field_name, DataType.TIMESTAMPTZ, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_timestamp_field_name, index_type="AUTOINDEX")
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: generate rows with timestamptz and insert the rows
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.insert(client, collection_name, rows)
|
|
|
|
# step 3: search with group by timestamptz
|
|
vectors_to_search = cf.gen_vectors(1, default_dim, vector_data_type=DataType.FLOAT_VECTOR)
|
|
insert_ids = [i for i in range(default_nb)]
|
|
self.search(client, collection_name, vectors_to_search,
|
|
timezone="Asia/Shanghai",
|
|
time_fields="year, month, day, hour, minute, second, microsecond",
|
|
group_by_field=default_timestamp_field_name,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"pk_name": default_primary_key_field_name,
|
|
"limit": default_limit})
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_timestamptz_add_collection_field(self):
|
|
"""
|
|
target: Milvus raise error when add collection field with timestamptz
|
|
method:
|
|
1. Create a collection
|
|
2. Add collection field with timestamptz
|
|
3. Query the rows
|
|
4. Insert new rows and query the rows
|
|
5. Partial update the rows and query the rows
|
|
expected: Step 3, Step 4, and Step 5 should result success
|
|
"""
|
|
# step 1: create collection
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: add collection field with timestamptz
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.insert(client, collection_name, rows)
|
|
self.add_collection_field(client, collection_name, field_name=default_timestamp_field_name, data_type=DataType.TIMESTAMPTZ,
|
|
nullable=True)
|
|
index_params.add_index(default_timestamp_field_name, index_type="STL_SORT")
|
|
self.create_index(client, collection_name, index_params=index_params)
|
|
|
|
# step 3: query the rows
|
|
for row in rows:
|
|
row[default_timestamp_field_name] = None
|
|
self.query(client, collection_name, filter=f"{default_primary_key_field_name} >= 0",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
# step 4: insert new rows and query the rows
|
|
schema.add_field(default_timestamp_field_name, DataType.TIMESTAMPTZ, nullable=True)
|
|
new_rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema, start=default_nb)
|
|
self.insert(client, collection_name, new_rows)
|
|
new_rows = cf.convert_timestamptz(new_rows, default_timestamp_field_name, "UTC")
|
|
self.query(client, collection_name, filter=f"{default_primary_key_field_name} >= {default_nb}",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: new_rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
# step 5: partial update the rows and query the rows
|
|
pu_rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema,
|
|
desired_field_names=[default_primary_key_field_name, default_timestamp_field_name])
|
|
self.upsert(client, collection_name, pu_rows, partial_update=True)
|
|
pu_rows = cf.convert_timestamptz(pu_rows, default_timestamp_field_name, "UTC")
|
|
self.query(client, collection_name, filter=f"0 <= {default_primary_key_field_name} < {default_nb}",
|
|
check_task=CheckTasks.check_query_results,
|
|
output_fields=[default_timestamp_field_name],
|
|
check_items={exp_res: pu_rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_timestamptz_add_field_compaction(self):
|
|
"""
|
|
target: test compaction with added timestamptz field
|
|
method:
|
|
1. Create a collection
|
|
2. insert rows
|
|
3. add field with timestamptz
|
|
4. compact
|
|
5. query the rows
|
|
expected: Step 4 and Step 5 should success
|
|
"""
|
|
# step 1: create collection
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: insert rows
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.insert(client, collection_name, rows)
|
|
|
|
# step 3: add field with timestamptz
|
|
self.add_collection_field(client, collection_name, field_name=default_timestamp_field_name, data_type=DataType.TIMESTAMPTZ,
|
|
nullable=True)
|
|
schema.add_field(default_timestamp_field_name, DataType.TIMESTAMPTZ, nullable=True)
|
|
index_params.add_index(default_timestamp_field_name, index_type="STL_SORT")
|
|
self.create_index(client, collection_name, index_params=index_params)
|
|
new_rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema, start=default_nb)
|
|
self.insert(client, collection_name, new_rows)
|
|
|
|
# step 4: compact
|
|
compact_id = self.compact(client, collection_name, is_clustering=False)[0]
|
|
cost = 180
|
|
start = time.time()
|
|
while True:
|
|
time.sleep(1)
|
|
res = self.get_compaction_state(client, compact_id, is_clustering=False)[0]
|
|
if res == "Completed":
|
|
break
|
|
if time.time() - start > cost:
|
|
raise Exception(1, f"Compact after index cost more than {cost}s")
|
|
|
|
# step 5: query the rows
|
|
# first release the collection
|
|
self.release_collection(client, collection_name)
|
|
# then load the collection
|
|
self.load_collection(client, collection_name)
|
|
# then query the rows
|
|
for row in rows:
|
|
row[default_timestamp_field_name] = None
|
|
self.query(client, collection_name, filter=f"0 <= {default_primary_key_field_name} < {default_nb}",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
new_rows = cf.convert_timestamptz(new_rows, default_timestamp_field_name, "UTC")
|
|
self.query(client, collection_name, filter=f"{default_primary_key_field_name} >= {default_nb}",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: new_rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_timestamptz_add_field_search(self):
|
|
"""
|
|
target: test add field with timestamptz and search
|
|
method:
|
|
1. Create a collection
|
|
2. Insert rows
|
|
3. Add field with timestamptz
|
|
4. Search the rows
|
|
expected: Step 4 should success
|
|
"""
|
|
# step 1: create collection
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: insert rows
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.insert(client, collection_name, rows)
|
|
|
|
# step 3: add field with timestamptz
|
|
self.add_collection_field(client, collection_name, field_name=default_timestamp_field_name, data_type=DataType.TIMESTAMPTZ,
|
|
nullable=True)
|
|
schema.add_field(default_timestamp_field_name, DataType.TIMESTAMPTZ, nullable=True)
|
|
index_params.add_index(default_timestamp_field_name, index_type="AUTOINDEX")
|
|
self.create_index(client, collection_name, index_params=index_params)
|
|
|
|
# step 4: search the rows
|
|
vectors_to_search = cf.gen_vectors(1, default_dim, vector_data_type=DataType.FLOAT_VECTOR)
|
|
insert_ids = [i for i in range(default_nb)]
|
|
check_items = {"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"pk_name": default_primary_key_field_name,
|
|
"limit": default_limit}
|
|
self.search(client, collection_name, vectors_to_search,
|
|
filter=f"{default_timestamp_field_name} is null",
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items=check_items)
|
|
|
|
new_rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.insert(client, collection_name, new_rows)
|
|
self.search(client, collection_name, vectors_to_search,
|
|
filter=f"{default_timestamp_field_name} is not null",
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items=check_items)
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_timestamptz_add_field_with_default_value(self):
|
|
"""
|
|
target: Milvus raise error when add field with timestamptz and default value
|
|
method:
|
|
1. Create a collection
|
|
2. Add field with timestamptz and default value
|
|
3. Query the rows
|
|
expected: Step 3 should result success
|
|
"""
|
|
# step 1: create collection
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: add field with timestamptz and default value
|
|
default_timestamp_value = "2025-01-01T00:00:00Z"
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.insert(client, collection_name, rows)
|
|
self.add_collection_field(client, collection_name, field_name=default_timestamp_field_name, data_type=DataType.TIMESTAMPTZ,
|
|
nullable=True, default_value=default_timestamp_value)
|
|
index_params.add_index(default_timestamp_field_name, index_type="STL_SORT")
|
|
self.create_index(client, collection_name, index_params=index_params)
|
|
|
|
# step 3: query the rows
|
|
for row in rows:
|
|
row[default_timestamp_field_name] = default_timestamp_value
|
|
self.query(client, collection_name, filter=f"{default_primary_key_field_name} >= 0",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_timestamptz_add_another_timestamptz_field(self):
|
|
"""
|
|
target: Milvus raise error when add another timestamptz field
|
|
method:
|
|
1. Create a collection
|
|
2. Insert rows and then add another timestamptz field
|
|
3. Insert new rows
|
|
4. Insert new rows
|
|
5. Query the new rows
|
|
expected: Step 2,3,4,and 5 should result success
|
|
"""
|
|
# step 1: create collection
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_timestamp_field_name, DataType.TIMESTAMPTZ, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_timestamp_field_name, index_type="STL_SORT")
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: insert rows
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.insert(client, collection_name, rows)
|
|
|
|
# step 3: add another timestamptz field
|
|
self.add_collection_field(client, collection_name, field_name=default_timestamp_field_name + "_new", data_type=DataType.TIMESTAMPTZ,
|
|
nullable=True)
|
|
schema.add_field(default_timestamp_field_name + "_new", DataType.TIMESTAMPTZ, nullable=True)
|
|
index_params.add_index(default_timestamp_field_name + "_new", index_type="STL_SORT")
|
|
|
|
# step 4: insert new rows
|
|
new_rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema, start=default_nb)
|
|
self.upsert(client, collection_name, new_rows)
|
|
self.create_index(client, collection_name, index_params=index_params)
|
|
|
|
# step 5: query the new rows
|
|
new_rows = cf.convert_timestamptz(new_rows, default_timestamp_field_name + "_new", "UTC")
|
|
new_rows = cf.convert_timestamptz(new_rows, default_timestamp_field_name, "UTC")
|
|
self.query(client, collection_name, filter=f"{default_primary_key_field_name} >= {default_nb}",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: new_rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_timestamptz_insert_delete_upsert_with_flush(self):
|
|
"""
|
|
target: test insert, delete, upsert with flush on timestamptz
|
|
method:
|
|
1. Create a collection
|
|
2. Insert rows
|
|
3. Delete the rows
|
|
4. flush the rows and query
|
|
5. upsert the rows and flush
|
|
6. query the rows
|
|
expected: Step 2-6 should success
|
|
"""
|
|
# step 1: create collection
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_timestamp_field_name, DataType.TIMESTAMPTZ, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_timestamp_field_name, index_type="AUTOINDEX")
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: insert rows
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.insert(client, collection_name, rows)
|
|
|
|
# step 3: delete the rows
|
|
self.delete(client, collection_name, filter=f"{default_primary_key_field_name} < {default_nb//2}")
|
|
|
|
# step 4: flush the rows and query
|
|
self.flush(client, collection_name)
|
|
rows = cf.convert_timestamptz(rows, default_timestamp_field_name, "UTC")
|
|
self.query(client, collection_name, filter=f"{default_primary_key_field_name} >= 0",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows[default_nb//2:],
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
# step 5: upsert the rows and flush
|
|
new_rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.upsert(client, collection_name, new_rows)
|
|
self.flush(client, collection_name)
|
|
|
|
# step 6: query the rows
|
|
new_rows = cf.convert_timestamptz(new_rows, default_timestamp_field_name, "UTC")
|
|
self.query(client, collection_name, filter=f"{default_primary_key_field_name} >= 0",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: new_rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_timestamptz_insert_upsert_flush_delete_upsert_flush(self):
|
|
"""
|
|
target: test insert, upsert, flush, delete, upsert with flush on timestamptz
|
|
method:
|
|
1. Create a collection
|
|
2. Insert rows
|
|
3. Upsert the rows
|
|
4. Flush the rows
|
|
5. Delete the rows
|
|
6. Upsert the rows and flush
|
|
7. Query the rows
|
|
expected: Step 2-7 should success
|
|
"""
|
|
# step 1: create collection
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_timestamp_field_name, DataType.TIMESTAMPTZ, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_timestamp_field_name, index_type="AUTOINDEX")
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: insert rows
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.insert(client, collection_name, rows)
|
|
|
|
# step 3: upsert the rows
|
|
partial_rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema,
|
|
desired_field_names=[default_primary_key_field_name, default_timestamp_field_name])
|
|
self.upsert(client, collection_name, partial_rows, partial_update=True)
|
|
|
|
# step 4: flush the rows
|
|
self.flush(client, collection_name)
|
|
|
|
# step 5: delete the rows
|
|
self.delete(client, collection_name, filter=f"{default_primary_key_field_name} < {default_nb//2}")
|
|
|
|
# step 6: upsert the rows and flush
|
|
new_rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.upsert(client, collection_name, new_rows)
|
|
self.flush(client, collection_name)
|
|
|
|
# step 7: query the rows
|
|
new_rows = cf.convert_timestamptz(new_rows, default_timestamp_field_name, "UTC")
|
|
self.query(client, collection_name, filter=f"{default_primary_key_field_name} >= 0",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: new_rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_timestamptz_read_from_different_client(self):
|
|
"""
|
|
target: test read from different client in different timezone
|
|
method:
|
|
1. Create a collection
|
|
2. Insert rows
|
|
3. Query the rows from different client in different timezone
|
|
expected: Step 3 should success
|
|
"""
|
|
# step 1: create collection
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_timestamp_field_name, DataType.TIMESTAMPTZ, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_timestamp_field_name, index_type="AUTOINDEX")
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: insert rows
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.insert(client, collection_name, rows)
|
|
|
|
# step 3: query the rows from different client in different timezone
|
|
client2 = self._client(alias="client2_alias")
|
|
UTC_time_row = cf.convert_timestamptz(rows, default_timestamp_field_name, "UTC")
|
|
shanghai_rows = cf.convert_timestamptz(UTC_time_row, default_timestamp_field_name, "Asia/Shanghai")
|
|
LA_rows = cf.convert_timestamptz(UTC_time_row, default_timestamp_field_name, "America/Los_Angeles")
|
|
result_1 = self.query(client, collection_name, filter=f"{default_primary_key_field_name} >= 0",
|
|
check_task=CheckTasks.check_query_results,
|
|
timezone="Asia/Shanghai",
|
|
check_items={exp_res: shanghai_rows,
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
result_2 = self.query(client2, collection_name, filter=f"{default_primary_key_field_name} >= 0",
|
|
check_task=CheckTasks.check_query_results,
|
|
timezone="America/Los_Angeles",
|
|
check_items={exp_res: LA_rows,
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
|
|
assert len(result_1) == len(result_2) == default_nb
|
|
self.drop_collection(client, collection_name)
|
|
|
|
|
|
class TestMilvusClientTimestamptzInvalid(TestMilvusClientV2Base):
|
|
|
|
"""
|
|
******************************************************************
|
|
# The following are invalid base cases
|
|
******************************************************************
|
|
"""
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_timestamptz_input_data_invalid_time_format(self):
|
|
"""
|
|
target: Milvus raise error when input data with invalid time format
|
|
method:
|
|
1. Create a collection
|
|
2. Generate rows with invalid timestamptz and insert the rows
|
|
3. Insert the rows
|
|
expected: Step 3 should result fail
|
|
"""
|
|
# step 1: create collection
|
|
default_dim = 3
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_timestamp_field_name, DataType.TIMESTAMPTZ, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_timestamp_field_name, index_type="AUTOINDEX")
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: generate rows with invalid timestamptz and insert the rows
|
|
rows = [{default_primary_key_field_name: 0, default_vector_field_name: [1,2,3], default_timestamp_field_name: "invalid_time_format"},
|
|
# April 31 does not exist
|
|
{default_primary_key_field_name: 1, default_vector_field_name: [4,5,6], default_timestamp_field_name: "2025-04-31 00:00:00"},
|
|
# 2025 is not a leap year
|
|
{default_primary_key_field_name: 2, default_vector_field_name: [7,8,9], default_timestamp_field_name: "2025-02-29 00:00:00"},
|
|
# UTC+24:00 is not a valid timezone
|
|
{default_primary_key_field_name: 3, default_vector_field_name: [10,11,12], default_timestamp_field_name: "2025-01-01T00:00:00+24:00"}]
|
|
|
|
# step 3: query the rows
|
|
for row in rows:
|
|
print(row[default_timestamp_field_name])
|
|
error = {ct.err_code: 1100, ct.err_msg: f"got invalid timestamptz string '{row[default_timestamp_field_name]}': invalid timezone name; must be a valid IANA Time Zone ID (e.g., 'Asia/Shanghai' or 'UTC'): invalid parameter"}
|
|
self.insert(client, collection_name, row,
|
|
check_task=CheckTasks.err_res,
|
|
check_items=error)
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_timestamptz_wrong_index_type(self):
|
|
"""
|
|
target: Milvus raise error when input data with wrong index type
|
|
method:
|
|
1. Create a collection with wrong index type for timestamptz field
|
|
expected: Step 1 should result fail
|
|
"""
|
|
# step 1: create collection
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_timestamp_field_name, DataType.TIMESTAMPTZ, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_timestamp_field_name, index_type="INVERTED")
|
|
error = {ct.err_code: 1100, ct.err_msg: "INVERTED are not supported on Timestamptz field: invalid parameter[expected=valid index params][actual=invalid index params]"}
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params,
|
|
check_task=CheckTasks.err_res,
|
|
check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_timestamptz_wrong_default_value(self):
|
|
"""
|
|
target: Milvus raise error when input data with wrong default value
|
|
method:
|
|
1. Create a collection with wrong string default value for timestamptz field
|
|
2. Create a collection with wrong int default value for timestamptz field
|
|
expected: Step 1 and Step 2 should result fail
|
|
"""
|
|
# step 1: create collection
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_timestamp_field_name, DataType.TIMESTAMPTZ, nullable=True, default_value="timestamp")
|
|
|
|
error = {ct.err_code: 65536, ct.err_msg: "invalid timestamp string: 'timestamp'. Does not match any known format"}
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong",
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
# step 2: create collection
|
|
new_schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
new_schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
new_schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
new_schema.add_field(default_timestamp_field_name, DataType.TIMESTAMPTZ, nullable=True, default_value=10)
|
|
|
|
error = {ct.err_code: 65536, ct.err_msg: "type (Timestamptz) of field (timestamp) is not equal to the type(DataType_Int64) of default_value: invalid parameter"}
|
|
self.create_collection(client, collection_name, default_dim, schema=new_schema,
|
|
consistency_level="Strong",
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_timestamptz_add_field_not_nullable(self):
|
|
"""
|
|
target: Milvus raise error when add non-nullable timestamptz field
|
|
method:
|
|
1. Create a collection with non-nullable timestamptz field
|
|
2. Add non-nullable timestamptz field
|
|
expected: Step 2 should result fail
|
|
"""
|
|
# step 1: create collection
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong")
|
|
|
|
# step 2: add non-nullable timestamptz field
|
|
error = {ct.err_code: 1100, ct.err_msg: f"added field must be nullable, please check it, field name = {default_timestamp_field_name}: invalid parameter"}
|
|
self.add_collection_field(client, collection_name, field_name=default_timestamp_field_name, data_type=DataType.TIMESTAMPTZ,
|
|
nullable=False, check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_timestamptz_add_field_with_invalid_default_value(self):
|
|
"""
|
|
target: Milvus raise error when add field with default value for timestamptz field
|
|
method:
|
|
1. Create a collection with default value for timestamptz field
|
|
2. Add field with invalid default value for timestamptz field
|
|
expected: Step 1 should result fail
|
|
"""
|
|
# step 1: create collection
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: add field with default value for timestamptz field
|
|
error = {ct.err_code: 1100,
|
|
ct.err_msg: f"invalid default value of field, name: {default_timestamp_field_name}, err: %!w(*errors.errorString=&{{invalid timestamp string: '1234'. Does not match any known format}}): invalid parameter"}
|
|
self.add_collection_field(client, collection_name, field_name=default_timestamp_field_name, data_type=DataType.TIMESTAMPTZ,
|
|
nullable=True, default_value="1234", check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
|
|
|
|
COLLECTION_NAME = "test_timestamptz" + cf.gen_unique_str("_")
|
|
ROWS = [{default_primary_key_field_name: 0, default_vector_field_name: [1,2,3], default_timestamp_field_name: "0000-01-01 00:00:00"},
|
|
{default_primary_key_field_name: 1, default_vector_field_name: [4,5,6], default_timestamp_field_name: "9999-12-31T23:59:59"},
|
|
{default_primary_key_field_name: 2, default_vector_field_name: [7,8,9], default_timestamp_field_name: "1970-01-01T00:00:00+01:00"},
|
|
{default_primary_key_field_name: 3, default_vector_field_name: [10,11,12], default_timestamp_field_name: "2000-01-01T00:00:00+01:00"},
|
|
{default_primary_key_field_name: 4, default_vector_field_name: [13,14,15], default_timestamp_field_name: "2024-02-29T00:00:00+03:00"}]
|
|
@pytest.mark.xdist_group("TestMilvusClientTimestamptz")
|
|
class TestMilvusClientTimestamptz(TestMilvusClientV2Base):
|
|
"""
|
|
#########################################################
|
|
Init collection with timestamptz so all the tests can use the same collection
|
|
This aims to save time for the tests
|
|
Also, timestamptz is difficult to compare the results,
|
|
so we need to init the collection with pre-defined data
|
|
#########################################################
|
|
"""
|
|
@pytest.fixture(scope="module", autouse=True)
|
|
def prepare_timestamptz_collection(self, request):
|
|
"""
|
|
Prepare timestamptz collection for the tests
|
|
"""
|
|
default_dim = 3
|
|
client = self._client()
|
|
collection_name = COLLECTION_NAME
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_timestamp_field_name, DataType.TIMESTAMPTZ, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_timestamp_field_name, index_type="AUTOINDEX")
|
|
client.create_collection(collection_name, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
self.insert(client, collection_name, ROWS)
|
|
|
|
def teardown():
|
|
try:
|
|
if self.has_collection(self._client(), COLLECTION_NAME):
|
|
self.drop_collection(self._client(), COLLECTION_NAME)
|
|
except Exception:
|
|
pass
|
|
request.addfinalizer(teardown)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.order(0)
|
|
def test_milvus_client_timestamptz_edge_case(self):
|
|
"""
|
|
target: Test timestamptz edge case can be successfully queried
|
|
"""
|
|
client = self._client()
|
|
collection_name = COLLECTION_NAME
|
|
client.load_collection(collection_name)
|
|
|
|
rows = cf.convert_timestamptz(ROWS[:4], default_timestamp_field_name, "UTC")
|
|
self.query(client, collection_name, filter=f"0 <= {default_primary_key_field_name} <= 3",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.order(1)
|
|
def test_milvus_client_timestamptz_Feb_29(self):
|
|
"""
|
|
target: Milvus can query input data with Feb 29 on a leap year
|
|
"""
|
|
client = self._client()
|
|
collection_name = COLLECTION_NAME
|
|
client.load_collection(collection_name)
|
|
|
|
row = [ROWS[4].copy()]
|
|
row = cf.convert_timestamptz(row, default_timestamp_field_name, "UTC")
|
|
self.query(client, collection_name, filter=f"{default_primary_key_field_name} == 4",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: row,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.order(2)
|
|
def test_milvus_client_timestamptz_partial_update(self):
|
|
"""
|
|
target: Milvus can partial update timestamptz field
|
|
"""
|
|
client = self._client()
|
|
collection_name = COLLECTION_NAME
|
|
client.load_collection(collection_name)
|
|
|
|
# partial update these rows to set up for query with filters
|
|
# pk:5 does not exist in the collection so include all fields
|
|
rows = [{default_primary_key_field_name: 0, default_timestamp_field_name: "1970-01-01 00:00:00"},
|
|
{default_primary_key_field_name: 1, default_timestamp_field_name: "2021-02-28T00:00:00Z"},
|
|
{default_primary_key_field_name: 2, default_timestamp_field_name: "2025-05-25T23:46:05"},
|
|
{default_primary_key_field_name: 3, default_timestamp_field_name:"2025-05-30T23:46:05+05:30"},
|
|
{default_primary_key_field_name: 4, default_timestamp_field_name: "2025-10-05 12:56:34"},
|
|
{default_primary_key_field_name: 5, default_vector_field_name: [16,17,18], default_timestamp_field_name: "9999-12-31T23:46:05"}]
|
|
|
|
# Because partial update does NOT support different fields
|
|
# The last row will be inserted
|
|
self.upsert(client, collection_name, rows[:-1], partial_update=True)
|
|
self.insert(client, collection_name, rows[-1])
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.order(3)
|
|
def test_milvus_client_timestamptz_query(self):
|
|
"""
|
|
target: Milvus can query rows with timestamptz field
|
|
"""
|
|
client = self._client()
|
|
collection_name = COLLECTION_NAME
|
|
client.load_collection(collection_name)
|
|
|
|
rows = [{default_primary_key_field_name: 0, default_vector_field_name: [1,2,3], default_timestamp_field_name: "1970-01-01 00:00:00"},
|
|
{default_primary_key_field_name: 1, default_vector_field_name: [4,5,6], default_timestamp_field_name: "2021-02-28T00:00:00Z"},
|
|
{default_primary_key_field_name: 2, default_vector_field_name: [7,8,9], default_timestamp_field_name: "2025-05-25T23:46:05"},
|
|
{default_primary_key_field_name: 3, default_vector_field_name: [10,11,12], default_timestamp_field_name:"2025-05-30T23:46:05+05:30"},
|
|
{default_primary_key_field_name: 4, default_vector_field_name: [13,14,15], default_timestamp_field_name: "2025-10-05 12:56:34"},
|
|
{default_primary_key_field_name: 5, default_vector_field_name: [16,17,18], default_timestamp_field_name: "9999-12-31T23:46:05"}]
|
|
|
|
|
|
UTC_time_row = cf.convert_timestamptz(rows, default_timestamp_field_name, "UTC")
|
|
shanghai_time_row = cf.convert_timestamptz(UTC_time_row, default_timestamp_field_name, "Asia/Shanghai")
|
|
self.query(client, collection_name, filter=default_search_exp,
|
|
timezone="Asia/Shanghai",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: shanghai_time_row,
|
|
"pk_name": default_primary_key_field_name})
|
|
# >=
|
|
expr = f"{default_timestamp_field_name} >= ISO '2025-05-30T23:46:05+05:30'"
|
|
self.query(client, collection_name, filter=expr,
|
|
timezone="Asia/Shanghai",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: shanghai_time_row[3:],
|
|
"pk_name": default_primary_key_field_name})
|
|
# ==
|
|
expr = f"{default_timestamp_field_name} == ISO '9999-12-31T23:46:05Z'"
|
|
self.query(client, collection_name, filter=expr,
|
|
timezone="Asia/Shanghai",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: [shanghai_time_row[-1]],
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
# <=
|
|
expr = f"{default_timestamp_field_name} <= ISO '2025-01-01T00:00:00+08:00'"
|
|
self.query(client, collection_name, filter=expr,
|
|
timezone="Asia/Shanghai",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: shanghai_time_row[:2],
|
|
"pk_name": default_primary_key_field_name})
|
|
# !=
|
|
expr = f"{default_timestamp_field_name} != ISO '9999-12-31T23:46:05Z'"
|
|
self.query(client, collection_name, filter=expr,
|
|
timezone="Asia/Shanghai",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: shanghai_time_row[:-1],
|
|
"pk_name": default_primary_key_field_name})
|
|
# INTERVAL
|
|
expr = f"{default_timestamp_field_name} - INTERVAL 'P3D' >= ISO '1970-01-01T00:00:00Z'"
|
|
self.query(client, collection_name, filter=expr,
|
|
timezone="Asia/Shanghai",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: shanghai_time_row[1:],
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
# lower < tz < upper
|
|
# BUG: https://github.com/milvus-io/milvus/issues/44600
|
|
# expr = f"ISO '2025-01-01T00:00:00+08:00' < {default_timestamp_field_name} < ISO '2026-10-05T12:56:34+08:00'"
|
|
# self.query(client, collection_name, filter=expr,
|
|
# check_task=CheckTasks.check_query_results,
|
|
# check_items={exp_res: shanghai_time_row,
|
|
# "pk_name": default_primary_key_field_name})
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.order(4)
|
|
def test_milvus_client_timestamptz_different_time_expressions(self):
|
|
"""
|
|
target: Milvus can query rows with different time expressions
|
|
"""
|
|
client = self._client()
|
|
collection_name = COLLECTION_NAME
|
|
client.load_collection(collection_name)
|
|
|
|
self.alter_collection_properties(client, collection_name, properties={"timezone": "Asia/Shanghai"})
|
|
rows = [{default_primary_key_field_name: 0, default_vector_field_name: [1,2,3], default_timestamp_field_name: "2024-12-31 22:00:00Z"},
|
|
{default_primary_key_field_name: 1, default_vector_field_name: [4,5,6], default_timestamp_field_name: "2024-12-31 22:00:00"},
|
|
{default_primary_key_field_name: 2, default_vector_field_name: [7,8,9], default_timestamp_field_name: "2024-12-31T22:00:00"},
|
|
{default_primary_key_field_name: 3, default_vector_field_name: [10,11,12], default_timestamp_field_name: "2024-12-31T22:00:00+08:00"},
|
|
{default_primary_key_field_name: 4, default_vector_field_name: [13,14,15], default_timestamp_field_name: "2024-12-31T22:00:00-08:00"},
|
|
{default_primary_key_field_name: 5, default_vector_field_name: [16,17,18], default_timestamp_field_name: "2024-12-31T22:00:00Z"},
|
|
{default_primary_key_field_name: 6, default_vector_field_name: [19,20,21], default_timestamp_field_name: "2024-12-31 22:00:00+08:00"},
|
|
{default_primary_key_field_name: 7, default_vector_field_name: [22,23,24], default_timestamp_field_name: "2024-12-31 22:00:00-08:00"}]
|
|
self.upsert(client, collection_name, rows)
|
|
|
|
expected_rows = cf.convert_timestamptz(rows, default_timestamp_field_name, "Asia/Shanghai")
|
|
self.query(client, collection_name, filter=f"{default_primary_key_field_name} <= 7",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: expected_rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.order(5)
|
|
def test_milvus_client_timestamptz_different_timezone_query(self):
|
|
"""
|
|
target: Milvus can query rows with different time expressions with filter
|
|
"""
|
|
client = self._client()
|
|
collection_name = COLLECTION_NAME
|
|
client.load_collection(collection_name)
|
|
|
|
"""
|
|
# To test different timezone query, we need to query the same timestamp in different timezone
|
|
# For reference:
|
|
# 2024-12-31T22:00:00Z
|
|
# == 2024-12-31T17:00:00-05:00
|
|
# == 2025-01-01T06:00:00+08:00
|
|
# == 2024-12-31 17:00:00 (with NY timezone)
|
|
# == 2025-01-01 06:00:00 (with SH timezone)
|
|
# these are all the same time in different timezone
|
|
"""
|
|
|
|
# filter: UTC, timezone: None, expected: 2025-01-01T06:00:00+08:00
|
|
expected_rows = [{default_primary_key_field_name: 0, default_vector_field_name: [1,2,3], default_timestamp_field_name: "2025-01-01T06:00:00+08:00"},
|
|
{default_primary_key_field_name: 5, default_vector_field_name: [16,17,18], default_timestamp_field_name: "2025-01-01T06:00:00+08:00"}]
|
|
self.query(client, collection_name, filter=f"{default_timestamp_field_name} == ISO '2024-12-31T22:00:00Z'",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: expected_rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
# filter: America/New_York, timezone: Asia/Shanghai, expected: No result
|
|
# because Asia/Shanghai will apply to filter time, so it will be 2024-12-31T17:00:00+08:00 Does not exist in the collection
|
|
expected_rows = []
|
|
self.query(client, collection_name, filter=f"{default_timestamp_field_name} == ISO '2024-12-31 17:00:00'",
|
|
timezone="Asia/Shanghai",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: expected_rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
# filter: America/New_York, timezone: America/New_York, expected: 2024-12-31T17:00:00-05:00
|
|
# because America/New_York will apply to filter time, so it will be 2024-12-31T17:00:00-05:00
|
|
expected_rows = [{default_primary_key_field_name: 0, default_vector_field_name: [1,2,3], default_timestamp_field_name: "2024-12-31T17:00:00-05:00"},
|
|
{default_primary_key_field_name: 5, default_vector_field_name: [16,17,18], default_timestamp_field_name: "2024-12-31T17:00:00-05:00"}]
|
|
self.query(client, collection_name, filter=f"{default_timestamp_field_name} == ISO '2024-12-31 17:00:00'",
|
|
timezone="America/New_York",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: expected_rows,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
# filter: Asia/Shanghai, timezone: Asia/Shanghai, expected: 2024-12-31T17:00:00+08:00
|
|
# because Asia/Shanghai is the same as the filter time, so it will be 2024-12-31T17:00:00+08:00
|
|
expected_rows = [{default_primary_key_field_name: 0, default_vector_field_name: [1,2,3], default_timestamp_field_name: "2025-01-01T06:00:00+08:00"},
|
|
{default_primary_key_field_name: 5, default_vector_field_name: [16,17,18], default_timestamp_field_name: "2025-01-01T06:00:00+08:00"}]
|
|
self.query(client, collection_name, filter=f"{default_timestamp_field_name} == ISO '2025-01-01 06:00:00'",
|
|
timezone="Asia/Shanghai",
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: expected_rows,
|
|
"pk_name": default_primary_key_field_name}) |