Hao Tan 67c4340565
feat: Geospatial Data Type and GIS Function Support for milvus server (#35990)
issue:https://github.com/milvus-io/milvus/issues/27576

# Main Goals
1. Create and describe collections with geospatial fields, enabling both
client and server to recognize and process geo fields.
2. Insert geospatial data as payload values in the insert binlog, and
print the values for verification.
3. Load segments containing geospatial data into memory.
4. Ensure query outputs can display geospatial data.
5. Support filtering on GIS functions for geospatial columns.

# Solution
1. **Add Type**: Modify the Milvus core by adding a Geospatial type in
both the C++ and Go code layers, defining the Geospatial data structure
and the corresponding interfaces.
2. **Dependency Libraries**: Introduce necessary geospatial data
processing libraries. In the C++ source code, use Conan package
management to include the GDAL library. In the Go source code, add the
go-geom library to the go.mod file.
3. **Protocol Interface**: Revise the Milvus protocol to provide
mechanisms for Geospatial message serialization and deserialization.
4. **Data Pipeline**: Facilitate interaction between the client and
proxy using the WKT format for geospatial data. The proxy will convert
all data into WKB format for downstream processing, providing column
data interfaces, segment encapsulation, segment loading, payload
writing, and cache block management.
5. **Query Operators**: Implement simple display and support for filter
queries. Initially, focus on filtering based on spatial relationships
for a single column of geospatial literal values, providing parsing and
execution for query expressions.
6. **Client Modification**: Enable the client to handle user input for
geospatial data and facilitate end-to-end testing.Check the modification
in pymilvus.

---------

Signed-off-by: tasty-gumi <1021989072@qq.com>
2024-10-31 20:58:20 +08:00

829 lines
19 KiB
Go

// Licensed to the LF AI & Data foundation under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package storage
import (
"fmt"
"io"
"math"
"sync"
"github.com/apache/arrow/go/v12/arrow"
"github.com/apache/arrow/go/v12/arrow/array"
"github.com/apache/arrow/go/v12/parquet"
"github.com/apache/arrow/go/v12/parquet/compress"
"github.com/apache/arrow/go/v12/parquet/pqarrow"
"go.uber.org/atomic"
"google.golang.org/protobuf/proto"
"github.com/milvus-io/milvus-proto/go-api/v2/schemapb"
"github.com/milvus-io/milvus/pkg/common"
)
type Record interface {
Schema() map[FieldID]schemapb.DataType
ArrowSchema() *arrow.Schema
Column(i FieldID) arrow.Array
Len() int
Release()
}
type RecordReader interface {
Next() error
Record() Record
Close()
}
type RecordWriter interface {
Write(r Record) error
Close()
}
type (
Serializer[T any] func([]T) (Record, uint64, error)
Deserializer[T any] func(Record, []T) error
)
// compositeRecord is a record being composed of multiple records, in which each only have 1 column
type compositeRecord struct {
recs map[FieldID]arrow.Record
schema map[FieldID]schemapb.DataType
}
func (r *compositeRecord) Column(i FieldID) arrow.Array {
return r.recs[i].Column(0)
}
func (r *compositeRecord) Len() int {
for _, rec := range r.recs {
return rec.Column(0).Len()
}
return 0
}
func (r *compositeRecord) Release() {
for _, rec := range r.recs {
rec.Release()
}
}
func (r *compositeRecord) Schema() map[FieldID]schemapb.DataType {
return r.schema
}
func (r *compositeRecord) ArrowSchema() *arrow.Schema {
var fields []arrow.Field
for _, rec := range r.recs {
fields = append(fields, rec.Schema().Field(0))
}
return arrow.NewSchema(fields, nil)
}
type serdeEntry struct {
// arrowType returns the arrow type for the given dimension
arrowType func(int) arrow.DataType
// deserialize deserializes the i-th element in the array, returns the value and ok.
// null is deserialized to nil without checking the type nullability.
deserialize func(arrow.Array, int) (any, bool)
// serialize serializes the value to the builder, returns ok.
// nil is serialized to null without checking the type nullability.
serialize func(array.Builder, any) bool
}
var serdeMap = func() map[schemapb.DataType]serdeEntry {
m := make(map[schemapb.DataType]serdeEntry)
m[schemapb.DataType_Bool] = serdeEntry{
func(i int) arrow.DataType {
return arrow.FixedWidthTypes.Boolean
},
func(a arrow.Array, i int) (any, bool) {
if a.IsNull(i) {
return nil, true
}
if arr, ok := a.(*array.Boolean); ok && i < arr.Len() {
return arr.Value(i), true
}
return nil, false
},
func(b array.Builder, v any) bool {
if v == nil {
b.AppendNull()
return true
}
if builder, ok := b.(*array.BooleanBuilder); ok {
if v, ok := v.(bool); ok {
builder.Append(v)
return true
}
}
return false
},
}
m[schemapb.DataType_Int8] = serdeEntry{
func(i int) arrow.DataType {
return arrow.PrimitiveTypes.Int8
},
func(a arrow.Array, i int) (any, bool) {
if a.IsNull(i) {
return nil, true
}
if arr, ok := a.(*array.Int8); ok && i < arr.Len() {
return arr.Value(i), true
}
return nil, false
},
func(b array.Builder, v any) bool {
if v == nil {
b.AppendNull()
return true
}
if builder, ok := b.(*array.Int8Builder); ok {
if v, ok := v.(int8); ok {
builder.Append(v)
return true
}
}
return false
},
}
m[schemapb.DataType_Int16] = serdeEntry{
func(i int) arrow.DataType {
return arrow.PrimitiveTypes.Int16
},
func(a arrow.Array, i int) (any, bool) {
if a.IsNull(i) {
return nil, true
}
if arr, ok := a.(*array.Int16); ok && i < arr.Len() {
return arr.Value(i), true
}
return nil, false
},
func(b array.Builder, v any) bool {
if v == nil {
b.AppendNull()
return true
}
if builder, ok := b.(*array.Int16Builder); ok {
if v, ok := v.(int16); ok {
builder.Append(v)
return true
}
}
return false
},
}
m[schemapb.DataType_Int32] = serdeEntry{
func(i int) arrow.DataType {
return arrow.PrimitiveTypes.Int32
},
func(a arrow.Array, i int) (any, bool) {
if a.IsNull(i) {
return nil, true
}
if arr, ok := a.(*array.Int32); ok && i < arr.Len() {
return arr.Value(i), true
}
return nil, false
},
func(b array.Builder, v any) bool {
if v == nil {
b.AppendNull()
return true
}
if builder, ok := b.(*array.Int32Builder); ok {
if v, ok := v.(int32); ok {
builder.Append(v)
return true
}
}
return false
},
}
m[schemapb.DataType_Int64] = serdeEntry{
func(i int) arrow.DataType {
return arrow.PrimitiveTypes.Int64
},
func(a arrow.Array, i int) (any, bool) {
if a.IsNull(i) {
return nil, true
}
if arr, ok := a.(*array.Int64); ok && i < arr.Len() {
return arr.Value(i), true
}
return nil, false
},
func(b array.Builder, v any) bool {
if v == nil {
b.AppendNull()
return true
}
if builder, ok := b.(*array.Int64Builder); ok {
if v, ok := v.(int64); ok {
builder.Append(v)
return true
}
}
return false
},
}
m[schemapb.DataType_Float] = serdeEntry{
func(i int) arrow.DataType {
return arrow.PrimitiveTypes.Float32
},
func(a arrow.Array, i int) (any, bool) {
if a.IsNull(i) {
return nil, true
}
if arr, ok := a.(*array.Float32); ok && i < arr.Len() {
return arr.Value(i), true
}
return nil, false
},
func(b array.Builder, v any) bool {
if v == nil {
b.AppendNull()
return true
}
if builder, ok := b.(*array.Float32Builder); ok {
if v, ok := v.(float32); ok {
builder.Append(v)
return true
}
}
return false
},
}
m[schemapb.DataType_Double] = serdeEntry{
func(i int) arrow.DataType {
return arrow.PrimitiveTypes.Float64
},
func(a arrow.Array, i int) (any, bool) {
if a.IsNull(i) {
return nil, true
}
if arr, ok := a.(*array.Float64); ok && i < arr.Len() {
return arr.Value(i), true
}
return nil, false
},
func(b array.Builder, v any) bool {
if v == nil {
b.AppendNull()
return true
}
if builder, ok := b.(*array.Float64Builder); ok {
if v, ok := v.(float64); ok {
builder.Append(v)
return true
}
}
return false
},
}
stringEntry := serdeEntry{
func(i int) arrow.DataType {
return arrow.BinaryTypes.String
},
func(a arrow.Array, i int) (any, bool) {
if a.IsNull(i) {
return nil, true
}
if arr, ok := a.(*array.String); ok && i < arr.Len() {
return arr.Value(i), true
}
return nil, false
},
func(b array.Builder, v any) bool {
if v == nil {
b.AppendNull()
return true
}
if builder, ok := b.(*array.StringBuilder); ok {
if v, ok := v.(string); ok {
builder.Append(v)
return true
}
}
return false
},
}
m[schemapb.DataType_VarChar] = stringEntry
m[schemapb.DataType_String] = stringEntry
// We're not using the deserialized data in go, so we can skip the heavy pb serde.
// If there is need in the future, just assign it to m[schemapb.DataType_Array]
eagerArrayEntry := serdeEntry{
func(i int) arrow.DataType {
return arrow.BinaryTypes.Binary
},
func(a arrow.Array, i int) (any, bool) {
if a.IsNull(i) {
return nil, true
}
if arr, ok := a.(*array.Binary); ok && i < arr.Len() {
v := &schemapb.ScalarField{}
if err := proto.Unmarshal(arr.Value(i), v); err == nil {
return v, true
}
}
return nil, false
},
func(b array.Builder, v any) bool {
if v == nil {
b.AppendNull()
return true
}
if builder, ok := b.(*array.BinaryBuilder); ok {
if vv, ok := v.(*schemapb.ScalarField); ok {
if bytes, err := proto.Marshal(vv); err == nil {
builder.Append(bytes)
return true
}
}
}
return false
},
}
_ = eagerArrayEntry
byteEntry := serdeEntry{
func(i int) arrow.DataType {
return arrow.BinaryTypes.Binary
},
func(a arrow.Array, i int) (any, bool) {
if a.IsNull(i) {
return nil, true
}
if arr, ok := a.(*array.Binary); ok && i < arr.Len() {
return arr.Value(i), true
}
return nil, false
},
func(b array.Builder, v any) bool {
if v == nil {
b.AppendNull()
return true
}
if builder, ok := b.(*array.BinaryBuilder); ok {
if vv, ok := v.([]byte); ok {
builder.Append(vv)
return true
}
if vv, ok := v.(*schemapb.ScalarField); ok {
if bytes, err := proto.Marshal(vv); err == nil {
builder.Append(bytes)
return true
}
}
}
return false
},
}
m[schemapb.DataType_Array] = byteEntry
m[schemapb.DataType_JSON] = byteEntry
m[schemapb.DataType_Geometry] = byteEntry
fixedSizeDeserializer := func(a arrow.Array, i int) (any, bool) {
if a.IsNull(i) {
return nil, true
}
if arr, ok := a.(*array.FixedSizeBinary); ok && i < arr.Len() {
return arr.Value(i), true
}
return nil, false
}
fixedSizeSerializer := func(b array.Builder, v any) bool {
if v == nil {
b.AppendNull()
return true
}
if builder, ok := b.(*array.FixedSizeBinaryBuilder); ok {
if v, ok := v.([]byte); ok {
builder.Append(v)
return true
}
}
return false
}
m[schemapb.DataType_BinaryVector] = serdeEntry{
func(i int) arrow.DataType {
return &arrow.FixedSizeBinaryType{ByteWidth: (i + 7) / 8}
},
fixedSizeDeserializer,
fixedSizeSerializer,
}
m[schemapb.DataType_Float16Vector] = serdeEntry{
func(i int) arrow.DataType {
return &arrow.FixedSizeBinaryType{ByteWidth: i * 2}
},
fixedSizeDeserializer,
fixedSizeSerializer,
}
m[schemapb.DataType_BFloat16Vector] = serdeEntry{
func(i int) arrow.DataType {
return &arrow.FixedSizeBinaryType{ByteWidth: i * 2}
},
fixedSizeDeserializer,
fixedSizeSerializer,
}
m[schemapb.DataType_FloatVector] = serdeEntry{
func(i int) arrow.DataType {
return &arrow.FixedSizeBinaryType{ByteWidth: i * 4}
},
func(a arrow.Array, i int) (any, bool) {
if a.IsNull(i) {
return nil, true
}
if arr, ok := a.(*array.FixedSizeBinary); ok && i < arr.Len() {
return arrow.Float32Traits.CastFromBytes(arr.Value(i)), true
}
return nil, false
},
func(b array.Builder, v any) bool {
if v == nil {
b.AppendNull()
return true
}
if builder, ok := b.(*array.FixedSizeBinaryBuilder); ok {
if vv, ok := v.([]float32); ok {
dim := len(vv)
byteLength := dim * 4
bytesData := make([]byte, byteLength)
for i, vec := range vv {
bytes := math.Float32bits(vec)
common.Endian.PutUint32(bytesData[i*4:], bytes)
}
builder.Append(bytesData)
return true
}
}
return false
},
}
m[schemapb.DataType_SparseFloatVector] = byteEntry
return m
}()
// Since parquet does not support custom fallback encoding for now,
// we disable dict encoding for primary key.
// It can be scale to all fields once parquet fallback encoding is available.
func getFieldWriterProps(field *schemapb.FieldSchema) *parquet.WriterProperties {
if field.GetIsPrimaryKey() {
return parquet.NewWriterProperties(
parquet.WithCompression(compress.Codecs.Zstd),
parquet.WithCompressionLevel(3),
parquet.WithDictionaryDefault(false),
)
}
return parquet.NewWriterProperties(
parquet.WithCompression(compress.Codecs.Zstd),
parquet.WithCompressionLevel(3),
)
}
type DeserializeReader[T any] struct {
rr RecordReader
deserializer Deserializer[T]
rec Record
values []T
pos int
}
// Iterate to next value, return error or EOF if no more value.
func (deser *DeserializeReader[T]) Next() error {
if deser.rec == nil || deser.pos >= deser.rec.Len()-1 {
if err := deser.rr.Next(); err != nil {
return err
}
deser.pos = 0
deser.rec = deser.rr.Record()
deser.values = make([]T, deser.rec.Len())
if err := deser.deserializer(deser.rec, deser.values); err != nil {
return err
}
} else {
deser.pos++
}
return nil
}
func (deser *DeserializeReader[T]) Value() T {
return deser.values[deser.pos]
}
func (deser *DeserializeReader[T]) Close() {
if deser.rec != nil {
deser.rec.Release()
}
if deser.rr != nil {
deser.rr.Close()
}
}
func NewDeserializeReader[T any](rr RecordReader, deserializer Deserializer[T]) *DeserializeReader[T] {
return &DeserializeReader[T]{
rr: rr,
deserializer: deserializer,
}
}
var _ Record = (*selectiveRecord)(nil)
// selectiveRecord is a Record that only contains a single field, reusing existing Record.
type selectiveRecord struct {
r Record
selectedFieldId FieldID
schema map[FieldID]schemapb.DataType
}
func (r *selectiveRecord) Schema() map[FieldID]schemapb.DataType {
return r.schema
}
func (r *selectiveRecord) ArrowSchema() *arrow.Schema {
return r.r.ArrowSchema()
}
func (r *selectiveRecord) Column(i FieldID) arrow.Array {
if i == r.selectedFieldId {
return r.r.Column(i)
}
return nil
}
func (r *selectiveRecord) Len() int {
return r.r.Len()
}
func (r *selectiveRecord) Release() {
// do nothing.
}
func newSelectiveRecord(r Record, selectedFieldId FieldID) *selectiveRecord {
dt, ok := r.Schema()[selectedFieldId]
if !ok {
return nil
}
schema := make(map[FieldID]schemapb.DataType, 1)
schema[selectedFieldId] = dt
return &selectiveRecord{
r: r,
selectedFieldId: selectedFieldId,
schema: schema,
}
}
var _ RecordWriter = (*compositeRecordWriter)(nil)
type compositeRecordWriter struct {
writers map[FieldID]RecordWriter
}
func (crw *compositeRecordWriter) Write(r Record) error {
if len(r.Schema()) != len(crw.writers) {
return fmt.Errorf("schema length mismatch %d, expected %d", len(r.Schema()), len(crw.writers))
}
for fieldId, w := range crw.writers {
sr := newSelectiveRecord(r, fieldId)
if err := w.Write(sr); err != nil {
return err
}
}
return nil
}
func (crw *compositeRecordWriter) Close() {
if crw != nil {
for _, w := range crw.writers {
if w != nil {
w.Close()
}
}
}
}
func newCompositeRecordWriter(writers map[FieldID]RecordWriter) *compositeRecordWriter {
return &compositeRecordWriter{
writers: writers,
}
}
var _ RecordWriter = (*singleFieldRecordWriter)(nil)
type RecordWriterOptions func(*singleFieldRecordWriter)
func WithRecordWriterProps(writerProps *parquet.WriterProperties) RecordWriterOptions {
return func(w *singleFieldRecordWriter) {
w.writerProps = writerProps
}
}
type singleFieldRecordWriter struct {
fw *pqarrow.FileWriter
fieldId FieldID
schema *arrow.Schema
numRows int
writerProps *parquet.WriterProperties
}
func (sfw *singleFieldRecordWriter) Write(r Record) error {
sfw.numRows += r.Len()
a := r.Column(sfw.fieldId)
rec := array.NewRecord(sfw.schema, []arrow.Array{a}, int64(r.Len()))
defer rec.Release()
return sfw.fw.WriteBuffered(rec)
}
func (sfw *singleFieldRecordWriter) Close() {
sfw.fw.Close()
}
func newSingleFieldRecordWriter(fieldId FieldID, field arrow.Field, writer io.Writer, opts ...RecordWriterOptions) (*singleFieldRecordWriter, error) {
w := &singleFieldRecordWriter{
fieldId: fieldId,
schema: arrow.NewSchema([]arrow.Field{field}, nil),
writerProps: parquet.NewWriterProperties(
parquet.WithMaxRowGroupLength(math.MaxInt64), // No additional grouping for now.
parquet.WithCompression(compress.Codecs.Zstd),
parquet.WithCompressionLevel(3)),
}
for _, o := range opts {
o(w)
}
fw, err := pqarrow.NewFileWriter(w.schema, writer, w.writerProps, pqarrow.DefaultWriterProps())
if err != nil {
return nil, err
}
w.fw = fw
return w, nil
}
var _ RecordWriter = (*multiFieldRecordWriter)(nil)
type multiFieldRecordWriter struct {
fw *pqarrow.FileWriter
fieldIds []FieldID
schema *arrow.Schema
numRows int
}
func (mfw *multiFieldRecordWriter) Write(r Record) error {
mfw.numRows += r.Len()
columns := make([]arrow.Array, len(mfw.fieldIds))
for i, fieldId := range mfw.fieldIds {
columns[i] = r.Column(fieldId)
}
rec := array.NewRecord(mfw.schema, columns, int64(r.Len()))
defer rec.Release()
return mfw.fw.WriteBuffered(rec)
}
func (mfw *multiFieldRecordWriter) Close() {
mfw.fw.Close()
}
func newMultiFieldRecordWriter(fieldIds []FieldID, fields []arrow.Field, writer io.Writer) (*multiFieldRecordWriter, error) {
schema := arrow.NewSchema(fields, nil)
fw, err := pqarrow.NewFileWriter(schema, writer,
parquet.NewWriterProperties(parquet.WithMaxRowGroupLength(math.MaxInt64)), // No additional grouping for now.
pqarrow.DefaultWriterProps())
if err != nil {
return nil, err
}
return &multiFieldRecordWriter{
fw: fw,
fieldIds: fieldIds,
schema: schema,
}, nil
}
type SerializeWriter[T any] struct {
rw RecordWriter
serializer Serializer[T]
batchSize int
mu sync.Mutex
buffer []T
pos int
writtenMemorySize atomic.Uint64
}
func (sw *SerializeWriter[T]) Flush() error {
sw.mu.Lock()
defer sw.mu.Unlock()
if sw.pos == 0 {
return nil
}
buf := sw.buffer[:sw.pos]
r, size, err := sw.serializer(buf)
if err != nil {
return err
}
defer r.Release()
if err := sw.rw.Write(r); err != nil {
return err
}
sw.pos = 0
sw.writtenMemorySize.Add(size)
return nil
}
func (sw *SerializeWriter[T]) Write(value T) error {
if sw.buffer == nil {
sw.buffer = make([]T, sw.batchSize)
}
sw.buffer[sw.pos] = value
sw.pos++
if sw.pos == sw.batchSize {
if err := sw.Flush(); err != nil {
return err
}
}
return nil
}
func (sw *SerializeWriter[T]) WrittenMemorySize() uint64 {
return sw.writtenMemorySize.Load()
}
func (sw *SerializeWriter[T]) Close() error {
if err := sw.Flush(); err != nil {
return err
}
sw.rw.Close()
return nil
}
func NewSerializeRecordWriter[T any](rw RecordWriter, serializer Serializer[T], batchSize int) *SerializeWriter[T] {
return &SerializeWriter[T]{
rw: rw,
serializer: serializer,
batchSize: batchSize,
}
}
type simpleArrowRecord struct {
Record
r arrow.Record
schema map[FieldID]schemapb.DataType
field2Col map[FieldID]int
}
func (sr *simpleArrowRecord) Schema() map[FieldID]schemapb.DataType {
return sr.schema
}
func (sr *simpleArrowRecord) Column(i FieldID) arrow.Array {
colIdx, ok := sr.field2Col[i]
if !ok {
panic("no such field")
}
return sr.r.Column(colIdx)
}
func (sr *simpleArrowRecord) Len() int {
return int(sr.r.NumRows())
}
func (sr *simpleArrowRecord) Release() {
sr.r.Release()
}
func (sr *simpleArrowRecord) ArrowSchema() *arrow.Schema {
return sr.r.Schema()
}
func newSimpleArrowRecord(r arrow.Record, schema map[FieldID]schemapb.DataType, field2Col map[FieldID]int) *simpleArrowRecord {
return &simpleArrowRecord{
r: r,
schema: schema,
field2Col: field2Col,
}
}