milvus/cpp/src/core/unittest/test_ivf.cpp
JinHai-CN cdf910b6e8 Format the code
Former-commit-id: 35eee89fce00364921cf35ad8539197edbdb8a01
2019-10-10 15:41:49 +08:00

775 lines
26 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include <gtest/gtest.h>
#include <iostream>
#include <thread>
#include <faiss/AutoTune.h>
#include <faiss/gpu/GpuAutoTune.h>
#include <faiss/gpu/GpuIndexIVFFlat.h>
#include "knowhere/common/Exception.h"
#include "knowhere/common/Timer.h"
#include "knowhere/index/vector_index/IndexGPUIVF.h"
#include "knowhere/index/vector_index/IndexGPUIVFPQ.h"
#include "knowhere/index/vector_index/IndexGPUIVFSQ.h"
#include "knowhere/index/vector_index/IndexIVF.h"
#include "knowhere/index/vector_index/IndexIVFPQ.h"
#include "knowhere/index/vector_index/IndexIVFSQ.h"
#include "knowhere/index/vector_index/IndexIVFSQHybrid.h"
#include "knowhere/index/vector_index/helpers/Cloner.h"
#include "unittest/utils.h"
namespace {
namespace kn = knowhere;
} // namespace
using ::testing::Combine;
using ::testing::TestWithParam;
using ::testing::Values;
constexpr int device_id = 0;
constexpr int64_t DIM = 128;
constexpr int64_t NB = 1000000 / 100;
constexpr int64_t NQ = 10;
constexpr int64_t K = 10;
kn::IVFIndexPtr
IndexFactory(const std::string& type) {
if (type == "IVF") {
return std::make_shared<kn::IVF>();
} else if (type == "IVFPQ") {
return std::make_shared<kn::IVFPQ>();
} else if (type == "GPUIVF") {
return std::make_shared<kn::GPUIVF>(device_id);
} else if (type == "GPUIVFPQ") {
return std::make_shared<kn::GPUIVFPQ>(device_id);
} else if (type == "IVFSQ") {
return std::make_shared<kn::IVFSQ>();
} else if (type == "GPUIVFSQ") {
return std::make_shared<kn::GPUIVFSQ>(device_id);
} else if (type == "IVFSQHybrid") {
return std::make_shared<kn::IVFSQHybrid>(device_id);
}
}
enum class ParameterType {
ivf,
ivfpq,
ivfsq,
ivfsqhybrid,
nsg,
};
class ParamGenerator {
public:
static ParamGenerator&
GetInstance() {
static ParamGenerator instance;
return instance;
}
kn::Config
Gen(const ParameterType& type) {
if (type == ParameterType::ivf) {
auto tempconf = std::make_shared<kn::IVFCfg>();
tempconf->d = DIM;
tempconf->gpu_id = device_id;
tempconf->nlist = 100;
tempconf->nprobe = 16;
tempconf->k = K;
tempconf->metric_type = kn::METRICTYPE::L2;
return tempconf;
} else if (type == ParameterType::ivfpq) {
auto tempconf = std::make_shared<kn::IVFPQCfg>();
tempconf->d = DIM;
tempconf->gpu_id = device_id;
tempconf->nlist = 100;
tempconf->nprobe = 16;
tempconf->k = K;
tempconf->m = 8;
tempconf->nbits = 8;
tempconf->metric_type = kn::METRICTYPE::L2;
return tempconf;
} else if (type == ParameterType::ivfsq || type == ParameterType::ivfsqhybrid) {
auto tempconf = std::make_shared<kn::IVFSQCfg>();
tempconf->d = DIM;
tempconf->gpu_id = device_id;
tempconf->nlist = 100;
tempconf->nprobe = 16;
tempconf->k = K;
tempconf->nbits = 8;
tempconf->metric_type = kn::METRICTYPE::L2;
return tempconf;
}
}
};
class IVFTest : public DataGen, public TestWithParam<::std::tuple<std::string, ParameterType>> {
protected:
void
SetUp() override {
ParameterType parameter_type;
std::tie(index_type, parameter_type) = GetParam();
// Init_with_default();
Generate(DIM, NB, NQ);
index_ = IndexFactory(index_type);
conf = ParamGenerator::GetInstance().Gen(parameter_type);
kn::FaissGpuResourceMgr::GetInstance().InitDevice(device_id, 1024 * 1024 * 200, 1024 * 1024 * 600, 2);
}
void
TearDown() override {
kn::FaissGpuResourceMgr::GetInstance().Free();
}
kn::VectorIndexPtr
ChooseTodo() {
std::vector<std::string> gpu_idx{"GPUIVFSQ"};
auto finder = std::find(gpu_idx.cbegin(), gpu_idx.cend(), index_type);
if (finder != gpu_idx.cend()) {
return kn::cloner::CopyCpuToGpu(index_, device_id, kn::Config());
}
return index_;
}
protected:
std::string index_type;
kn::Config conf;
kn::IVFIndexPtr index_ = nullptr;
};
INSTANTIATE_TEST_CASE_P(IVFParameters, IVFTest,
Values(std::make_tuple("IVF", ParameterType::ivf),
std::make_tuple("GPUIVF", ParameterType::ivf),
// std::make_tuple("IVFPQ", ParameterType::ivfpq),
// std::make_tuple("GPUIVFPQ", ParameterType::ivfpq),
std::make_tuple("IVFSQ", ParameterType::ivfsq),
std::make_tuple("GPUIVFSQ", ParameterType::ivfsq),
std::make_tuple("IVFSQHybrid", ParameterType::ivfsqhybrid)));
void
AssertAnns(const kn::DatasetPtr& result, const int& nq, const int& k) {
auto ids = result->array()[0];
for (auto i = 0; i < nq; i++) {
EXPECT_EQ(i, *(ids->data()->GetValues<int64_t>(1, i * k)));
}
}
void
PrintResult(const kn::DatasetPtr& result, const int& nq, const int& k) {
auto ids = result->array()[0];
auto dists = result->array()[1];
std::stringstream ss_id;
std::stringstream ss_dist;
for (auto i = 0; i < 10; i++) {
for (auto j = 0; j < k; ++j) {
ss_id << *(ids->data()->GetValues<int64_t>(1, i * k + j)) << " ";
ss_dist << *(dists->data()->GetValues<float>(1, i * k + j)) << " ";
}
ss_id << std::endl;
ss_dist << std::endl;
}
std::cout << "id\n" << ss_id.str() << std::endl;
std::cout << "dist\n" << ss_dist.str() << std::endl;
}
TEST_P(IVFTest, ivf_basic) {
assert(!xb.empty());
auto preprocessor = index_->BuildPreprocessor(base_dataset, conf);
index_->set_preprocessor(preprocessor);
auto model = index_->Train(base_dataset, conf);
index_->set_index_model(model);
index_->Add(base_dataset, conf);
EXPECT_EQ(index_->Count(), nb);
EXPECT_EQ(index_->Dimension(), dim);
auto new_idx = ChooseTodo();
auto result = new_idx->Search(query_dataset, conf);
AssertAnns(result, nq, conf->k);
// PrintResult(result, nq, k);
}
TEST_P(IVFTest, hybrid) {
if (index_type != "IVFSQHybrid") {
return;
}
assert(!xb.empty());
auto preprocessor = index_->BuildPreprocessor(base_dataset, conf);
index_->set_preprocessor(preprocessor);
auto model = index_->Train(base_dataset, conf);
index_->set_index_model(model);
index_->Add(base_dataset, conf);
EXPECT_EQ(index_->Count(), nb);
EXPECT_EQ(index_->Dimension(), dim);
// auto new_idx = ChooseTodo();
// auto result = new_idx->Search(query_dataset, conf);
// AssertAnns(result, nq, conf->k);
{
auto hybrid_1_idx = std::make_shared<kn::IVFSQHybrid>(device_id);
auto binaryset = index_->Serialize();
hybrid_1_idx->Load(binaryset);
auto quantizer_conf = std::make_shared<kn::QuantizerCfg>();
quantizer_conf->mode = 1;
quantizer_conf->gpu_id = device_id;
auto q = hybrid_1_idx->LoadQuantizer(quantizer_conf);
hybrid_1_idx->SetQuantizer(q);
auto result = hybrid_1_idx->Search(query_dataset, conf);
AssertAnns(result, nq, conf->k);
PrintResult(result, nq, k);
}
{
auto hybrid_2_idx = std::make_shared<kn::IVFSQHybrid>(device_id);
auto binaryset = index_->Serialize();
hybrid_2_idx->Load(binaryset);
auto quantizer_conf = std::make_shared<kn::QuantizerCfg>();
quantizer_conf->mode = 1;
quantizer_conf->gpu_id = device_id;
auto q = hybrid_2_idx->LoadQuantizer(quantizer_conf);
quantizer_conf->mode = 2;
hybrid_2_idx->LoadData(q, quantizer_conf);
auto result = hybrid_2_idx->Search(query_dataset, conf);
AssertAnns(result, nq, conf->k);
PrintResult(result, nq, k);
}
}
// TEST_P(IVFTest, gpu_to_cpu) {
// if (index_type.find("GPU") == std::string::npos) { return; }
//
// // else
// assert(!xb.empty());
//
// auto preprocessor = index_->BuildPreprocessor(base_dataset, conf);
// index_->set_preprocessor(preprocessor);
//
// auto model = index_->Train(base_dataset, conf);
// index_->set_index_model(model);
// index_->Add(base_dataset, conf);
// EXPECT_EQ(index_->Count(), nb);
// EXPECT_EQ(index_->Dimension(), dim);
// auto result = index_->Search(query_dataset, conf);
// AssertAnns(result, nq, k);
//
// if (auto device_index = std::dynamic_pointer_cast<GPUIVF>(index_)) {
// auto host_index = device_index->Copy_index_gpu_to_cpu();
// auto result = host_index->Search(query_dataset, conf);
// AssertAnns(result, nq, k);
// }
//}
TEST_P(IVFTest, ivf_serialize) {
auto serialize = [](const std::string& filename, kn::BinaryPtr& bin, uint8_t* ret) {
FileIOWriter writer(filename);
writer(static_cast<void*>(bin->data.get()), bin->size);
FileIOReader reader(filename);
reader(ret, bin->size);
};
{
// serialize index-model
auto model = index_->Train(base_dataset, conf);
auto binaryset = model->Serialize();
auto bin = binaryset.GetByName("IVF");
std::string filename = "/tmp/ivf_test_model_serialize.bin";
auto load_data = new uint8_t[bin->size];
serialize(filename, bin, load_data);
binaryset.clear();
auto data = std::make_shared<uint8_t>();
data.reset(load_data);
binaryset.Append("IVF", data, bin->size);
model->Load(binaryset);
index_->set_index_model(model);
index_->Add(base_dataset, conf);
auto new_idx = ChooseTodo();
auto result = new_idx->Search(query_dataset, conf);
AssertAnns(result, nq, conf->k);
}
{
// serialize index
auto model = index_->Train(base_dataset, conf);
index_->set_index_model(model);
index_->Add(base_dataset, conf);
auto binaryset = index_->Serialize();
auto bin = binaryset.GetByName("IVF");
std::string filename = "/tmp/ivf_test_serialize.bin";
auto load_data = new uint8_t[bin->size];
serialize(filename, bin, load_data);
binaryset.clear();
auto data = std::make_shared<uint8_t>();
data.reset(load_data);
binaryset.Append("IVF", data, bin->size);
index_->Load(binaryset);
EXPECT_EQ(index_->Count(), nb);
EXPECT_EQ(index_->Dimension(), dim);
auto new_idx = ChooseTodo();
auto result = new_idx->Search(query_dataset, conf);
AssertAnns(result, nq, conf->k);
}
}
TEST_P(IVFTest, clone_test) {
assert(!xb.empty());
auto preprocessor = index_->BuildPreprocessor(base_dataset, conf);
index_->set_preprocessor(preprocessor);
auto model = index_->Train(base_dataset, conf);
index_->set_index_model(model);
index_->Add(base_dataset, conf);
EXPECT_EQ(index_->Count(), nb);
EXPECT_EQ(index_->Dimension(), dim);
auto new_idx = ChooseTodo();
auto result = new_idx->Search(query_dataset, conf);
AssertAnns(result, nq, conf->k);
// PrintResult(result, nq, k);
auto AssertEqual = [&](kn::DatasetPtr p1, kn::DatasetPtr p2) {
auto ids_p1 = p1->array()[0];
auto ids_p2 = p2->array()[0];
for (int i = 0; i < nq * k; ++i) {
EXPECT_EQ(*(ids_p2->data()->GetValues<int64_t>(1, i)), *(ids_p1->data()->GetValues<int64_t>(1, i)));
}
};
// {
// // clone in place
// std::vector<std::string> support_idx_vec{"IVF", "GPUIVF", "IVFPQ", "IVFSQ", "GPUIVFSQ"};
// auto finder = std::find(support_idx_vec.cbegin(), support_idx_vec.cend(), index_type);
// if (finder != support_idx_vec.cend()) {
// EXPECT_NO_THROW({
// auto clone_index = index_->Clone();
// auto clone_result = clone_index->Search(query_dataset, conf);
// //AssertAnns(result, nq, conf->k);
// AssertEqual(result, clone_result);
// std::cout << "inplace clone [" << index_type << "] success" << std::endl;
// });
// } else {
// EXPECT_THROW({
// std::cout << "inplace clone [" << index_type << "] failed" << std::endl;
// auto clone_index = index_->Clone();
// }, KnowhereException);
// }
// }
{
if (index_type == "IVFSQHybrid") {
return;
}
}
{
// copy from gpu to cpu
std::vector<std::string> support_idx_vec{"GPUIVF", "GPUIVFSQ", "IVFSQHybrid"};
auto finder = std::find(support_idx_vec.cbegin(), support_idx_vec.cend(), index_type);
if (finder != support_idx_vec.cend()) {
EXPECT_NO_THROW({
auto clone_index = kn::cloner::CopyGpuToCpu(index_, kn::Config());
auto clone_result = clone_index->Search(query_dataset, conf);
AssertEqual(result, clone_result);
std::cout << "clone G <=> C [" << index_type << "] success" << std::endl;
});
} else {
EXPECT_THROW(
{
std::cout << "clone G <=> C [" << index_type << "] failed" << std::endl;
auto clone_index = kn::cloner::CopyGpuToCpu(index_, kn::Config());
},
kn::KnowhereException);
}
}
{
// copy to gpu
std::vector<std::string> support_idx_vec{"IVF", "GPUIVF", "IVFSQ", "GPUIVFSQ"};
auto finder = std::find(support_idx_vec.cbegin(), support_idx_vec.cend(), index_type);
if (finder != support_idx_vec.cend()) {
EXPECT_NO_THROW({
auto clone_index = kn::cloner::CopyCpuToGpu(index_, device_id, kn::Config());
auto clone_result = clone_index->Search(query_dataset, conf);
AssertEqual(result, clone_result);
std::cout << "clone C <=> G [" << index_type << "] success" << std::endl;
});
} else {
EXPECT_THROW(
{
std::cout << "clone C <=> G [" << index_type << "] failed" << std::endl;
auto clone_index = kn::cloner::CopyCpuToGpu(index_, device_id, kn::Config());
},
kn::KnowhereException);
}
}
}
TEST_P(IVFTest, seal_test) {
// FaissGpuResourceMgr::GetInstance().InitDevice(device_id);
std::vector<std::string> support_idx_vec{"GPUIVF", "GPUIVFSQ", "IVFSQHybrid"};
auto finder = std::find(support_idx_vec.cbegin(), support_idx_vec.cend(), index_type);
if (finder == support_idx_vec.cend()) {
return;
}
assert(!xb.empty());
auto preprocessor = index_->BuildPreprocessor(base_dataset, conf);
index_->set_preprocessor(preprocessor);
auto model = index_->Train(base_dataset, conf);
index_->set_index_model(model);
index_->Add(base_dataset, conf);
EXPECT_EQ(index_->Count(), nb);
EXPECT_EQ(index_->Dimension(), dim);
auto new_idx = ChooseTodo();
auto result = new_idx->Search(query_dataset, conf);
AssertAnns(result, nq, conf->k);
auto cpu_idx = kn::cloner::CopyGpuToCpu(index_, kn::Config());
kn::TimeRecorder tc("CopyToGpu");
kn::cloner::CopyCpuToGpu(cpu_idx, device_id, kn::Config());
auto without_seal = tc.RecordSection("Without seal");
cpu_idx->Seal();
tc.RecordSection("seal cost");
kn::cloner::CopyCpuToGpu(cpu_idx, device_id, kn::Config());
auto with_seal = tc.RecordSection("With seal");
ASSERT_GE(without_seal, with_seal);
}
class GPURESTEST : public DataGen, public ::testing::Test {
protected:
void
SetUp() override {
Generate(128, 1000000, 1000);
kn::FaissGpuResourceMgr::GetInstance().InitDevice(device_id, 1024 * 1024 * 200, 1024 * 1024 * 300, 2);
k = 100;
elems = nq * k;
ids = (int64_t*)malloc(sizeof(int64_t) * elems);
dis = (float*)malloc(sizeof(float) * elems);
}
void
TearDown() override {
delete ids;
delete dis;
kn::FaissGpuResourceMgr::GetInstance().Free();
}
protected:
std::string index_type;
kn::IVFIndexPtr index_ = nullptr;
int64_t* ids = nullptr;
float* dis = nullptr;
int64_t elems = 0;
};
const int search_count = 18;
const int load_count = 3;
TEST_F(GPURESTEST, gpu_ivf_resource_test) {
assert(!xb.empty());
{
index_ = std::make_shared<kn::GPUIVF>(-1);
ASSERT_EQ(std::dynamic_pointer_cast<kn::GPUIVF>(index_)->GetGpuDevice(), -1);
std::dynamic_pointer_cast<kn::GPUIVF>(index_)->SetGpuDevice(device_id);
ASSERT_EQ(std::dynamic_pointer_cast<kn::GPUIVF>(index_)->GetGpuDevice(), device_id);
auto conf = std::make_shared<kn::IVFCfg>();
conf->nlist = 1638;
conf->d = dim;
conf->gpu_id = device_id;
conf->metric_type = kn::METRICTYPE::L2;
conf->k = k;
conf->nprobe = 1;
auto preprocessor = index_->BuildPreprocessor(base_dataset, conf);
index_->set_preprocessor(preprocessor);
auto model = index_->Train(base_dataset, conf);
index_->set_index_model(model);
index_->Add(base_dataset, conf);
EXPECT_EQ(index_->Count(), nb);
EXPECT_EQ(index_->Dimension(), dim);
kn::TimeRecorder tc("knowere GPUIVF");
for (int i = 0; i < search_count; ++i) {
index_->Search(query_dataset, conf);
if (i > search_count - 6 || i < 5)
tc.RecordSection("search once");
}
tc.ElapseFromBegin("search all");
}
kn::FaissGpuResourceMgr::GetInstance().Dump();
{
// IVF-Search
faiss::gpu::StandardGpuResources res;
faiss::gpu::GpuIndexIVFFlatConfig idx_config;
idx_config.device = device_id;
faiss::gpu::GpuIndexIVFFlat device_index(&res, dim, 1638, faiss::METRIC_L2, idx_config);
device_index.train(nb, xb.data());
device_index.add(nb, xb.data());
kn::TimeRecorder tc("ori IVF");
for (int i = 0; i < search_count; ++i) {
device_index.search(nq, xq.data(), k, dis, ids);
if (i > search_count - 6 || i < 5)
tc.RecordSection("search once");
}
tc.ElapseFromBegin("search all");
}
}
TEST_F(GPURESTEST, gpuivfsq) {
{
// knowhere gpu ivfsq
index_type = "GPUIVFSQ";
index_ = IndexFactory(index_type);
auto conf = std::make_shared<kn::IVFSQCfg>();
conf->nlist = 1638;
conf->d = dim;
conf->gpu_id = device_id;
conf->metric_type = kn::METRICTYPE::L2;
conf->k = k;
conf->nbits = 8;
conf->nprobe = 1;
auto preprocessor = index_->BuildPreprocessor(base_dataset, conf);
index_->set_preprocessor(preprocessor);
auto model = index_->Train(base_dataset, conf);
index_->set_index_model(model);
index_->Add(base_dataset, conf);
// auto result = index_->Search(query_dataset, conf);
// AssertAnns(result, nq, k);
auto cpu_idx = kn::cloner::CopyGpuToCpu(index_, kn::Config());
cpu_idx->Seal();
kn::TimeRecorder tc("knowhere GPUSQ8");
auto search_idx = kn::cloner::CopyCpuToGpu(cpu_idx, device_id, kn::Config());
tc.RecordSection("Copy to gpu");
for (int i = 0; i < search_count; ++i) {
search_idx->Search(query_dataset, conf);
if (i > search_count - 6 || i < 5)
tc.RecordSection("search once");
}
tc.ElapseFromBegin("search all");
}
{
// Ori gpuivfsq Test
const char* index_description = "IVF1638,SQ8";
faiss::Index* ori_index = faiss::index_factory(dim, index_description, faiss::METRIC_L2);
faiss::gpu::StandardGpuResources res;
auto device_index = faiss::gpu::index_cpu_to_gpu(&res, device_id, ori_index);
device_index->train(nb, xb.data());
device_index->add(nb, xb.data());
auto cpu_index = faiss::gpu::index_gpu_to_cpu(device_index);
auto idx = dynamic_cast<faiss::IndexIVF*>(cpu_index);
if (idx != nullptr) {
idx->to_readonly();
}
delete device_index;
delete ori_index;
faiss::gpu::GpuClonerOptions option;
option.allInGpu = true;
kn::TimeRecorder tc("ori GPUSQ8");
faiss::Index* search_idx = faiss::gpu::index_cpu_to_gpu(&res, device_id, cpu_index, &option);
tc.RecordSection("Copy to gpu");
for (int i = 0; i < search_count; ++i) {
search_idx->search(nq, xq.data(), k, dis, ids);
if (i > search_count - 6 || i < 5)
tc.RecordSection("search once");
}
tc.ElapseFromBegin("search all");
delete cpu_index;
delete search_idx;
}
}
TEST_F(GPURESTEST, copyandsearch) {
// search and copy at the same time
printf("==================\n");
index_type = "GPUIVFSQ";
index_ = IndexFactory(index_type);
auto conf = std::make_shared<kn::IVFSQCfg>();
conf->nlist = 1638;
conf->d = dim;
conf->gpu_id = device_id;
conf->metric_type = kn::METRICTYPE::L2;
conf->k = k;
conf->nbits = 8;
conf->nprobe = 1;
auto preprocessor = index_->BuildPreprocessor(base_dataset, conf);
index_->set_preprocessor(preprocessor);
auto model = index_->Train(base_dataset, conf);
index_->set_index_model(model);
index_->Add(base_dataset, conf);
// auto result = index_->Search(query_dataset, conf);
// AssertAnns(result, nq, k);
auto cpu_idx = kn::cloner::CopyGpuToCpu(index_, kn::Config());
cpu_idx->Seal();
auto search_idx = kn::cloner::CopyCpuToGpu(cpu_idx, device_id, kn::Config());
auto search_func = [&] {
// TimeRecorder tc("search&load");
for (int i = 0; i < search_count; ++i) {
search_idx->Search(query_dataset, conf);
// if (i > search_count - 6 || i == 0)
// tc.RecordSection("search once");
}
// tc.ElapseFromBegin("search finish");
};
auto load_func = [&] {
// TimeRecorder tc("search&load");
for (int i = 0; i < load_count; ++i) {
kn::cloner::CopyCpuToGpu(cpu_idx, device_id, kn::Config());
// if (i > load_count -5 || i < 5)
// tc.RecordSection("Copy to gpu");
}
// tc.ElapseFromBegin("load finish");
};
kn::TimeRecorder tc("basic");
kn::cloner::CopyCpuToGpu(cpu_idx, device_id, kn::Config());
tc.RecordSection("Copy to gpu once");
search_idx->Search(query_dataset, conf);
tc.RecordSection("search once");
search_func();
tc.RecordSection("only search total");
load_func();
tc.RecordSection("only copy total");
std::thread search_thread(search_func);
std::thread load_thread(load_func);
search_thread.join();
load_thread.join();
tc.RecordSection("Copy&search total");
}
TEST_F(GPURESTEST, TrainAndSearch) {
index_type = "GPUIVFSQ";
index_ = IndexFactory(index_type);
auto conf = std::make_shared<kn::IVFSQCfg>();
conf->nlist = 1638;
conf->d = dim;
conf->gpu_id = device_id;
conf->metric_type = kn::METRICTYPE::L2;
conf->k = k;
conf->nbits = 8;
conf->nprobe = 1;
auto preprocessor = index_->BuildPreprocessor(base_dataset, conf);
index_->set_preprocessor(preprocessor);
auto model = index_->Train(base_dataset, conf);
auto new_index = IndexFactory(index_type);
new_index->set_index_model(model);
new_index->Add(base_dataset, conf);
auto cpu_idx = kn::cloner::CopyGpuToCpu(new_index, kn::Config());
cpu_idx->Seal();
auto search_idx = kn::cloner::CopyCpuToGpu(cpu_idx, device_id, kn::Config());
constexpr int train_count = 1;
constexpr int search_count = 5000;
auto train_stage = [&] {
for (int i = 0; i < train_count; ++i) {
auto model = index_->Train(base_dataset, conf);
auto test_idx = IndexFactory(index_type);
test_idx->set_index_model(model);
test_idx->Add(base_dataset, conf);
}
};
auto search_stage = [&](kn::VectorIndexPtr& search_idx) {
for (int i = 0; i < search_count; ++i) {
auto result = search_idx->Search(query_dataset, conf);
AssertAnns(result, nq, k);
}
};
// TimeRecorder tc("record");
// train_stage();
// tc.RecordSection("train cost");
// search_stage(search_idx);
// tc.RecordSection("search cost");
{
// search and build parallel
std::thread search_thread(search_stage, std::ref(search_idx));
std::thread train_thread(train_stage);
train_thread.join();
search_thread.join();
}
{
// build parallel
std::thread train_1(train_stage);
std::thread train_2(train_stage);
train_1.join();
train_2.join();
}
{
// search parallel
auto search_idx_2 = kn::cloner::CopyCpuToGpu(cpu_idx, device_id, kn::Config());
std::thread search_1(search_stage, std::ref(search_idx));
std::thread search_2(search_stage, std::ref(search_idx_2));
search_1.join();
search_2.join();
}
}
// TODO(lxj): Add exception test