milvus/internal/core/unittest/test_string_expr.cpp
zhenshan.cao 60e88fb833
fix: Restore the MVCC functionality. (#29749)
When the TimeTravel functionality was previously removed, it
inadvertently affected the MVCC functionality within the system. This PR
aims to reintroduce the internal MVCC functionality as follows:

1. Add MvccTimestamp to the requests of Search/Query and the results of
Search internally.
2. When the delegator receives a Query/Search request and there is no
MVCC timestamp set in the request, set the delegator's current tsafe as
the MVCC timestamp of the request. If the request already has an MVCC
timestamp, do not modify it.
3. When the Proxy handles Search and triggers the second phase ReQuery,
divide the ReQuery into different shards and pass the MVCC timestamp to
the corresponding Query requests.

issue: #29656

Signed-off-by: zhenshan.cao <zhenshan.cao@zilliz.com>
2024-01-09 11:38:48 +08:00

787 lines
29 KiB
C++

// Copyright (C) 2019-2020 Zilliz. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under the License
#include <gtest/gtest.h>
#include <memory>
#include <boost/format.hpp>
#include <regex>
#include "pb/plan.pb.h"
#include "query/Expr.h"
#include "query/generated/PlanNodeVisitor.h"
#include "query/generated/ExecExprVisitor.h"
#include "segcore/SegmentGrowingImpl.h"
#include "test_utils/DataGen.h"
#include "query/PlanProto.h"
#include "query/Utils.h"
#include "query/SearchBruteForce.h"
using namespace milvus;
namespace {
template <typename T>
auto
GenGenericValue(T value) {
auto generic = new proto::plan::GenericValue();
if constexpr (std::is_same_v<T, bool>) {
generic->set_bool_val(static_cast<bool>(value));
} else if constexpr (std::is_integral_v<T>) {
generic->set_int64_val(static_cast<int64_t>(value));
} else if constexpr (std::is_floating_point_v<T>) {
generic->set_float_val(static_cast<float>(value));
} else if constexpr (std::is_same_v<T, std::string>) {
generic->set_string_val(static_cast<std::string>(value));
} else {
static_assert(always_false<T>);
}
return generic;
}
auto
GenColumnInfo(int64_t field_id,
proto::schema::DataType field_type,
bool auto_id,
bool is_pk) {
auto column_info = new proto::plan::ColumnInfo();
column_info->set_field_id(field_id);
column_info->set_data_type(field_type);
column_info->set_is_autoid(auto_id);
column_info->set_is_primary_key(is_pk);
return column_info;
}
auto
GenQueryInfo(int64_t topk,
std::string metric_type,
std::string search_params,
int64_t round_decimal = -1) {
auto query_info = new proto::plan::QueryInfo();
query_info->set_topk(topk);
query_info->set_metric_type(metric_type);
query_info->set_search_params(search_params);
query_info->set_round_decimal(round_decimal);
return query_info;
}
auto
GenAnns(proto::plan::Expr* predicate,
proto::plan::VectorType vectorType,
int64_t field_id,
std::string placeholder_tag = "$0") {
auto query_info = GenQueryInfo(10, "L2", "{\"nprobe\": 10}", -1);
auto anns = new proto::plan::VectorANNS();
anns->set_vector_type(vectorType);
anns->set_field_id(field_id);
anns->set_allocated_predicates(predicate);
anns->set_allocated_query_info(query_info);
anns->set_placeholder_tag(placeholder_tag);
return anns;
}
template <typename T>
auto
GenTermExpr(const std::vector<T>& values) {
auto term_expr = new proto::plan::TermExpr();
for (int i = 0; i < values.size(); i++) {
auto add_value = term_expr->add_values();
if constexpr (std::is_same_v<T, bool>) {
add_value->set_bool_val(static_cast<T>(values[i]));
} else if constexpr (std::is_integral_v<T>) {
add_value->set_int64_val(static_cast<int64_t>(values[i]));
} else if constexpr (std::is_floating_point_v<T>) {
add_value->set_float_val(static_cast<double>(values[i]));
} else if constexpr (std::is_same_v<T, std::string>) {
add_value->set_string_val(static_cast<T>(values[i]));
} else {
static_assert(always_false<T>);
}
}
return term_expr;
}
auto
GenCompareExpr(proto::plan::OpType op) {
auto compare_expr = new proto::plan::CompareExpr();
compare_expr->set_op(op);
return compare_expr;
}
template <typename T>
auto
GenUnaryRangeExpr(proto::plan::OpType op, T& value) {
auto unary_range_expr = new proto::plan::UnaryRangeExpr();
unary_range_expr->set_op(op);
auto generic = GenGenericValue(value);
unary_range_expr->set_allocated_value(generic);
return unary_range_expr;
}
template <typename T>
auto
GenBinaryRangeExpr(bool lb_inclusive, bool ub_inclusive, T lb, T ub) {
auto binary_range_expr = new proto::plan::BinaryRangeExpr();
binary_range_expr->set_lower_inclusive(lb_inclusive);
binary_range_expr->set_upper_inclusive(ub_inclusive);
auto lb_generic = GenGenericValue(lb);
auto ub_generic = GenGenericValue(ub);
binary_range_expr->set_allocated_lower_value(lb_generic);
binary_range_expr->set_allocated_upper_value(ub_generic);
return binary_range_expr;
}
auto
GenNotExpr() {
auto not_expr = new proto::plan::UnaryExpr();
not_expr->set_op(proto::plan::UnaryExpr_UnaryOp_Not);
return not_expr;
}
auto
GenExpr() {
return std::make_unique<proto::plan::Expr>();
}
auto
GenPlanNode() {
return std::make_unique<proto::plan::PlanNode>();
}
void
SetTargetEntry(std::unique_ptr<proto::plan::PlanNode>& plan_node,
const std::vector<int64_t>& output_fields) {
for (auto id : output_fields) {
plan_node->add_output_field_ids(id);
}
}
auto
GenTermPlan(const FieldMeta& fvec_meta,
const FieldMeta& str_meta,
const std::vector<std::string>& strs)
-> std::unique_ptr<proto::plan::PlanNode> {
auto column_info = GenColumnInfo(str_meta.get_id().get(),
proto::schema::DataType::VarChar,
false,
false);
auto term_expr = GenTermExpr<std::string>(strs);
term_expr->set_allocated_column_info(column_info);
auto expr = GenExpr().release();
expr->set_allocated_term_expr(term_expr);
proto::plan::VectorType vector_type;
if (fvec_meta.get_data_type() == DataType::VECTOR_FLOAT) {
vector_type = proto::plan::VectorType::FloatVector;
} else if (fvec_meta.get_data_type() == DataType::VECTOR_BINARY) {
vector_type = proto::plan::VectorType::BinaryVector;
} else if (fvec_meta.get_data_type() == DataType::VECTOR_FLOAT16) {
vector_type = proto::plan::VectorType::Float16Vector;
}
auto anns = GenAnns(expr, vector_type, fvec_meta.get_id().get(), "$0");
auto plan_node = GenPlanNode();
plan_node->set_allocated_vector_anns(anns);
return plan_node;
}
auto
GenAlwaysFalseExpr(const FieldMeta& fvec_meta, const FieldMeta& str_meta) {
auto column_info = GenColumnInfo(str_meta.get_id().get(),
proto::schema::DataType::VarChar,
false,
false);
auto term_expr =
GenTermExpr<std::string>({}); // in empty set, always false.
term_expr->set_allocated_column_info(column_info);
auto expr = GenExpr().release();
expr->set_allocated_term_expr(term_expr);
return expr;
}
auto
GenAlwaysTrueExpr(const FieldMeta& fvec_meta, const FieldMeta& str_meta) {
auto always_false_expr = GenAlwaysFalseExpr(fvec_meta, str_meta);
auto not_expr = GenNotExpr();
not_expr->set_allocated_child(always_false_expr);
auto expr = GenExpr().release();
expr->set_allocated_unary_expr(not_expr);
return expr;
}
auto
GenAlwaysFalsePlan(const FieldMeta& fvec_meta, const FieldMeta& str_meta) {
auto always_false_expr = GenAlwaysFalseExpr(fvec_meta, str_meta);
proto::plan::VectorType vector_type;
if (fvec_meta.get_data_type() == DataType::VECTOR_FLOAT) {
vector_type = proto::plan::VectorType::FloatVector;
} else if (fvec_meta.get_data_type() == DataType::VECTOR_BINARY) {
vector_type = proto::plan::VectorType::BinaryVector;
} else if (fvec_meta.get_data_type() == DataType::VECTOR_FLOAT16) {
vector_type = proto::plan::VectorType::Float16Vector;
}
auto anns =
GenAnns(always_false_expr, vector_type, fvec_meta.get_id().get(), "$0");
auto plan_node = GenPlanNode();
plan_node->set_allocated_vector_anns(anns);
return plan_node;
}
auto
GenAlwaysTruePlan(const FieldMeta& fvec_meta, const FieldMeta& str_meta) {
auto always_true_expr = GenAlwaysTrueExpr(fvec_meta, str_meta);
proto::plan::VectorType vector_type;
if (fvec_meta.get_data_type() == DataType::VECTOR_FLOAT) {
vector_type = proto::plan::VectorType::FloatVector;
} else if (fvec_meta.get_data_type() == DataType::VECTOR_BINARY) {
vector_type = proto::plan::VectorType::BinaryVector;
} else if (fvec_meta.get_data_type() == DataType::VECTOR_FLOAT16) {
vector_type = proto::plan::VectorType::Float16Vector;
}
auto anns =
GenAnns(always_true_expr, vector_type, fvec_meta.get_id().get(), "$0");
auto plan_node = GenPlanNode();
plan_node->set_allocated_vector_anns(anns);
return plan_node;
}
SchemaPtr
GenTestSchema() {
auto schema = std::make_shared<Schema>();
schema->AddDebugField("str", DataType::VARCHAR);
schema->AddDebugField("another_str", DataType::VARCHAR);
schema->AddDebugField(
"fvec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2);
auto pk = schema->AddDebugField("int64", DataType::INT64);
schema->set_primary_field_id(pk);
return schema;
}
SchemaPtr
GenStrPKSchema() {
auto schema = std::make_shared<Schema>();
auto pk = schema->AddDebugField("str", DataType::VARCHAR);
schema->AddDebugField("another_str", DataType::VARCHAR);
schema->AddDebugField(
"fvec", DataType::VECTOR_FLOAT, 16, knowhere::metric::L2);
schema->AddDebugField("int64", DataType::INT64);
schema->set_primary_field_id(pk);
return schema;
}
} // namespace
TEST(StringExpr, Term) {
using namespace milvus::query;
using namespace milvus::segcore;
auto schema = GenTestSchema();
const auto& fvec_meta = schema->operator[](FieldName("fvec"));
const auto& str_meta = schema->operator[](FieldName("str"));
auto vec_2k_3k = []() -> std::vector<std::string> {
std::vector<std::string> ret;
for (int i = 2000; i < 3000; i++) {
ret.push_back(std::to_string(i));
}
return ret;
}();
std::map<int, std::vector<std::string>> terms = {
{0, {"2000", "3000"}},
{1, {"2000"}},
{2, {"3000"}},
{3, {}},
{4, {vec_2k_3k}},
};
auto seg = CreateGrowingSegment(schema, empty_index_meta);
int N = 1000;
std::vector<std::string> str_col;
int num_iters = 100;
for (int iter = 0; iter < num_iters; ++iter) {
auto raw_data = DataGen(schema, N, iter);
auto new_str_col = raw_data.get_col(str_meta.get_id());
auto begin = FIELD_DATA(new_str_col, string).begin();
auto end = FIELD_DATA(new_str_col, string).end();
str_col.insert(str_col.end(), begin, end);
seg->PreInsert(N);
seg->Insert(iter * N,
N,
raw_data.row_ids_.data(),
raw_data.timestamps_.data(),
raw_data.raw_);
}
auto seg_promote = dynamic_cast<SegmentGrowingImpl*>(seg.get());
for (const auto& [_, term] : terms) {
auto plan_proto = GenTermPlan(fvec_meta, str_meta, term);
auto plan = ProtoParser(*schema).CreatePlan(*plan_proto);
query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP);
BitsetType final;
visitor.ExecuteExprNode(plan->plan_node_->filter_plannode_.value(),
seg_promote,
N * num_iters,
final);
EXPECT_EQ(final.size(), N * num_iters);
for (int i = 0; i < N * num_iters; ++i) {
auto ans = final[i];
auto val = str_col[i];
auto ref = std::find(term.begin(), term.end(), val) != term.end();
ASSERT_EQ(ans, ref) << "@" << i << "!!" << val;
}
}
}
TEST(StringExpr, Compare) {
using namespace milvus::query;
using namespace milvus::segcore;
auto schema = GenTestSchema();
const auto& fvec_meta = schema->operator[](FieldName("fvec"));
const auto& str_meta = schema->operator[](FieldName("str"));
const auto& another_str_meta = schema->operator[](FieldName("another_str"));
auto gen_compare_plan =
[&, fvec_meta, str_meta, another_str_meta](
proto::plan::OpType op) -> std::unique_ptr<proto::plan::PlanNode> {
auto str_col_info = GenColumnInfo(str_meta.get_id().get(),
proto::schema::DataType::VarChar,
false,
false);
auto another_str_col_info =
GenColumnInfo(another_str_meta.get_id().get(),
proto::schema::DataType::VarChar,
false,
false);
auto compare_expr = GenCompareExpr(op);
compare_expr->set_allocated_left_column_info(str_col_info);
compare_expr->set_allocated_right_column_info(another_str_col_info);
auto expr = GenExpr().release();
expr->set_allocated_compare_expr(compare_expr);
proto::plan::VectorType vector_type;
if (fvec_meta.get_data_type() == DataType::VECTOR_FLOAT) {
vector_type = proto::plan::VectorType::FloatVector;
} else if (fvec_meta.get_data_type() == DataType::VECTOR_BINARY) {
vector_type = proto::plan::VectorType::BinaryVector;
} else if (fvec_meta.get_data_type() == DataType::VECTOR_FLOAT16) {
vector_type = proto::plan::VectorType::Float16Vector;
}
auto anns = GenAnns(expr, vector_type, fvec_meta.get_id().get(), "$0");
auto plan_node = std::make_unique<proto::plan::PlanNode>();
plan_node->set_allocated_vector_anns(anns);
return plan_node;
};
std::vector<std::tuple<proto::plan::OpType,
std::function<bool(std::string&, std::string&)>>>
testcases{
{proto::plan::OpType::GreaterThan,
[](std::string& v1, std::string& v2) { return v1 > v2; }},
{proto::plan::OpType::GreaterEqual,
[](std::string& v1, std::string& v2) { return v1 >= v2; }},
{proto::plan::OpType::LessThan,
[](std::string& v1, std::string& v2) { return v1 < v2; }},
{proto::plan::OpType::LessEqual,
[](std::string& v1, std::string& v2) { return v1 <= v2; }},
{proto::plan::OpType::Equal,
[](std::string& v1, std::string& v2) { return v1 == v2; }},
{proto::plan::OpType::NotEqual,
[](std::string& v1, std::string& v2) { return v1 != v2; }},
{proto::plan::OpType::PrefixMatch,
[](std::string& v1, std::string& v2) {
return PrefixMatch(v1, v2);
}},
};
auto seg = CreateGrowingSegment(schema, empty_index_meta);
int N = 1000;
std::vector<std::string> str_col;
std::vector<std::string> another_str_col;
int num_iters = 100;
for (int iter = 0; iter < num_iters; ++iter) {
auto raw_data = DataGen(schema, N, iter);
auto reserve_col = [&, raw_data](const FieldMeta& field_meta,
std::vector<std::string>& str_col) {
auto new_str_col = raw_data.get_col(field_meta.get_id());
auto begin = FIELD_DATA(new_str_col, string).begin();
auto end = FIELD_DATA(new_str_col, string).end();
str_col.insert(str_col.end(), begin, end);
};
reserve_col(str_meta, str_col);
reserve_col(another_str_meta, another_str_col);
{
seg->PreInsert(N);
seg->Insert(iter * N,
N,
raw_data.row_ids_.data(),
raw_data.timestamps_.data(),
raw_data.raw_);
}
}
auto seg_promote = dynamic_cast<SegmentGrowingImpl*>(seg.get());
for (const auto& [op, ref_func] : testcases) {
auto plan_proto = gen_compare_plan(op);
auto plan = ProtoParser(*schema).CreatePlan(*plan_proto);
query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP);
BitsetType final;
visitor.ExecuteExprNode(plan->plan_node_->filter_plannode_.value(),
seg_promote,
N * num_iters,
final);
EXPECT_EQ(final.size(), N * num_iters);
for (int i = 0; i < N * num_iters; ++i) {
auto ans = final[i];
auto val = str_col[i];
auto another_val = another_str_col[i];
auto ref = ref_func(val, another_val);
ASSERT_EQ(ans, ref) << "@" << op << "@" << i << "!!" << val;
}
}
}
TEST(StringExpr, UnaryRange) {
using namespace milvus::query;
using namespace milvus::segcore;
auto schema = GenTestSchema();
const auto& fvec_meta = schema->operator[](FieldName("fvec"));
const auto& str_meta = schema->operator[](FieldName("str"));
auto gen_unary_range_plan =
[&, fvec_meta, str_meta](
proto::plan::OpType op,
std::string value) -> std::unique_ptr<proto::plan::PlanNode> {
auto column_info = GenColumnInfo(str_meta.get_id().get(),
proto::schema::DataType::VarChar,
false,
false);
auto unary_range_expr = GenUnaryRangeExpr(op, value);
unary_range_expr->set_allocated_column_info(column_info);
auto expr = GenExpr().release();
expr->set_allocated_unary_range_expr(unary_range_expr);
proto::plan::VectorType vector_type;
if (fvec_meta.get_data_type() == DataType::VECTOR_FLOAT) {
vector_type = proto::plan::VectorType::FloatVector;
} else if (fvec_meta.get_data_type() == DataType::VECTOR_BINARY) {
vector_type = proto::plan::VectorType::BinaryVector;
} else if (fvec_meta.get_data_type() == DataType::VECTOR_FLOAT16) {
vector_type = proto::plan::VectorType::Float16Vector;
}
auto anns = GenAnns(expr, vector_type, fvec_meta.get_id().get(), "$0");
auto plan_node = std::make_unique<proto::plan::PlanNode>();
plan_node->set_allocated_vector_anns(anns);
return plan_node;
};
std::vector<std::tuple<proto::plan::OpType,
std::string,
std::function<bool(std::string&)>>>
testcases{
{proto::plan::OpType::GreaterThan,
"2000",
[](std::string& val) { return val > "2000"; }},
{proto::plan::OpType::GreaterEqual,
"2000",
[](std::string& val) { return val >= "2000"; }},
{proto::plan::OpType::LessThan,
"3000",
[](std::string& val) { return val < "3000"; }},
{proto::plan::OpType::LessEqual,
"3000",
[](std::string& val) { return val <= "3000"; }},
{proto::plan::OpType::PrefixMatch,
"a",
[](std::string& val) { return PrefixMatch(val, "a"); }},
};
auto seg = CreateGrowingSegment(schema, empty_index_meta);
int N = 1000;
std::vector<std::string> str_col;
int num_iters = 100;
for (int iter = 0; iter < num_iters; ++iter) {
auto raw_data = DataGen(schema, N, iter);
auto new_str_col = raw_data.get_col(str_meta.get_id());
auto begin = FIELD_DATA(new_str_col, string).begin();
auto end = FIELD_DATA(new_str_col, string).end();
str_col.insert(str_col.end(), begin, end);
seg->PreInsert(N);
seg->Insert(iter * N,
N,
raw_data.row_ids_.data(),
raw_data.timestamps_.data(),
raw_data.raw_);
}
auto seg_promote = dynamic_cast<SegmentGrowingImpl*>(seg.get());
for (const auto& [op, value, ref_func] : testcases) {
auto plan_proto = gen_unary_range_plan(op, value);
auto plan = ProtoParser(*schema).CreatePlan(*plan_proto);
query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP);
BitsetType final;
visitor.ExecuteExprNode(plan->plan_node_->filter_plannode_.value(),
seg_promote,
N * num_iters,
final);
EXPECT_EQ(final.size(), N * num_iters);
for (int i = 0; i < N * num_iters; ++i) {
auto ans = final[i];
auto val = str_col[i];
auto ref = ref_func(val);
ASSERT_EQ(ans, ref)
<< "@" << op << "@" << value << "@" << i << "!!" << val;
}
}
}
TEST(StringExpr, BinaryRange) {
using namespace milvus::query;
using namespace milvus::segcore;
auto schema = GenTestSchema();
const auto& fvec_meta = schema->operator[](FieldName("fvec"));
const auto& str_meta = schema->operator[](FieldName("str"));
auto gen_binary_range_plan =
[&, fvec_meta, str_meta](
bool lb_inclusive,
bool ub_inclusive,
std::string lb,
std::string ub) -> std::unique_ptr<proto::plan::PlanNode> {
auto column_info = GenColumnInfo(str_meta.get_id().get(),
proto::schema::DataType::VarChar,
false,
false);
auto binary_range_expr =
GenBinaryRangeExpr(lb_inclusive, ub_inclusive, lb, ub);
binary_range_expr->set_allocated_column_info(column_info);
auto expr = GenExpr().release();
expr->set_allocated_binary_range_expr(binary_range_expr);
proto::plan::VectorType vector_type;
if (fvec_meta.get_data_type() == DataType::VECTOR_FLOAT) {
vector_type = proto::plan::VectorType::FloatVector;
} else if (fvec_meta.get_data_type() == DataType::VECTOR_BINARY) {
vector_type = proto::plan::VectorType::BinaryVector;
} else if (fvec_meta.get_data_type() == DataType::VECTOR_FLOAT16) {
vector_type = proto::plan::VectorType::Float16Vector;
}
auto anns = GenAnns(expr, vector_type, fvec_meta.get_id().get(), "$0");
auto plan_node = std::make_unique<proto::plan::PlanNode>();
plan_node->set_allocated_vector_anns(anns);
return plan_node;
};
// bool lb_inclusive, bool ub_inclusive, std::string lb, std::string ub
std::vector<std::tuple<bool,
bool,
std::string,
std::string,
std::function<bool(std::string&)>>>
testcases{
{false,
false,
"2000",
"3000",
[](std::string& val) { return val > "2000" && val < "3000"; }},
{false,
true,
"2000",
"3000",
[](std::string& val) { return val > "2000" && val <= "3000"; }},
{true,
false,
"2000",
"3000",
[](std::string& val) { return val >= "2000" && val < "3000"; }},
{true,
true,
"2000",
"3000",
[](std::string& val) { return val >= "2000" && val <= "3000"; }},
{true,
true,
"2000",
"1000",
[](std::string& val) { return false; }},
};
auto seg = CreateGrowingSegment(schema, empty_index_meta);
int N = 1000;
std::vector<std::string> str_col;
int num_iters = 100;
for (int iter = 0; iter < num_iters; ++iter) {
auto raw_data = DataGen(schema, N, iter);
auto new_str_col = raw_data.get_col(str_meta.get_id());
auto begin = FIELD_DATA(new_str_col, string).begin();
auto end = FIELD_DATA(new_str_col, string).end();
str_col.insert(str_col.end(), begin, end);
seg->PreInsert(N);
seg->Insert(iter * N,
N,
raw_data.row_ids_.data(),
raw_data.timestamps_.data(),
raw_data.raw_);
}
auto seg_promote = dynamic_cast<SegmentGrowingImpl*>(seg.get());
for (const auto& [lb_inclusive, ub_inclusive, lb, ub, ref_func] :
testcases) {
auto plan_proto =
gen_binary_range_plan(lb_inclusive, ub_inclusive, lb, ub);
auto plan = ProtoParser(*schema).CreatePlan(*plan_proto);
query::ExecPlanNodeVisitor visitor(*seg_promote, MAX_TIMESTAMP);
BitsetType final;
visitor.ExecuteExprNode(plan->plan_node_->filter_plannode_.value(),
seg_promote,
N * num_iters,
final);
EXPECT_EQ(final.size(), N * num_iters);
for (int i = 0; i < N * num_iters; ++i) {
auto ans = final[i];
auto val = str_col[i];
auto ref = ref_func(val);
ASSERT_EQ(ans, ref)
<< "@" << lb_inclusive << "@" << ub_inclusive << "@" << lb
<< "@" << ub << "@" << i << "!!" << val;
}
}
}
TEST(AlwaysTrueStringPlan, SearchWithOutputFields) {
using namespace milvus::query;
using namespace milvus::segcore;
auto schema = GenStrPKSchema();
const auto& fvec_meta = schema->operator[](FieldName("fvec"));
const auto& str_meta = schema->operator[](FieldName("str"));
auto N = 100000;
auto dim = fvec_meta.get_dim();
auto round_decimal = -1;
auto dataset = DataGen(schema, N);
auto vec_col = dataset.get_col<float>(fvec_meta.get_id());
auto str_col =
dataset.get_col(str_meta.get_id())->scalars().string_data().data();
auto query_ptr = vec_col.data();
auto segment = CreateGrowingSegment(schema, empty_index_meta);
segment->PreInsert(N);
segment->Insert(0,
N,
dataset.row_ids_.data(),
dataset.timestamps_.data(),
dataset.raw_);
auto plan_proto = GenAlwaysTruePlan(fvec_meta, str_meta);
SetTargetEntry(plan_proto, {str_meta.get_id().get()});
auto plan = ProtoParser(*schema).CreatePlan(*plan_proto);
auto num_queries = 5;
auto topk = 10;
auto ph_group_raw =
CreatePlaceholderGroupFromBlob(num_queries, 16, query_ptr);
auto ph_group =
ParsePlaceholderGroup(plan.get(), ph_group_raw.SerializeAsString());
std::vector<const PlaceholderGroup*> ph_group_arr = {ph_group.get()};
query::dataset::SearchDataset search_dataset{
knowhere::metric::L2, //
num_queries, //
topk, //
round_decimal,
dim, //
query_ptr //
};
auto sub_result = BruteForceSearch(
search_dataset, vec_col.data(), N, knowhere::Json(), nullptr);
auto sr = segment->Search(plan.get(), ph_group.get(), MAX_TIMESTAMP);
segment->FillPrimaryKeys(plan.get(), *sr);
segment->FillTargetEntry(plan.get(), *sr);
ASSERT_EQ(sr->pk_type_, DataType::VARCHAR);
ASSERT_TRUE(sr->output_fields_data_.find(str_meta.get_id()) !=
sr->output_fields_data_.end());
auto retrieved_str_col = sr->output_fields_data_[str_meta.get_id()]
->scalars()
.string_data()
.data();
for (auto q = 0; q < num_queries; q++) {
for (auto k = 0; k < topk; k++) {
auto offset = q * topk + k;
auto seg_offset = sub_result.get_seg_offsets()[offset];
ASSERT_EQ(std::get<std::string>(sr->primary_keys_[offset]),
str_col[seg_offset]);
ASSERT_EQ(retrieved_str_col[offset], str_col[seg_offset]);
}
}
}
TEST(AlwaysTrueStringPlan, QueryWithOutputFields) {
using namespace milvus::query;
using namespace milvus::segcore;
auto schema = GenStrPKSchema();
const auto& fvec_meta = schema->operator[](FieldName("fvec"));
const auto& str_meta = schema->operator[](FieldName("str"));
auto N = 10000;
auto dataset = DataGen(schema, N);
auto vec_col = dataset.get_col<float>(fvec_meta.get_id());
auto str_col =
dataset.get_col(str_meta.get_id())->scalars().string_data().data();
auto segment = CreateGrowingSegment(schema, empty_index_meta);
segment->PreInsert(N);
segment->Insert(0,
N,
dataset.row_ids_.data(),
dataset.timestamps_.data(),
dataset.raw_);
auto expr_proto = GenAlwaysTrueExpr(fvec_meta, str_meta);
auto plan_proto = GenPlanNode();
plan_proto->mutable_query()->set_allocated_predicates(expr_proto);
SetTargetEntry(plan_proto, {str_meta.get_id().get()});
auto plan = ProtoParser(*schema).CreateRetrievePlan(*plan_proto);
Timestamp time = MAX_TIMESTAMP;
auto retrieved =
segment->Retrieve(plan.get(), time, DEFAULT_MAX_OUTPUT_SIZE);
ASSERT_EQ(retrieved->ids().str_id().data().size(), N);
ASSERT_EQ(retrieved->offset().size(), N);
ASSERT_EQ(retrieved->fields_data().size(), 1);
ASSERT_EQ(retrieved->fields_data(0).scalars().string_data().data().size(),
N);
}