milvus/internal/core/src/segcore/FieldIndexing.cpp
cqy123456 4fbe3c9142
replace loaded binlog with binlog index for search performance (#27673)
Signed-off-by: cqy123456 <qianya.cheng@zilliz.com>
2023-11-01 02:20:15 +08:00

293 lines
12 KiB
C++

// Copyright (C) 2019-2020 Zilliz. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under the License
#include <string>
#include <thread>
#include "common/EasyAssert.h"
#include "fmt/format.h"
#include "index/ScalarIndexSort.h"
#include "index/StringIndexSort.h"
#include "common/SystemProperty.h"
#include "segcore/FieldIndexing.h"
#include "index/VectorMemIndex.h"
#include "IndexConfigGenerator.h"
namespace milvus::segcore {
using std::unique_ptr;
VectorFieldIndexing::VectorFieldIndexing(const FieldMeta& field_meta,
const FieldIndexMeta& field_index_meta,
int64_t segment_max_row_count,
const SegcoreConfig& segcore_config)
: FieldIndexing(field_meta, segcore_config),
build(false),
sync_with_index(false),
config_(std::make_unique<VecIndexConfig>(segment_max_row_count,
field_index_meta,
segcore_config,
SegmentType::Growing)) {
index_ = std::make_unique<index::VectorMemIndex>(
config_->GetIndexType(),
config_->GetMetricType(),
knowhere::Version::GetCurrentVersion().VersionNumber());
}
void
VectorFieldIndexing::BuildIndexRange(int64_t ack_beg,
int64_t ack_end,
const VectorBase* vec_base) {
AssertInfo(field_meta_.get_data_type() == DataType::VECTOR_FLOAT,
"Data type of vector field is not VECTOR_FLOAT");
auto dim = field_meta_.get_dim();
auto source = dynamic_cast<const ConcurrentVector<FloatVector>*>(vec_base);
AssertInfo(source, "vec_base can't cast to ConcurrentVector type");
auto num_chunk = source->num_chunk();
AssertInfo(ack_end <= num_chunk, "ack_end is bigger than num_chunk");
auto conf = get_build_params();
data_.grow_to_at_least(ack_end);
for (int chunk_id = ack_beg; chunk_id < ack_end; chunk_id++) {
const auto& chunk = source->get_chunk(chunk_id);
auto indexing = std::make_unique<index::VectorMemIndex>(
knowhere::IndexEnum::INDEX_FAISS_IVFFLAT,
knowhere::metric::L2,
knowhere::Version::GetCurrentVersion().VersionNumber());
auto dataset = knowhere::GenDataSet(
source->get_size_per_chunk(), dim, chunk.data());
indexing->BuildWithDataset(dataset, conf);
data_[chunk_id] = std::move(indexing);
}
}
void
VectorFieldIndexing::GetDataFromIndex(const int64_t* seg_offsets,
int64_t count,
int64_t element_size,
void* output) {
auto ids_ds = std::make_shared<knowhere::DataSet>();
ids_ds->SetRows(count);
ids_ds->SetDim(1);
ids_ds->SetIds(seg_offsets);
ids_ds->SetIsOwner(false);
auto vector = index_->GetVector(ids_ds);
std::memcpy(output, vector.data(), count * element_size);
}
void
VectorFieldIndexing::AppendSegmentIndex(int64_t reserved_offset,
int64_t size,
const VectorBase* vec_base,
const void* data_source) {
AssertInfo(field_meta_.get_data_type() == DataType::VECTOR_FLOAT,
"Data type of vector field is not VECTOR_FLOAT");
auto dim = field_meta_.get_dim();
auto conf = get_build_params();
auto source = dynamic_cast<const ConcurrentVector<FloatVector>*>(vec_base);
auto per_chunk = source->get_size_per_chunk();
//append vector [vector_id_beg, vector_id_end] into index
//build index [vector_id_beg, build_threshold) when index not exist
if (!build) {
idx_t vector_id_beg = index_cur_.load();
idx_t vector_id_end = get_build_threshold() - 1;
auto chunk_id_beg = vector_id_beg / per_chunk;
auto chunk_id_end = vector_id_end / per_chunk;
int64_t vec_num = vector_id_end - vector_id_beg + 1;
// for train index
const void* data_addr;
unique_ptr<float[]> vec_data;
//all train data in one chunk
if (chunk_id_beg == chunk_id_end) {
data_addr = vec_base->get_chunk_data(chunk_id_beg);
} else {
//merge data from multiple chunks together
vec_data = std::make_unique<float[]>(vec_num * dim);
int64_t offset = 0;
//copy vector data [vector_id_beg, vector_id_end]
for (int chunk_id = chunk_id_beg; chunk_id <= chunk_id_end;
chunk_id++) {
int chunk_offset = 0;
int chunk_copysz =
chunk_id == chunk_id_end
? vector_id_end - chunk_id * per_chunk + 1
: per_chunk;
std::memcpy(vec_data.get() + offset * dim,
(const float*)vec_base->get_chunk_data(chunk_id) +
chunk_offset * dim,
chunk_copysz * dim * sizeof(float));
offset += chunk_copysz;
}
data_addr = vec_data.get();
}
auto dataset = knowhere::GenDataSet(vec_num, dim, data_addr);
dataset->SetIsOwner(false);
try {
index_->BuildWithDataset(dataset, conf);
} catch (SegcoreError& error) {
LOG_SEGCORE_ERROR_ << " growing index build error : "
<< error.what();
return;
}
index_cur_.fetch_add(vec_num);
build = true;
}
//append rest data when index has built
idx_t vector_id_beg = index_cur_.load();
idx_t vector_id_end = reserved_offset + size - 1;
auto chunk_id_beg = vector_id_beg / per_chunk;
auto chunk_id_end = vector_id_end / per_chunk;
int64_t vec_num = vector_id_end - vector_id_beg + 1;
if (vec_num <= 0) {
sync_with_index.store(true);
return;
}
if (sync_with_index.load()) {
auto dataset = knowhere::GenDataSet(vec_num, dim, data_source);
index_->AddWithDataset(dataset, conf);
index_cur_.fetch_add(vec_num);
} else {
for (int chunk_id = chunk_id_beg; chunk_id <= chunk_id_end;
chunk_id++) {
int chunk_offset = chunk_id == chunk_id_beg
? index_cur_ - chunk_id * per_chunk
: 0;
int chunk_sz = chunk_id == chunk_id_end
? vector_id_end % per_chunk - chunk_offset + 1
: per_chunk - chunk_offset;
auto dataset = knowhere::GenDataSet(
chunk_sz,
dim,
(const float*)source->get_chunk_data(chunk_id) +
chunk_offset * dim);
index_->AddWithDataset(dataset, conf);
index_cur_.fetch_add(chunk_sz);
}
sync_with_index.store(true);
}
}
knowhere::Json
VectorFieldIndexing::get_build_params() const {
auto config = config_->GetBuildBaseParams();
config[knowhere::meta::DIM] = std::to_string(field_meta_.get_dim());
config[knowhere::meta::NUM_BUILD_THREAD] = std::to_string(1);
return config;
}
SearchInfo
VectorFieldIndexing::get_search_params(const SearchInfo& searchInfo) const {
auto conf = config_->GetSearchConf(searchInfo);
return conf;
}
idx_t
VectorFieldIndexing::get_index_cursor() {
return index_cur_.load();
}
bool
VectorFieldIndexing::sync_data_with_index() const {
return sync_with_index.load();
}
bool
VectorFieldIndexing::has_raw_data() const {
return index_->HasRawData();
}
template <typename T>
void
ScalarFieldIndexing<T>::BuildIndexRange(int64_t ack_beg,
int64_t ack_end,
const VectorBase* vec_base) {
auto source = dynamic_cast<const ConcurrentVector<T>*>(vec_base);
AssertInfo(source, "vec_base can't cast to ConcurrentVector type");
auto num_chunk = source->num_chunk();
AssertInfo(ack_end <= num_chunk, "Ack_end is bigger than num_chunk");
data_.grow_to_at_least(ack_end);
for (int chunk_id = ack_beg; chunk_id < ack_end; chunk_id++) {
const auto& chunk = source->get_chunk(chunk_id);
// build index for chunk
// TODO
if constexpr (std::is_same_v<T, std::string>) {
auto indexing = index::CreateStringIndexSort();
indexing->Build(vec_base->get_size_per_chunk(), chunk.data());
data_[chunk_id] = std::move(indexing);
} else {
auto indexing = index::CreateScalarIndexSort<T>();
indexing->Build(vec_base->get_size_per_chunk(), chunk.data());
data_[chunk_id] = std::move(indexing);
}
}
}
std::unique_ptr<FieldIndexing>
CreateIndex(const FieldMeta& field_meta,
const FieldIndexMeta& field_index_meta,
int64_t segment_max_row_count,
const SegcoreConfig& segcore_config) {
if (field_meta.is_vector()) {
if (field_meta.get_data_type() == DataType::VECTOR_FLOAT) {
return std::make_unique<VectorFieldIndexing>(field_meta,
field_index_meta,
segment_max_row_count,
segcore_config);
} else if (field_meta.get_data_type() == DataType::VECTOR_FLOAT16) {
return std::make_unique<VectorFieldIndexing>(field_meta,
field_index_meta,
segment_max_row_count,
segcore_config);
} else {
PanicInfo(DataTypeInvalid,
fmt::format("unsupported vector type in index: {}",
field_meta.get_data_type()));
}
}
switch (field_meta.get_data_type()) {
case DataType::BOOL:
return std::make_unique<ScalarFieldIndexing<bool>>(field_meta,
segcore_config);
case DataType::INT8:
return std::make_unique<ScalarFieldIndexing<int8_t>>(
field_meta, segcore_config);
case DataType::INT16:
return std::make_unique<ScalarFieldIndexing<int16_t>>(
field_meta, segcore_config);
case DataType::INT32:
return std::make_unique<ScalarFieldIndexing<int32_t>>(
field_meta, segcore_config);
case DataType::INT64:
return std::make_unique<ScalarFieldIndexing<int64_t>>(
field_meta, segcore_config);
case DataType::FLOAT:
return std::make_unique<ScalarFieldIndexing<float>>(field_meta,
segcore_config);
case DataType::DOUBLE:
return std::make_unique<ScalarFieldIndexing<double>>(
field_meta, segcore_config);
case DataType::VARCHAR:
return std::make_unique<ScalarFieldIndexing<std::string>>(
field_meta, segcore_config);
default:
PanicInfo(DataTypeInvalid,
fmt::format("unsupported scalar type in index: {}",
field_meta.get_data_type()));
}
}
} // namespace milvus::segcore