milvus/cpp/src/core/test/utils.cpp
Heisenberg 029d4a97b3 MS-573 Enable log in knowhere
Former-commit-id: 7b60e5fc6edcaabea9e967ba4f3312a17533c986
2019-09-19 15:12:46 +08:00

153 lines
4.6 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "utils.h"
INITIALIZE_EASYLOGGINGPP
void InitLog() {
el::Configurations defaultConf;
defaultConf.setToDefault();
defaultConf.set(el::Level::Debug,
el::ConfigurationType::Format, "[%thread-%datetime-%level]: %msg (%fbase:%line)");
el::Loggers::reconfigureLogger("default", defaultConf);
}
void DataGen::Init_with_default() {
Generate(dim, nb, nq);
}
void DataGen::Generate(const int &dim, const int &nb, const int &nq) {
this->nb = nb;
this->nq = nq;
this->dim = dim;
GenAll(dim, nb, xb, ids, nq, xq);
assert(xb.size() == dim * nb);
assert(xq.size() == dim * nq);
base_dataset = generate_dataset(nb, dim, xb.data(), ids.data());
query_dataset = generate_query_dataset(nq, dim, xq.data());
}
zilliz::knowhere::DatasetPtr DataGen::GenQuery(const int &nq) {
xq.resize(nq * dim);
for (size_t i = 0; i < nq * dim; ++i) {
xq[i] = xb[i];
}
return generate_query_dataset(nq, dim, xq.data());
}
void GenAll(const int64_t dim,
const int64_t &nb,
std::vector<float> &xb,
std::vector<int64_t> &ids,
const int64_t &nq,
std::vector<float> &xq) {
xb.resize(nb * dim);
xq.resize(nq * dim);
ids.resize(nb);
GenAll(dim, nb, xb.data(), ids.data(), nq, xq.data());
}
void GenAll(const int64_t &dim,
const int64_t &nb,
float *xb,
int64_t *ids,
const int64_t &nq,
float *xq) {
GenBase(dim, nb, xb, ids);
for (size_t i = 0; i < nq * dim; ++i) {
xq[i] = xb[i];
}
}
void GenBase(const int64_t &dim,
const int64_t &nb,
float *xb,
int64_t *ids) {
for (auto i = 0; i < nb; ++i) {
for (auto j = 0; j < dim; ++j) {
//p_data[i * d + j] = float(base + i);
xb[i * dim + j] = drand48();
}
xb[dim * i] += i / 1000.;
ids[i] = i;
}
}
FileIOReader::FileIOReader(const std::string &fname) {
name = fname;
fs = std::fstream(name, std::ios::in | std::ios::binary);
}
FileIOReader::~FileIOReader() {
fs.close();
}
size_t FileIOReader::operator()(void *ptr, size_t size) {
fs.read(reinterpret_cast<char *>(ptr), size);
return size;
}
FileIOWriter::FileIOWriter(const std::string &fname) {
name = fname;
fs = std::fstream(name, std::ios::out | std::ios::binary);
}
FileIOWriter::~FileIOWriter() {
fs.close();
}
size_t FileIOWriter::operator()(void *ptr, size_t size) {
fs.write(reinterpret_cast<char *>(ptr), size);
return size;
}
using namespace zilliz::knowhere;
DatasetPtr
generate_dataset(int64_t nb, int64_t dim, float *xb, long *ids) {
std::vector<int64_t> shape{nb, dim};
auto tensor = ConstructFloatTensor((uint8_t *) xb, nb * dim * sizeof(float), shape);
std::vector<TensorPtr> tensors{tensor};
std::vector<FieldPtr> tensor_fields{ConstructFloatField("data")};
auto tensor_schema = std::make_shared<Schema>(tensor_fields);
auto id_array = ConstructInt64Array((uint8_t *) ids, nb * sizeof(int64_t));
std::vector<ArrayPtr> arrays{id_array};
std::vector<FieldPtr> array_fields{ConstructInt64Field("id")};
auto array_schema = std::make_shared<Schema>(tensor_fields);
auto dataset = std::make_shared<Dataset>(std::move(arrays), array_schema,
std::move(tensors), tensor_schema);
return dataset;
}
DatasetPtr
generate_query_dataset(int64_t nb, int64_t dim, float *xb) {
std::vector<int64_t> shape{nb, dim};
auto tensor = ConstructFloatTensor((uint8_t *) xb, nb * dim * sizeof(float), shape);
std::vector<TensorPtr> tensors{tensor};
std::vector<FieldPtr> tensor_fields{ConstructFloatField("data")};
auto tensor_schema = std::make_shared<Schema>(tensor_fields);
auto dataset = std::make_shared<Dataset>(std::move(tensors), tensor_schema);
return dataset;
}