zhuwenxing 4783f5bcbc
Add scripts to test deployment by docker-compose (#7448)
Signed-off-by: zhuwenxing <wenxing.zhu@zilliz.com>
2021-09-03 17:15:51 +08:00

100 lines
2.9 KiB
Python

import docker
from pymilvus import (
connections, FieldSchema, CollectionSchema, DataType,
Collection, list_collections,
)
def list_containers():
client = docker.from_env()
containers = client.containers.list()
for c in containers:
if "milvus" in c.name:
print(c.image)
def get_collections():
print(f"\nList collections...")
col_list = list_collections()
print(f"collections_nums: {len(col_list)}")
# list entities if collections
for name in col_list:
c = Collection(name = name)
print(f"{name}: {c.num_entities}")
def create_collections_and_insert_data(col_name="hello_milvus"):
import random
dim = 128
default_fields = [
FieldSchema(name="count", dtype=DataType.INT64, is_primary=True),
FieldSchema(name="random_value", dtype=DataType.DOUBLE),
FieldSchema(name="float_vector", dtype=DataType.FLOAT_VECTOR, dim=dim)
]
default_schema = CollectionSchema(fields=default_fields, description="test collection")
print(f"\nCreate collection...")
collection = Collection(name=col_name, schema=default_schema)
print(f"\nList collections...")
print(list_collections())
# insert data
nb = 3000
vectors = [[random.random() for _ in range(dim)] for _ in range(nb)]
collection.insert(
[
[i for i in range(nb)],
[float(random.randrange(-20, -10)) for _ in range(nb)],
vectors
]
)
print(f"\nGet collection entities...")
print(collection.num_entities)
def create_index():
# create index
default_index = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2"}
col_list = list_collections()
print(f"\nCreate index...")
for name in col_list:
c = Collection(name = name)
print(name)
print(c)
c.create_index(field_name="float_vector", index_params=default_index)
def load_and_search():
print("search data starts")
col_list = list_collections()
for name in col_list:
c = Collection(name=name)
print(f"collection name: {name}")
c.load()
topK = 5
vectors = [[1.0 for _ in range(128)] for _ in range(3000)]
search_params = {"metric_type": "L2", "params": {"nprobe": 10}}
import time
start_time = time.time()
print(f"\nSearch...")
# define output_fields of search result
res = c.search(
vectors[-2:], "float_vector", search_params, topK,
"count > 500", output_fields=["count", "random_value"]
)
end_time = time.time()
# show result
for hits in res:
for hit in hits:
# Get value of the random value field for search result
print(hit, hit.entity.get("random_value"))
print("###########")
print("search latency = %.4fs" % (end_time - start_time))
c.release()
print("search data ends")