zhuwenxing 464a805c63
test: add dynamicfield.enabled property alter in chaos checker (#45625)
/kind improvement

Signed-off-by: zhuwenxing <wenxing.zhu@zilliz.com>
2025-11-27 14:53:08 +08:00

2388 lines
98 KiB
Python

import pytest
import unittest
from enum import Enum
import random
import time
import threading
import uuid
import json
import pandas as pd
from datetime import datetime
from prettytable import PrettyTable
import functools
from collections import Counter
from time import sleep
from pymilvus import AnnSearchRequest, RRFRanker, MilvusClient, DataType, CollectionSchema, connections
from pymilvus.milvus_client.index import IndexParams
from pymilvus.bulk_writer import RemoteBulkWriter, BulkFileType
from pymilvus.client.embedding_list import EmbeddingList
from common import common_func as cf
from common import common_type as ct
from common.milvus_sys import MilvusSys
from chaos import constants
from faker import Faker
from common.common_type import CheckTasks
from utils.util_log import test_log as log
from utils.api_request import Error
event_lock = threading.Lock()
request_lock = threading.Lock()
def get_chaos_info():
try:
with open(constants.CHAOS_INFO_SAVE_PATH, 'r') as f:
chaos_info = json.load(f)
except Exception as e:
log.warning(f"get_chaos_info error: {e}")
return None
return chaos_info
class Singleton(type):
instances = {}
def __call__(cls, *args, **kwargs):
if cls not in cls.instances:
cls.instances[cls] = super().__call__(*args, **kwargs)
return cls.instances[cls]
class EventRecords(metaclass=Singleton):
def __init__(self):
self.file_name = f"/tmp/ci_logs/event_records_{uuid.uuid4()}.parquet"
self.created_file = False
def insert(self, event_name, event_status, ts=None):
log.info(f"insert event: {event_name}, {event_status}")
insert_ts = datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S.%f') if ts is None else ts
data = {
"event_name": [event_name],
"event_status": [event_status],
"event_ts": [insert_ts]
}
df = pd.DataFrame(data)
if not self.created_file:
with event_lock:
df.to_parquet(self.file_name, engine='fastparquet')
self.created_file = True
else:
with event_lock:
df.to_parquet(self.file_name, engine='fastparquet', append=True)
def get_records_df(self):
df = pd.read_parquet(self.file_name)
return df
class RequestRecords(metaclass=Singleton):
def __init__(self):
self.file_name = f"/tmp/ci_logs/request_records_{uuid.uuid4()}.parquet"
self.buffer = []
self.created_file = False
def insert(self, operation_name, collection_name, start_time, time_cost, result):
data = {
"operation_name": operation_name,
"collection_name": collection_name,
"start_time": start_time,
"time_cost": time_cost,
"result": result
}
self.buffer.append(data)
if len(self.buffer) > 100:
df = pd.DataFrame(self.buffer)
if not self.created_file:
with request_lock:
df.to_parquet(self.file_name, engine='fastparquet')
self.created_file = True
else:
with request_lock:
df.to_parquet(self.file_name, engine='fastparquet', append=True)
self.buffer = []
def sink(self):
if len(self.buffer) == 0:
return
try:
df = pd.DataFrame(self.buffer)
except Exception as e:
log.error(f"convert buffer {self.buffer} to dataframe error: {e}")
return
if not self.created_file:
with request_lock:
df.to_parquet(self.file_name, engine='fastparquet')
self.created_file = True
else:
with request_lock:
df.to_parquet(self.file_name, engine='fastparquet', append=True)
def get_records_df(self):
self.sink()
df = pd.read_parquet(self.file_name)
return df
class ResultAnalyzer:
def __init__(self):
rr = RequestRecords()
df = rr.get_records_df()
df["start_time"] = pd.to_datetime(df["start_time"])
df = df.sort_values(by='start_time')
self.df = df
self.chaos_info = get_chaos_info()
self.chaos_start_time = self.chaos_info['create_time'] if self.chaos_info is not None else None
self.chaos_end_time = self.chaos_info['delete_time'] if self.chaos_info is not None else None
self.recovery_time = self.chaos_info['recovery_time'] if self.chaos_info is not None else None
def get_stage_success_rate(self):
df = self.df
window = pd.offsets.Milli(1000)
result = df.groupby([pd.Grouper(key='start_time', freq=window), 'operation_name']).apply(lambda x: pd.Series({
'success_count': x[x['result'] == 'True'].shape[0],
'failed_count': x[x['result'] == 'False'].shape[0]
}))
data = result.reset_index()
data['success_rate'] = data['success_count'] / (data['success_count'] + data['failed_count']).replace(0, 1)
grouped_data = data.groupby('operation_name')
if self.chaos_info is None:
chaos_start_time = datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S.%f')
chaos_end_time = datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S.%f')
recovery_time = datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S.%f')
else:
chaos_start_time = self.chaos_info['create_time']
chaos_end_time = self.chaos_info['delete_time']
recovery_time = self.chaos_info['recovery_time']
stage_success_rate = {}
for name, group in grouped_data:
log.info(f"operation_name: {name}")
# spilt data to 3 parts by chaos start time and chaos end time and aggregate the success rate
data_before_chaos = group[group['start_time'] < chaos_start_time].agg(
{'success_rate': 'mean', 'failed_count': 'sum', 'success_count': 'sum'})
data_during_chaos = group[
(group['start_time'] >= chaos_start_time) & (group['start_time'] <= chaos_end_time)].agg(
{'success_rate': 'mean', 'failed_count': 'sum', 'success_count': 'sum'})
data_after_chaos = group[group['start_time'] > recovery_time].agg(
{'success_rate': 'mean', 'failed_count': 'sum', 'success_count': 'sum'})
stage_success_rate[name] = {
'before_chaos': f"{data_before_chaos['success_rate']}({data_before_chaos['success_count']}/{data_before_chaos['success_count'] + data_before_chaos['failed_count']})" if not data_before_chaos.empty else "no data",
'during_chaos': f"{data_during_chaos['success_rate']}({data_during_chaos['success_count']}/{data_during_chaos['success_count'] + data_during_chaos['failed_count']})" if not data_during_chaos.empty else "no data",
'after_chaos': f"{data_after_chaos['success_rate']}({data_after_chaos['success_count']}/{data_after_chaos['success_count'] + data_after_chaos['failed_count']})" if not data_after_chaos.empty else "no data",
}
log.info(f"stage_success_rate: {stage_success_rate}")
return stage_success_rate
def get_realtime_success_rate(self, interval=10):
df = self.df
window = pd.offsets.Second(interval)
result = df.groupby([pd.Grouper(key='start_time', freq=window), 'operation_name']).apply(lambda x: pd.Series({
'success_count': x[x['result'] == 'True'].shape[0],
'failed_count': x[x['result'] == 'False'].shape[0]
}))
data = result.reset_index()
data['success_rate'] = data['success_count'] / (data['success_count'] + data['failed_count']).replace(0, 1)
grouped_data = data.groupby('operation_name')
return grouped_data
def show_result_table(self):
table = PrettyTable()
table.field_names = ['operation_name', 'before_chaos',
f'during_chaos: {self.chaos_start_time}~{self.recovery_time}',
'after_chaos']
data = self.get_stage_success_rate()
for operation, values in data.items():
row = [operation, values['before_chaos'], values['during_chaos'], values['after_chaos']]
table.add_row(row)
log.info(f"succ rate for operations in different stage\n{table}")
class Op(Enum):
create = 'create' # short name for create collection
create_db = 'create_db'
create_collection = 'create_collection'
create_partition = 'create_partition'
insert = 'insert'
insert_freshness = 'insert_freshness'
upsert = 'upsert'
upsert_freshness = 'upsert_freshness'
partial_update = 'partial_update'
flush = 'flush'
index = 'index'
create_index = 'create_index'
drop_index = 'drop_index'
load = 'load'
load_collection = 'load_collection'
load_partition = 'load_partition'
release = 'release'
release_collection = 'release_collection'
release_partition = 'release_partition'
search = 'search'
tensor_search = 'tensor_search'
full_text_search = 'full_text_search'
hybrid_search = 'hybrid_search'
query = 'query'
text_match = 'text_match'
phrase_match = 'phrase_match'
json_query = 'json_query'
geo_query = 'geo_query'
delete = 'delete'
delete_freshness = 'delete_freshness'
compact = 'compact'
drop = 'drop' # short name for drop collection
drop_db = 'drop_db'
drop_collection = 'drop_collection'
drop_partition = 'drop_partition'
load_balance = 'load_balance'
bulk_insert = 'bulk_insert'
alter_collection = 'alter_collection'
add_field = 'add_field'
rename_collection = 'rename_collection'
unknown = 'unknown'
timeout = 120
search_timeout = 10
query_timeout = 10
enable_traceback = False
DEFAULT_FMT = '[start time:{start_time}][time cost:{elapsed:0.8f}s][operation_name:{operation_name}][collection name:{collection_name}] -> {result!r}'
request_records = RequestRecords()
def create_index_params_from_dict(field_name: str, index_param_dict: dict) -> IndexParams:
"""Helper function to convert dict-style index params to IndexParams object"""
index_params = IndexParams()
params_copy = index_param_dict.copy()
index_type = params_copy.pop("index_type", "")
index_params.add_index(field_name=field_name, index_type=index_type, **params_copy)
return index_params
def trace(fmt=DEFAULT_FMT, prefix='test', flag=True):
def decorate(func):
@functools.wraps(func)
def inner_wrapper(self, *args, **kwargs):
start_time = datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S.%f')
start_time_ts = time.time()
t0 = time.perf_counter()
res, result = func(self, *args, **kwargs)
elapsed = time.perf_counter() - t0
operation_name = func.__name__
if flag:
collection_name = self.c_name
log_str = f"[{prefix}]" + fmt.format(**locals())
# TODO: add report function in this place, like uploading to influxdb
try:
t0 = time.perf_counter()
request_records.insert(operation_name, collection_name, start_time, elapsed, str(result))
tt = time.perf_counter() - t0
log.debug(f"insert request record cost {tt}s")
except Exception as e:
log.error(e)
log.debug(log_str)
if result:
self.rsp_times.append(elapsed)
self.average_time = (
elapsed + self.average_time * self._succ) / (self._succ + 1)
self._succ += 1
# add first success record if there is no success record before
if len(self.fail_records) > 0 and self.fail_records[-1][0] == "failure" and \
self._succ + self._fail == self.fail_records[-1][1] + 1:
self.fail_records.append(("success", self._succ + self._fail, start_time, start_time_ts))
else:
self._fail += 1
self.fail_records.append(("failure", self._succ + self._fail, start_time, start_time_ts))
return res, result
return inner_wrapper
return decorate
def exception_handler():
def wrapper(func):
@functools.wraps(func)
def inner_wrapper(self, *args, **kwargs):
class_name = None
function_name = None
try:
function_name = func.__name__
class_name = getattr(self, '__class__', None).__name__ if self else None
res, result = func(self, *args, **kwargs)
return res, result
except Exception as e:
log_row_length = 300
e_str = str(e)
log_e = e_str[0:log_row_length] + '......' if len(e_str) > log_row_length else e_str
if class_name:
log_message = f"Error in {class_name}.{function_name}: {log_e}"
else:
log_message = f"Error in {function_name}: {log_e}"
log.exception(log_message)
log.error(log_e)
return Error(e), False
return inner_wrapper
return wrapper
class Checker:
"""
A base class of milvus operation checker to
a. check whether milvus is servicing
b. count operations and success rate
"""
def __init__(self, collection_name=None, partition_name=None, shards_num=2, dim=8, insert_data=True,
schema=None, replica_number=1, **kwargs):
self.recovery_time = 0
self._succ = 0
self._fail = 0
self.fail_records = []
self._keep_running = True
self.rsp_times = []
self.average_time = 0
self.scale = 1 * 10 ** 6
self.files = []
self.word_freq = Counter()
self.ms = MilvusSys()
self.bucket_name = cf.param_info.param_bucket_name
# Initialize MilvusClient
if cf.param_info.param_uri:
uri = cf.param_info.param_uri
else:
uri = "http://" + cf.param_info.param_host + ":" + str(cf.param_info.param_port)
if cf.param_info.param_token:
token = cf.param_info.param_token
else:
token = f"{cf.param_info.param_user}:{cf.param_info.param_password}"
self.milvus_client = MilvusClient(uri=uri, token=token)
# Also create a connection for low-level APIs that MilvusClient doesn't support
self.alias = cf.gen_unique_str("checker_alias_")
connections.connect(
alias=self.alias,
host=cf.param_info.param_host,
port=str(cf.param_info.param_port),
user=cf.param_info.param_user,
password=cf.param_info.param_password
)
c_name = collection_name if collection_name is not None else cf.gen_unique_str(
'Checker_')
self.c_name = c_name
p_name = partition_name if partition_name is not None else "_default"
self.p_name = p_name
self.p_names = [self.p_name] if partition_name is not None else None
# Get or create schema
if self.milvus_client.has_collection(c_name):
collection_info = self.milvus_client.describe_collection(c_name)
schema = CollectionSchema.construct_from_dict(collection_info)
else:
enable_struct_array_field = kwargs.get("enable_struct_array_field", True)
enable_dynamic_field = kwargs.get("enable_dynamic_field", True)
schema = cf.gen_all_datatype_collection_schema(dim=dim, enable_struct_array_field=enable_struct_array_field, enable_dynamic_field=enable_dynamic_field) if schema is None else schema
log.info(f"schema: {schema}")
self.schema = schema
self.dim = cf.get_dim_by_schema(schema=schema)
self.int64_field_name = cf.get_int64_field_name(schema=schema)
self.text_field_name = cf.get_text_field_name(schema=schema)
self.text_match_field_name_list = cf.get_text_match_field_name(schema=schema)
self.float_vector_field_name = cf.get_float_vec_field_name(schema=schema)
# Create collection if not exists
if not self.milvus_client.has_collection(c_name):
self.milvus_client.create_collection(
collection_name=c_name,
schema=schema,
shards_num=shards_num,
timeout=timeout
)
self.scalar_field_names = cf.get_scalar_field_name_list(schema=schema)
self.json_field_names = cf.get_json_field_name_list(schema=schema)
self.geometry_field_names = cf.get_geometry_field_name_list(schema=schema)
self.float_vector_field_names = cf.get_float_vec_field_name_list(schema=schema)
self.binary_vector_field_names = cf.get_binary_vec_field_name_list(schema=schema)
self.int8_vector_field_names = cf.get_int8_vec_field_name_list(schema=schema)
self.bm25_sparse_field_names = cf.get_bm25_vec_field_name_list(schema=schema)
self.emb_list_field_names = cf.get_emb_list_field_name_list(schema=schema)
# Get existing indexes and their fields
indexed_fields = set()
try:
index_names = self.milvus_client.list_indexes(c_name)
for idx_name in index_names:
try:
idx_info = self.milvus_client.describe_index(c_name, idx_name)
if 'field_name' in idx_info:
indexed_fields.add(idx_info['field_name'])
except Exception as e:
log.debug(f"Failed to describe index {idx_name}: {e}")
except Exception as e:
log.debug(f"Failed to list indexes: {e}")
log.debug(f"Already indexed fields: {indexed_fields}")
# create index for scalar fields
for f in self.scalar_field_names:
if f in indexed_fields:
continue
try:
index_params = IndexParams()
index_params.add_index(field_name=f, index_type="INVERTED")
self.milvus_client.create_index(
collection_name=c_name,
index_params=index_params,
timeout=timeout
)
except Exception as e:
log.debug(f"Failed to create index for {f}: {e}")
# create index for json fields
for f in self.json_field_names:
if f in indexed_fields:
continue
for json_path, json_cast in [("name", "varchar"), ("address", "varchar"), ("count", "double")]:
try:
index_params = IndexParams()
index_params.add_index(
field_name=f,
index_type="INVERTED",
params={"json_path": f"{f}['{json_path}']", "json_cast_type": json_cast}
)
self.milvus_client.create_index(
collection_name=c_name,
index_params=index_params,
timeout=timeout
)
except Exception as e:
log.debug(f"Failed to create json index for {f}['{json_path}']: {e}")
# create index for geometry fields
for f in self.geometry_field_names:
if f in indexed_fields:
continue
try:
index_params = IndexParams()
index_params.add_index(field_name=f, index_type="RTREE")
self.milvus_client.create_index(
collection_name=c_name,
index_params=index_params,
timeout=timeout
)
except Exception as e:
log.debug(f"Failed to create index for {f}: {e}")
# create index for float vector fields
vector_index_created = False
for f in self.float_vector_field_names:
if f in indexed_fields:
vector_index_created = True
log.debug(f"Float vector field {f} already has index")
continue
try:
index_params = create_index_params_from_dict(f, constants.DEFAULT_INDEX_PARAM)
self.milvus_client.create_index(
collection_name=c_name,
index_params=index_params,
timeout=timeout
)
log.debug(f"Created index for float vector field {f}")
indexed_fields.add(f)
vector_index_created = True
except Exception as e:
log.warning(f"Failed to create index for {f}: {e}")
# create index for int8 vector fields
for f in self.int8_vector_field_names:
if f in indexed_fields:
vector_index_created = True
log.debug(f"Int8 vector field {f} already has index")
continue
try:
index_params = create_index_params_from_dict(f, constants.DEFAULT_INT8_INDEX_PARAM)
self.milvus_client.create_index(
collection_name=c_name,
index_params=index_params,
timeout=timeout
)
log.debug(f"Created index for int8 vector field {f}")
indexed_fields.add(f)
vector_index_created = True
except Exception as e:
log.warning(f"Failed to create index for {f}: {e}")
# create index for binary vector fields
for f in self.binary_vector_field_names:
if f in indexed_fields:
vector_index_created = True
log.debug(f"Binary vector field {f} already has index")
continue
try:
index_params = create_index_params_from_dict(f, constants.DEFAULT_BINARY_INDEX_PARAM)
self.milvus_client.create_index(
collection_name=c_name,
index_params=index_params,
timeout=timeout
)
log.debug(f"Created index for binary vector field {f}")
indexed_fields.add(f)
vector_index_created = True
except Exception as e:
log.warning(f"Failed to create index for {f}: {e}")
# create index for bm25 sparse fields
for f in self.bm25_sparse_field_names:
if f in indexed_fields:
continue
try:
index_params = create_index_params_from_dict(f, constants.DEFAULT_BM25_INDEX_PARAM)
self.milvus_client.create_index(
collection_name=c_name,
index_params=index_params,
timeout=timeout
)
log.debug(f"Created index for bm25 sparse field {f}")
except Exception as e:
log.warning(f"Failed to create index for {f}: {e}")
# create index for emb list fields
for f in self.emb_list_field_names:
if f in indexed_fields:
continue
try:
index_params = create_index_params_from_dict(f, constants.DEFAULT_EMB_LIST_INDEX_PARAM)
self.milvus_client.create_index(
collection_name=c_name,
index_params=index_params,
timeout=timeout
)
log.debug(f"Created index for emb list field {f}")
except Exception as e:
log.warning(f"Failed to create index for {f}: {e}")
# Load collection - only if at least one vector field has an index
self.replica_number = replica_number
if vector_index_created:
try:
self.milvus_client.load_collection(collection_name=c_name, replica_number=self.replica_number)
log.debug(f"Loaded collection {c_name} with replica_number={self.replica_number}")
except Exception as e:
log.warning(f"Failed to load collection {c_name}: {e}. Collection may need to be loaded manually.")
else:
log.warning(f"No vector index created for collection {c_name}, skipping load. You may need to create indexes and load manually.")
# Create partition if specified
if p_name != "_default" and not self.milvus_client.has_partition(c_name, p_name):
self.milvus_client.create_partition(collection_name=c_name, partition_name=p_name)
# Insert initial data if needed
num_entities = self.milvus_client.get_collection_stats(c_name).get("row_count", 0)
if insert_data and num_entities == 0:
log.info(f"collection {c_name} created, start to insert data")
t0 = time.perf_counter()
self.insert_data(nb=constants.ENTITIES_FOR_SEARCH, partition_name=self.p_name)
log.info(f"insert data for collection {c_name} cost {time.perf_counter() - t0}s")
self.initial_entities = self.milvus_client.get_collection_stats(c_name).get("row_count", 0)
self.scale = 100000 # timestamp scale to make time.time() as int64
def get_schema(self):
collection_info = self.milvus_client.describe_collection(self.c_name)
return collection_info
def insert_data(self, nb=constants.DELTA_PER_INS, partition_name=None):
partition_name = self.p_name if partition_name is None else partition_name
client_schema = self.milvus_client.describe_collection(collection_name=self.c_name)
data = cf.gen_row_data_by_schema(nb=nb, schema=client_schema)
ts_data = []
for i in range(nb):
time.sleep(0.001)
offset_ts = int(time.time() * self.scale)
ts_data.append(offset_ts)
for i in range(nb):
data[i][self.int64_field_name] = ts_data[i]
df = pd.DataFrame(data)
for text_field in self.text_match_field_name_list:
if text_field in df.columns:
texts = df[text_field].tolist()
wf = cf.analyze_documents(texts)
self.word_freq.update(wf)
# Debug: Check if struct array fields are present in generated data before insert
if data and len(data) > 0:
log.debug(f"[insert_data] First row keys: {list(data[0].keys())}")
# Check for struct array fields (common names: struct_array, metadata, etc.)
for key, value in data[0].items():
if isinstance(value, list) and value and isinstance(value[0], dict):
log.debug(f"[insert_data] Found potential struct array field '{key}': {len(value)} items, first item: {value[0]}")
try:
res = self.milvus_client.insert(
collection_name=self.c_name,
data=data,
partition_name=partition_name,
timeout=timeout,
enable_traceback=enable_traceback,
check_task=CheckTasks.check_nothing)
return res, True
except Exception as e:
return str(e), False
def total(self):
return self._succ + self._fail
def succ_rate(self):
return self._succ / self.total() if self.total() != 0 else 0
def check_result(self):
succ_rate = self.succ_rate()
total = self.total()
rsp_times = self.rsp_times
average_time = 0 if len(rsp_times) == 0 else sum(
rsp_times) / len(rsp_times)
max_time = 0 if len(rsp_times) == 0 else max(rsp_times)
min_time = 0 if len(rsp_times) == 0 else min(rsp_times)
checker_name = self.__class__.__name__
checkers_result = f"{checker_name}, succ_rate: {succ_rate:.2f}, total: {total:03d}, average_time: {average_time:.4f}, max_time: {max_time:.4f}, min_time: {min_time:.4f}"
log.info(checkers_result)
log.debug(f"{checker_name} rsp times: {self.rsp_times}")
if len(self.fail_records) > 0:
log.info(f"{checker_name} failed at {self.fail_records}")
return checkers_result
def terminate(self):
self._keep_running = False
self.reset()
def pause(self):
self._keep_running = False
time.sleep(10)
def resume(self):
self._keep_running = True
time.sleep(10)
def reset(self):
self._succ = 0
self._fail = 0
self.rsp_times = []
self.fail_records = []
self.average_time = 0
def get_rto(self):
if len(self.fail_records) == 0:
return 0
end = self.fail_records[-1][3]
start = self.fail_records[0][3]
recovery_time = end - start # second
self.recovery_time = recovery_time
checker_name = self.__class__.__name__
log.info(f"{checker_name} recovery time is {self.recovery_time}, start at {self.fail_records[0][2]}, "
f"end at {self.fail_records[-1][2]}")
return recovery_time
def prepare_bulk_insert_data(self,
nb=constants.ENTITIES_FOR_BULKINSERT,
file_type="npy",
minio_endpoint="127.0.0.1:9000",
bucket_name=None):
schema = self.schema
bucket_name = self.bucket_name if bucket_name is None else bucket_name
log.info("prepare data for bulk insert")
try:
files = cf.prepare_bulk_insert_data(schema=schema,
nb=nb,
file_type=file_type,
minio_endpoint=minio_endpoint,
bucket_name=bucket_name)
self.files = files
return files, True
except Exception as e:
log.error(f"prepare data for bulk insert failed with error {e}")
return [], False
def do_bulk_insert(self):
log.info(f"bulk insert collection name: {self.c_name}")
from pymilvus import utility
task_ids = utility.do_bulk_insert(collection_name=self.c_name, files=self.files, using=self.alias)
log.info(f"task ids {task_ids}")
completed = utility.wait_for_bulk_insert_tasks_completed(task_ids=[task_ids], timeout=720, using=self.alias)
return task_ids, completed
class CollectionLoadChecker(Checker):
"""check collection load operations in a dependent thread"""
def __init__(self, collection_name=None, shards_num=2, replica_number=1, schema=None, ):
self.replica_number = replica_number
if collection_name is None:
collection_name = cf.gen_unique_str("CollectionLoadChecker_")
super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema)
@trace()
def load_collection(self):
try:
self.milvus_client.load_collection(collection_name=self.c_name, replica_number=self.replica_number)
return None, True
except Exception as e:
return str(e), False
@exception_handler()
def run_task(self):
res, result = self.load_collection()
if result:
self.milvus_client.release_collection(collection_name=self.c_name)
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP)
class CollectionReleaseChecker(Checker):
"""check collection release operations in a dependent thread"""
def __init__(self, collection_name=None, shards_num=2, replica_number=1, schema=None, ):
self.replica_number = replica_number
if collection_name is None:
collection_name = cf.gen_unique_str("CollectionReleaseChecker_")
super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema)
self.milvus_client.load_collection(collection_name=self.c_name, replica_number=self.replica_number)
@trace()
def release_collection(self):
try:
self.milvus_client.release_collection(collection_name=self.c_name)
return None, True
except Exception as e:
return str(e), False
@exception_handler()
def run_task(self):
res, result = self.release_collection()
if result:
self.milvus_client.load_collection(collection_name=self.c_name, replica_number=self.replica_number)
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP)
class CollectionRenameChecker(Checker):
"""check collection rename operations in a dependent thread"""
def __init__(self, collection_name=None, shards_num=2, replica_number=1, schema=None, ):
self.replica_number = replica_number
if collection_name is None:
collection_name = cf.gen_unique_str("CollectionRenameChecker_")
super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema)
@trace()
def rename_collection(self, old_collection_name, new_collection_name):
try:
self.milvus_client.rename_collection(old_name=old_collection_name, new_name=new_collection_name)
return None, True
except Exception as e:
log.info(f"rename collection failed with error {e}")
return str(e), False
@exception_handler()
def run_task(self):
new_collection_name = "CollectionRenameChecker_" + cf.gen_unique_str("new_")
res, result = self.rename_collection(self.c_name, new_collection_name)
if result:
result = self.milvus_client.has_collection(collection_name=new_collection_name)
if result:
self.c_name = new_collection_name
data = cf.gen_row_data_by_schema(nb=1, schema=self.schema)
self.milvus_client.insert(collection_name=new_collection_name, data=data)
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP)
class PartitionLoadChecker(Checker):
"""check partition load operations in a dependent thread"""
def __init__(self, collection_name=None, shards_num=2, replica_number=1, schema=None, ):
self.replica_number = replica_number
if collection_name is None:
collection_name = cf.gen_unique_str("PartitionLoadChecker_")
p_name = cf.gen_unique_str("PartitionLoadChecker_")
super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema, partition_name=p_name)
self.milvus_client.release_collection(collection_name=self.c_name)
@trace()
def load_partition(self):
try:
self.milvus_client.load_partitions(collection_name=self.c_name, partition_names=[self.p_name], replica_number=self.replica_number)
return None, True
except Exception as e:
return str(e), False
@exception_handler()
def run_task(self):
res, result = self.load_partition()
if result:
self.milvus_client.release_partitions(collection_name=self.c_name, partition_names=[self.p_name])
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP)
class PartitionReleaseChecker(Checker):
"""check partition release operations in a dependent thread"""
def __init__(self, collection_name=None, shards_num=2, replica_number=1, schema=None, ):
self.replica_number = replica_number
if collection_name is None:
collection_name = cf.gen_unique_str("PartitionReleaseChecker_")
p_name = cf.gen_unique_str("PartitionReleaseChecker_")
super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema, partition_name=p_name)
self.milvus_client.release_collection(collection_name=self.c_name)
self.milvus_client.load_partitions(collection_name=self.c_name, partition_names=[self.p_name], replica_number=self.replica_number)
@trace()
def release_partition(self):
try:
self.milvus_client.release_partitions(collection_name=self.c_name, partition_names=[self.p_name])
return None, True
except Exception as e:
return str(e), False
@exception_handler()
def run_task(self):
res, result = self.release_partition()
if result:
self.milvus_client.load_partitions(collection_name=self.c_name, partition_names=[self.p_name], replica_number=self.replica_number)
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP)
class SearchChecker(Checker):
"""check search operations in a dependent thread"""
def __init__(self, collection_name=None, shards_num=2, schema=None):
if collection_name is None:
collection_name = cf.gen_unique_str("SearchChecker_")
super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema)
self.insert_data()
self.dense_anns_field_name_list = cf.get_dense_anns_field_name_list(self.schema)
self.data = None
self.anns_field_name = None
self.search_param = None
@trace()
def search(self):
try:
res = self.milvus_client.search(
collection_name=self.c_name,
data=self.data,
anns_field=self.anns_field_name,
search_params=self.search_param,
limit=1,
partition_names=self.p_names,
timeout=search_timeout
)
return res, True
except Exception as e:
return str(e), False
@exception_handler()
def run_task(self):
anns_field_item = random.choice(self.dense_anns_field_name_list)
self.anns_field_name = anns_field_item["name"]
dim = anns_field_item["dim"]
self.data = cf.gen_vectors(5, dim, vector_data_type=anns_field_item["dtype"])
if anns_field_item["dtype"] in [DataType.FLOAT_VECTOR, DataType.FLOAT16_VECTOR, DataType.BFLOAT16_VECTOR]:
self.search_param = constants.DEFAULT_SEARCH_PARAM
elif anns_field_item["dtype"] == DataType.INT8_VECTOR:
self.search_param = constants.DEFAULT_INT8_SEARCH_PARAM
res, result = self.search()
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP / 10)
class TensorSearchChecker(Checker):
"""check search operations for struct array vector fields in a dependent thread"""
def __init__(self, collection_name=None, shards_num=2, schema=None):
if collection_name is None:
collection_name = cf.gen_unique_str("TensorSearchChecker_")
super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema)
self.insert_data()
# Only get struct array vector fields
self.struct_array_vector_field_list = cf.get_struct_array_vector_field_list(self.schema)
self.data = None
self.anns_field_name = None
self.search_param = None
@staticmethod
def _create_embedding_list(dim, num_vectors, dtype):
"""Create EmbeddingList for struct array vector search"""
embedding_list = EmbeddingList()
vectors = cf.gen_vectors(num_vectors, dim, vector_data_type=dtype)
for vector in vectors:
embedding_list.add(vector)
return embedding_list
@trace()
def search(self):
try:
res = self.milvus_client.search(
collection_name=self.c_name,
data=self.data,
anns_field=self.anns_field_name,
search_params=self.search_param,
limit=1,
partition_names=self.p_names,
timeout=search_timeout
)
return res, True
except Exception as e:
return str(e), False
@exception_handler()
def run_task(self):
if not self.struct_array_vector_field_list:
log.warning("No struct array vector fields available for search")
return None, False
# Randomly select a struct array vector field
anns_field_item = random.choice(self.struct_array_vector_field_list)
dim = anns_field_item["dim"]
dtype = anns_field_item["dtype"]
# Use the anns_field format: struct_field[vector_field]
self.anns_field_name = anns_field_item["anns_field"]
# Create EmbeddingList with random number of vectors (1-5)
num_vectors = random.randint(1, 5)
self.data = [self._create_embedding_list(dim, num_vectors, dtype)]
# Use MAX_SIM_COSINE for struct array vector search
self.search_param = {"metric_type": "MAX_SIM_COSINE"}
res, result = self.search()
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP / 10)
class FullTextSearchChecker(Checker):
"""check full text search operations in a dependent thread"""
def __init__(self, collection_name=None, shards_num=2, replica_number=1, schema=None, ):
if collection_name is None:
collection_name = cf.gen_unique_str("FullTextSearchChecker_")
super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema)
self.insert_data()
@trace()
def full_text_search(self):
bm25_anns_field = random.choice(self.bm25_sparse_field_names)
try:
res = self.milvus_client.search(
collection_name=self.c_name,
data=cf.gen_vectors(5, self.dim, vector_data_type="TEXT_SPARSE_VECTOR"),
anns_field=bm25_anns_field,
search_params=constants.DEFAULT_BM25_SEARCH_PARAM,
limit=1,
partition_names=self.p_names,
timeout=search_timeout
)
return res, True
except Exception as e:
return str(e), False
@exception_handler()
def run_task(self):
res, result = self.full_text_search()
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP / 10)
class HybridSearchChecker(Checker):
"""check hybrid search operations in a dependent thread"""
def __init__(self, collection_name=None, shards_num=2, replica_number=1, schema=None, ):
if collection_name is None:
collection_name = cf.gen_unique_str("HybridSearchChecker_")
super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema)
# do load before search
self.milvus_client.load_collection(collection_name=self.c_name, replica_number=replica_number)
self.insert_data()
def gen_hybrid_search_request(self):
res = []
dim = self.dim
for vec_field_name in self.float_vector_field_names:
search_param = {
"data": cf.gen_vectors(1, dim),
"anns_field": vec_field_name,
"param": constants.DEFAULT_SEARCH_PARAM,
"limit": 10,
"expr": f"{self.int64_field_name} > 0",
}
req = AnnSearchRequest(**search_param)
res.append(req)
return res
@trace()
def hybrid_search(self):
try:
res = self.milvus_client.hybrid_search(
collection_name=self.c_name,
reqs=self.gen_hybrid_search_request(),
ranker=RRFRanker(),
limit=10,
partition_names=self.p_names,
timeout=search_timeout
)
return res, True
except Exception as e:
log.info(f"hybrid search failed with error {e}")
return str(e), False
@exception_handler()
def run_task(self):
res, result = self.hybrid_search()
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP / 10)
class InsertFlushChecker(Checker):
"""check Insert and flush operations in a dependent thread"""
def __init__(self, collection_name=None, flush=False, shards_num=2, schema=None):
super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema)
self._flush = flush
stats = self.milvus_client.get_collection_stats(collection_name=self.c_name)
self.initial_entities = stats.get("row_count", 0)
def keep_running(self):
while True:
t0 = time.time()
try:
self.milvus_client.insert(
collection_name=self.c_name,
data=cf.gen_row_data_by_schema(nb=constants.ENTITIES_FOR_SEARCH, schema=self.schema),
timeout=timeout
)
insert_result = True
except Exception:
insert_result = False
t1 = time.time()
if not self._flush:
if insert_result:
self.rsp_times.append(t1 - t0)
self.average_time = ((t1 - t0) + self.average_time * self._succ) / (self._succ + 1)
self._succ += 1
log.debug(f"insert success, time: {t1 - t0:.4f}, average_time: {self.average_time:.4f}")
else:
self._fail += 1
sleep(constants.WAIT_PER_OP / 10)
else:
# call flush to get num_entities
t0 = time.time()
self.milvus_client.flush(collection_names=[self.c_name])
stats = self.milvus_client.get_collection_stats(collection_name=self.c_name)
num_entities = stats.get("row_count", 0)
t1 = time.time()
if num_entities == (self.initial_entities + constants.DELTA_PER_INS):
self.rsp_times.append(t1 - t0)
self.average_time = ((t1 - t0) + self.average_time * self._succ) / (self._succ + 1)
self._succ += 1
log.debug(f"flush success, time: {t1 - t0:.4f}, average_time: {self.average_time:.4f}")
self.initial_entities += constants.DELTA_PER_INS
else:
self._fail += 1
sleep(constants.WAIT_PER_OP * 6)
class FlushChecker(Checker):
"""check flush operations in a dependent thread"""
def __init__(self, collection_name=None, shards_num=2, schema=None):
if collection_name is None:
collection_name = cf.gen_unique_str("FlushChecker_")
super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema)
stats = self.milvus_client.get_collection_stats(collection_name=self.c_name)
self.initial_entities = stats.get("row_count", 0)
@trace()
def flush(self):
try:
self.milvus_client.flush(collection_name=self.c_name)
return None, True
except Exception as e:
log.info(f"flush error: {e}")
return str(e), False
@exception_handler()
def run_task(self):
try:
self.milvus_client.insert(
collection_name=self.c_name,
data=cf.gen_row_data_by_schema(nb=constants.ENTITIES_FOR_SEARCH, schema=self.schema),
timeout=timeout
)
result = True
except Exception:
result = False
res, result = self.flush()
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP * 6)
class AddFieldChecker(Checker):
"""check add field operations in a dependent thread"""
def __init__(self, collection_name=None, shards_num=2, schema=None):
if collection_name is None:
collection_name = cf.gen_unique_str("AddFieldChecker_")
super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema)
stats = self.milvus_client.get_collection_stats(collection_name=self.c_name)
self.initial_entities = stats.get("row_count", 0)
@trace()
def add_field(self):
try:
new_field_name = cf.gen_unique_str("new_field_")
self.milvus_client.add_collection_field(collection_name=self.c_name,
field_name=new_field_name,
data_type=DataType.INT64,
nullable=True)
log.debug(f"add field {new_field_name} to collection {self.c_name}")
time.sleep(1)
_, result = self.insert_data()
res = self.milvus_client.query(collection_name=self.c_name,
filter=f"{new_field_name} >= 0",
output_fields=[new_field_name])
result = True
if result:
log.debug(f"query with field {new_field_name} success")
return None, result
except Exception as e:
log.error(e)
return str(e), False
@exception_handler()
def run_task(self):
res, result = self.add_field()
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP * 6)
class InsertChecker(Checker):
"""check insert operations in a dependent thread"""
def __init__(self, collection_name=None, flush=False, shards_num=2, schema=None):
if collection_name is None:
collection_name = cf.gen_unique_str("InsertChecker_")
super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema)
self._flush = flush
stats = self.milvus_client.get_collection_stats(collection_name=self.c_name)
self.initial_entities = stats.get("row_count", 0)
self.inserted_data = []
self.scale = 1 * 10 ** 6
self.start_time_stamp = int(time.time() * self.scale) # us
self.term_expr = f'{self.int64_field_name} >= {self.start_time_stamp}'
self.file_name = f"/tmp/ci_logs/insert_data_{uuid.uuid4()}.parquet"
@trace()
def insert_entities(self):
# Use describe_collection directly to preserve struct_fields information
schema = self.milvus_client.describe_collection(self.c_name)
data = cf.gen_row_data_by_schema(nb=constants.DELTA_PER_INS, schema=schema)
rows = len(data)
ts_data = []
for i in range(constants.DELTA_PER_INS):
time.sleep(0.001)
offset_ts = int(time.time() * self.scale)
ts_data.append(offset_ts)
for i in range(rows):
data[i][self.int64_field_name] = ts_data[i]
log.debug(f"insert data: {rows}")
# Debug: Check if struct array fields are present in generated data
if data and len(data) > 0:
log.debug(f"[InsertChecker] First row keys: {list(data[0].keys())}")
# Check for struct array fields (common names: struct_array, metadata, etc.)
for key, value in data[0].items():
if isinstance(value, list) and value and isinstance(value[0], dict):
log.debug(f"[InsertChecker] Found potential struct array field '{key}': {len(value)} items, first item: {value[0]}")
try:
res = self.milvus_client.insert(collection_name=self.c_name,
data=data,
partition_name=self.p_names[0] if self.p_names else None,
timeout=timeout)
return res, True
except Exception as e:
log.info(f"insert error: {e}")
return str(e), False
@exception_handler()
def run_task(self):
res, result = self.insert_entities()
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP / 10)
def verify_data_completeness(self):
# deprecated
try:
index_params = create_index_params_from_dict(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM)
self.milvus_client.create_index(collection_name=self.c_name, index_params=index_params)
except Exception as e:
log.error(f"create index error: {e}")
self.milvus_client.load_collection(collection_name=self.c_name)
end_time_stamp = int(time.time() * self.scale)
self.term_expr = f'{self.int64_field_name} >= {self.start_time_stamp} and ' \
f'{self.int64_field_name} <= {end_time_stamp}'
data_in_client = []
for d in self.inserted_data:
if self.start_time_stamp <= d <= end_time_stamp:
data_in_client.append(d)
res = self.milvus_client.query(collection_name=self.c_name, filter=self.term_expr,
output_fields=[f'{self.int64_field_name}'],
limit=len(data_in_client) * 2, timeout=timeout)
result = True
data_in_server = []
for r in res:
d = r[f"{ct.default_int64_field_name}"]
data_in_server.append(d)
pytest.assume(set(data_in_server) == set(data_in_client))
class InsertFreshnessChecker(Checker):
"""check insert freshness operations in a dependent thread"""
def __init__(self, collection_name=None, flush=False, shards_num=2, schema=None):
self.latest_data = None
if collection_name is None:
collection_name = cf.gen_unique_str("InsertChecker_")
super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema)
self._flush = flush
stats = self.milvus_client.get_collection_stats(collection_name=self.c_name)
self.initial_entities = stats.get("row_count", 0)
self.inserted_data = []
self.scale = 1 * 10 ** 6
self.start_time_stamp = int(time.time() * self.scale) # us
self.term_expr = f'{self.int64_field_name} >= {self.start_time_stamp}'
self.file_name = f"/tmp/ci_logs/insert_data_{uuid.uuid4()}.parquet"
def insert_entities(self):
schema = self.get_schema()
data = cf.gen_row_data_by_schema(nb=constants.DELTA_PER_INS, schema=schema)
ts_data = []
for i in range(constants.DELTA_PER_INS):
time.sleep(0.001)
offset_ts = int(time.time() * self.scale)
ts_data.append(offset_ts)
data[0] = ts_data # set timestamp (ms) as int64
log.debug(f"insert data: {len(ts_data)}")
try:
res = self.milvus_client.insert(collection_name=self.c_name,
data=data,
partition_name=self.p_names[0] if self.p_names else None,
timeout=timeout)
result = True
except Exception as e:
res = str(e)
result = False
self.latest_data = ts_data[-1]
self.term_expr = f'{self.int64_field_name} == {self.latest_data}'
return res, result
@trace()
def insert_freshness(self):
while True:
try:
res = self.milvus_client.query(collection_name=self.c_name,
filter=self.term_expr,
output_fields=[f'{self.int64_field_name}'],
timeout=timeout)
result = True
except Exception as e:
res = str(e)
result = False
break
if len(res) == 1 and res[0][f"{self.int64_field_name}"] == self.latest_data:
break
return res, result
@exception_handler()
def run_task(self):
res, result = self.insert_entities()
res, result = self.insert_freshness()
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP / 10)
class UpsertChecker(Checker):
"""check upsert operations in a dependent thread"""
def __init__(self, collection_name=None, shards_num=2, schema=None):
if collection_name is None:
collection_name = cf.gen_unique_str("UpsertChecker_")
super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema)
schema = self.milvus_client.describe_collection(collection_name=self.c_name)
self.data = cf.gen_row_data_by_schema(nb=constants.DELTA_PER_INS, schema=schema)
@trace()
def upsert_entities(self):
try:
res = self.milvus_client.upsert(collection_name=self.c_name,
data=self.data,
timeout=timeout)
return res, True
except Exception as e:
log.info(f"upsert failed: {e}")
return str(e), False
@exception_handler()
def run_task(self):
# half of the data is upsert, the other half is insert
rows = len(self.data)
pk_old = [d[self.int64_field_name] for d in self.data[:rows // 2]]
schema = self.milvus_client.describe_collection(collection_name=self.c_name)
self.data = cf.gen_row_data_by_schema(nb=constants.DELTA_PER_INS, schema=schema)
pk_new = [d[self.int64_field_name] for d in self.data[rows // 2:]]
pk_update = pk_old + pk_new
for i in range(rows):
self.data[i][self.int64_field_name] = pk_update[i]
res, result = self.upsert_entities()
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP * 6)
class UpsertFreshnessChecker(Checker):
"""check upsert freshness operations in a dependent thread"""
def __init__(self, collection_name=None, shards_num=2, schema=None):
self.term_expr = None
self.latest_data = None
if collection_name is None:
collection_name = cf.gen_unique_str("UpsertChecker_")
super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema)
schema = self.get_schema()
self.data = cf.gen_row_data_by_schema(nb=constants.DELTA_PER_INS, schema=schema)
def upsert_entities(self):
try:
res = self.milvus_client.upsert(collection_name=self.c_name,
data=self.data,
timeout=timeout)
return res, True
except Exception as e:
return str(e), False
@trace()
def upsert_freshness(self):
while True:
try:
res = self.milvus_client.query(collection_name=self.c_name,
filter=self.term_expr,
output_fields=[f'{self.int64_field_name}'],
timeout=timeout)
result = True
except Exception as e:
res = str(e)
result = False
break
if len(res) == 1 and res[0][f"{self.int64_field_name}"] == self.latest_data:
break
return res, result
@exception_handler()
def run_task(self):
# half of the data is upsert, the other half is insert
rows = len(self.data[0])
pk_old = self.data[0][:rows // 2]
schema = self.get_schema()
self.data = cf.gen_row_data_by_schema(nb=constants.DELTA_PER_INS, schema=schema)
pk_new = self.data[0][rows // 2:]
pk_update = pk_old + pk_new
self.data[0] = pk_update
self.latest_data = self.data[0][-1]
self.term_expr = f'{self.int64_field_name} == {self.latest_data}'
res, result = self.upsert_entities()
res, result = self.upsert_freshness()
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP * 6)
class PartialUpdateChecker(Checker):
"""check partial update operations in a dependent thread"""
def __init__(self, collection_name=None, shards_num=2, schema=None):
if collection_name is None:
collection_name = cf.gen_unique_str("PartialUpdateChecker_")
super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema, enable_struct_array_field=False)
schema = self.get_schema()
self.data = cf.gen_row_data_by_schema(nb=constants.DELTA_PER_INS, schema=schema)
@trace()
def partial_update_entities(self):
try:
res = self.milvus_client.upsert(collection_name=self.c_name,
data=self.data,
partial_update=True,
timeout=timeout)
return res, True
except Exception as e:
log.info(f"error {e}")
return str(e), False
@exception_handler()
def run_task(self, count=0):
schema = self.get_schema()
pk_field_name = self.int64_field_name
rows = len(self.data)
# if count is even, use partial update; if count is odd, use full insert
if count % 2 == 0:
# Generate a fresh full batch (used for inserts and as a source of values)
full_rows = cf.gen_row_data_by_schema(nb=rows, schema=schema)
self.data = full_rows
else:
num_fields = len(schema["fields"])
# Choose subset fields to update: always include PK + one non-PK field if available
num = count % num_fields
desired_fields = [pk_field_name, schema["fields"][num if num != 0 else 1]["name"]]
partial_rows = cf.gen_row_data_by_schema(nb=rows, schema=schema,
desired_field_names=desired_fields)
self.data = partial_rows
res, result = self.partial_update_entities()
return res, result
def keep_running(self):
count = 0
while self._keep_running:
self.run_task(count)
count += 1
sleep(constants.WAIT_PER_OP * 6)
class CollectionCreateChecker(Checker):
"""check collection create operations in a dependent thread"""
def __init__(self, collection_name=None, schema=None):
if collection_name is None:
collection_name = cf.gen_unique_str("CreateChecker_")
super().__init__(collection_name=collection_name, schema=schema)
@trace()
def init_collection(self):
try:
collection_name = cf.gen_unique_str("CreateChecker_")
schema = cf.gen_default_collection_schema()
self.milvus_client.create_collection(collection_name=collection_name,
schema=schema)
return None, True
except Exception as e:
return str(e), False
@exception_handler()
def run_task(self):
res, result = self.init_collection()
# if result:
# # 50% chance to drop collection
# if random.randint(0, 1) == 0:
# self.c_wrap.drop(timeout=timeout)
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP)
class CollectionDropChecker(Checker):
"""check collection drop operations in a dependent thread"""
def __init__(self, collection_name=None, schema=None):
if collection_name is None:
collection_name = cf.gen_unique_str("DropChecker_")
super().__init__(collection_name=collection_name, schema=schema)
self.collection_pool = []
self.gen_collection_pool(schema=self.schema)
def gen_collection_pool(self, pool_size=50, schema=None):
for i in range(pool_size):
collection_name = cf.gen_unique_str("DropChecker_")
try:
self.milvus_client.create_collection(collection_name=collection_name, schema=schema)
self.collection_pool.append(collection_name)
except Exception as e:
log.error(f"Failed to create collection {collection_name}: {e}")
@trace()
def drop_collection(self):
try:
self.milvus_client.drop_collection(collection_name=self.c_name)
if self.c_name in self.collection_pool:
self.collection_pool.remove(self.c_name)
return None, True
except Exception as e:
log.info(f"error while dropping collection {self.c_name}: {e}")
return str(e), False
@exception_handler()
def run_task(self):
res, result = self.drop_collection()
return res, result
def keep_running(self):
while self._keep_running:
res, result = self.run_task()
if result:
try:
if len(self.collection_pool) <= 10:
self.gen_collection_pool(schema=self.schema)
except Exception as e:
log.error(f"Failed to generate collection pool: {e}")
try:
c_name = self.collection_pool[0]
# Update current collection name to use from pool
self.c_name = c_name
except Exception as e:
log.error(f"Failed to init new collection: {e}")
sleep(constants.WAIT_PER_OP)
class PartitionCreateChecker(Checker):
"""check partition create operations in a dependent thread"""
def __init__(self, collection_name=None, schema=None, partition_name=None):
if collection_name is None:
collection_name = cf.gen_unique_str("PartitionCreateChecker_")
super().__init__(collection_name=collection_name, schema=schema, partition_name=partition_name)
c_name = cf.gen_unique_str("PartitionDropChecker_")
self.milvus_client.create_collection(collection_name=c_name, schema=self.schema)
self.c_name = c_name
log.info(f"collection {c_name} created")
p_name = cf.gen_unique_str("PartitionDropChecker_")
self.milvus_client.create_partition(collection_name=self.c_name, partition_name=p_name)
self.p_name = p_name
log.info(f"partition: {self.p_name}")
@trace()
def create_partition(self):
try:
partition_name = cf.gen_unique_str("PartitionCreateChecker_")
self.milvus_client.create_partition(collection_name=self.c_name,
partition_name=partition_name)
return None, True
except Exception as e:
return str(e), False
@exception_handler()
def run_task(self):
res, result = self.create_partition()
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP)
class PartitionDropChecker(Checker):
"""check partition drop operations in a dependent thread"""
def __init__(self, collection_name=None, schema=None, partition_name=None):
if collection_name is None:
collection_name = cf.gen_unique_str("PartitionDropChecker_")
super().__init__(collection_name=collection_name, schema=schema, partition_name=partition_name)
c_name = cf.gen_unique_str("PartitionDropChecker_")
self.milvus_client.create_collection(collection_name=c_name, schema=self.schema)
self.c_name = c_name
log.info(f"collection {c_name} created")
p_name = cf.gen_unique_str("PartitionDropChecker_")
self.milvus_client.create_partition(collection_name=self.c_name, partition_name=p_name)
self.p_name = p_name
log.info(f"partition: {self.p_name}")
@trace()
def drop_partition(self):
try:
self.milvus_client.drop_partition(collection_name=self.c_name, partition_name=self.p_name)
return None, True
except Exception as e:
return str(e), False
@exception_handler()
def run_task(self):
res, result = self.drop_partition()
if result:
# create two partition then drop one
for i in range(2):
p_name = cf.gen_unique_str("PartitionDropChecker_")
self.milvus_client.create_partition(collection_name=self.c_name, partition_name=p_name)
if i == 1: # Keep track of the last partition to drop next time
self.p_name = p_name
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP)
class DatabaseCreateChecker(Checker):
"""check create database operations in a dependent thread"""
def __init__(self, collection_name=None, schema=None):
if collection_name is None:
collection_name = cf.gen_unique_str("DatabaseChecker_")
super().__init__(collection_name=collection_name, schema=schema)
self.db_name = None
@trace()
def init_db(self):
db_name = cf.gen_unique_str("db_")
try:
self.milvus_client.create_database(db_name=db_name)
self.db_name = db_name
return None, True
except Exception as e:
return str(e), False
@exception_handler()
def run_task(self):
res, result = self.init_db()
if result:
self.milvus_client.drop_database(db_name=self.db_name)
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP)
class DatabaseDropChecker(Checker):
"""check drop database operations in a dependent thread"""
def __init__(self, collection_name=None, schema=None):
if collection_name is None:
collection_name = cf.gen_unique_str("DatabaseChecker_")
super().__init__(collection_name=collection_name, schema=schema)
self.db_name = cf.gen_unique_str("db_")
self.milvus_client.create_database(db_name=self.db_name)
@trace()
def drop_db(self):
try:
self.milvus_client.drop_database(db_name=self.db_name)
return None, True
except Exception as e:
return str(e), False
@exception_handler()
def run_task(self):
res, result = self.drop_db()
if result:
self.db_name = cf.gen_unique_str("db_")
self.milvus_client.create_database(db_name=self.db_name)
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP)
class IndexCreateChecker(Checker):
"""check index create operations in a dependent thread"""
def __init__(self, collection_name=None, schema=None):
if collection_name is None:
collection_name = cf.gen_unique_str("IndexChecker_")
super().__init__(collection_name=collection_name, schema=schema)
for i in range(5):
self.milvus_client.insert(collection_name=self.c_name,
data=cf.gen_row_data_by_schema(nb=constants.ENTITIES_FOR_SEARCH, schema=self.schema),
timeout=timeout)
# do as a flush before indexing
stats = self.milvus_client.get_collection_stats(collection_name=self.c_name)
log.debug(f"Index ready entities: {stats.get('row_count', 0)}")
@trace()
def create_index(self):
try:
index_params = create_index_params_from_dict(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM)
self.milvus_client.create_index(collection_name=self.c_name,
index_params=index_params)
return None, True
except Exception as e:
return str(e), False
@exception_handler()
def run_task(self):
c_name = cf.gen_unique_str("IndexCreateChecker_")
self.milvus_client.create_collection(collection_name=c_name, schema=self.schema)
self.c_name = c_name
res, result = self.create_index()
if result:
self.milvus_client.drop_index(collection_name=self.c_name, index_name="")
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP * 6)
class IndexDropChecker(Checker):
"""check index drop operations in a dependent thread"""
def __init__(self, collection_name=None, schema=None):
if collection_name is None:
collection_name = cf.gen_unique_str("IndexChecker_")
super().__init__(collection_name=collection_name, schema=schema)
for i in range(5):
self.milvus_client.insert(collection_name=self.c_name, data=cf.gen_row_data_by_schema(nb=constants.ENTITIES_FOR_SEARCH, schema=self.schema),
timeout=timeout)
# do as a flush before indexing
stats = self.milvus_client.get_collection_stats(collection_name=self.c_name)
log.debug(f"Index ready entities: {stats.get('row_count', 0)}")
@trace()
def drop_index(self):
try:
res = self.milvus_client.drop_index(collection_name=self.c_name, index_name="")
return res, True
except Exception as e:
log.info(f"drop_index error: {e}")
return str(e), False
@exception_handler()
def run_task(self):
res, result = self.drop_index()
if result:
self.milvus_client.create_collection(collection_name=cf.gen_unique_str("IndexDropChecker_"), schema=self.schema)
index_params = create_index_params_from_dict(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM)
self.milvus_client.create_index(collection_name=self.c_name, index_params=index_params)
return res, result
def keep_running(self):
while self._keep_running:
self.milvus_client.create_collection(collection_name=cf.gen_unique_str("IndexDropChecker_"), schema=self.schema)
index_params = create_index_params_from_dict(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM)
self.milvus_client.create_index(collection_name=self.c_name, index_params=index_params)
self.run_task()
sleep(constants.WAIT_PER_OP * 6)
class QueryChecker(Checker):
"""check query operations in a dependent thread"""
def __init__(self, collection_name=None, shards_num=2, replica_number=1, schema=None):
if collection_name is None:
collection_name = cf.gen_unique_str("QueryChecker_")
super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema)
index_params = create_index_params_from_dict(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM)
self.milvus_client.create_index(collection_name=self.c_name, index_params=index_params)
self.milvus_client.load_collection(collection_name=self.c_name, replica_number=replica_number) # do load before query
self.insert_data()
self.term_expr = f"{self.int64_field_name} > 0"
@trace()
def query(self):
try:
res = self.milvus_client.query(collection_name=self.c_name, filter=self.term_expr, timeout=query_timeout)
return res, True
except Exception as e:
log.info(f"query error: {e}")
return str(e), False
@exception_handler()
def run_task(self):
res, result = self.query()
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP / 10)
class TextMatchChecker(Checker):
"""check text match query operations in a dependent thread"""
def __init__(self, collection_name=None, shards_num=2, replica_number=1, schema=None):
if collection_name is None:
collection_name = cf.gen_unique_str("QueryChecker_")
super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema)
index_params = create_index_params_from_dict(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM)
self.milvus_client.create_index(collection_name=self.c_name, index_params=index_params)
self.milvus_client.load_collection(collection_name=self.c_name, replica_number=replica_number) # do load before query
self.insert_data()
key_word = self.word_freq.most_common(1)[0][0]
text_match_field_name = random.choice(self.text_match_field_name_list)
self.term_expr = f"TEXT_MATCH({text_match_field_name}, '{key_word}')"
@trace()
def text_match(self):
try:
res = self.milvus_client.query(collection_name=self.c_name, filter=self.term_expr, timeout=query_timeout)
return res, True
except Exception as e:
log.info(f"text_match error: {e}")
return str(e), False
@exception_handler()
def run_task(self):
key_word = self.word_freq.most_common(1)[0][0]
text_match_field_name = random.choice(self.text_match_field_name_list)
self.term_expr = f"TEXT_MATCH({text_match_field_name}, '{key_word}')"
res, result = self.text_match()
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP / 10)
class PhraseMatchChecker(Checker):
"""check phrase match query operations in a dependent thread"""
def __init__(self, collection_name=None, shards_num=2, replica_number=1, schema=None):
if collection_name is None:
collection_name = cf.gen_unique_str("PhraseMatchChecker_")
super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema)
index_params = create_index_params_from_dict(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM)
self.milvus_client.create_index(collection_name=self.c_name, index_params=index_params)
self.milvus_client.load_collection(collection_name=self.c_name, replica_number=replica_number) # do load before query
self.insert_data()
key_word_1 = self.word_freq.most_common(2)[0][0]
key_word_2 = self.word_freq.most_common(2)[1][0]
slop=5
text_match_field_name = random.choice(self.text_match_field_name_list)
self.term_expr = f"PHRASE_MATCH({text_match_field_name}, '{key_word_1} {key_word_2}', {slop})"
@trace()
def phrase_match(self):
try:
res = self.milvus_client.query(collection_name=self.c_name, filter=self.term_expr, timeout=query_timeout)
return res, True
except Exception as e:
log.info(f"phrase_match error: {e}")
return str(e), False
@exception_handler()
def run_task(self):
key_word_1 = self.word_freq.most_common(2)[0][0]
key_word_2 = self.word_freq.most_common(2)[1][0]
slop=5
text_match_field_name = random.choice(self.text_match_field_name_list)
self.term_expr = f"PHRASE_MATCH({text_match_field_name}, '{key_word_1} {key_word_2}', {slop})"
res, result = self.phrase_match()
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP / 10)
class JsonQueryChecker(Checker):
"""check json query operations in a dependent thread"""
def __init__(self, collection_name=None, shards_num=2, replica_number=1, schema=None):
if collection_name is None:
collection_name = cf.gen_unique_str("JsonQueryChecker_")
super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema)
index_params = create_index_params_from_dict(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM)
self.milvus_client.create_index(collection_name=self.c_name, index_params=index_params)
self.milvus_client.load_collection(collection_name=self.c_name, replica_number=replica_number) # do load before query
self.insert_data()
self.term_expr = self.get_term_expr()
def get_term_expr(self):
json_field_name = random.choice(self.json_field_names)
fake = Faker()
address_list = [fake.address() for _ in range(10)]
name_list = [fake.name() for _ in range(10)]
number_list = [random.randint(0, 100) for _ in range(10)]
path = random.choice([ "name", "count"])
path_value = {
"address": address_list, # TODO not used in json query because of issue
"name": name_list,
"count": number_list
}
return f"{json_field_name}['{path}'] <= '{path_value[path][random.randint(0, len(path_value[path]) - 1)]}'"
@trace()
def json_query(self):
try:
res = self.milvus_client.query(collection_name=self.c_name, filter=self.term_expr, timeout=query_timeout)
return res, True
except Exception as e:
log.info(f"json_query error: {e}")
return str(e), False
@exception_handler()
def run_task(self):
self.term_expr = self.get_term_expr()
res, result = self.json_query()
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP / 10)
class GeoQueryChecker(Checker):
"""check geometry query operations in a dependent thread"""
def __init__(self, collection_name=None, shards_num=2, replica_number=1, schema=None):
if collection_name is None:
collection_name = cf.gen_unique_str("GeoQueryChecker_")
super().__init__(collection_name=collection_name, shards_num=shards_num, schema=schema)
index_params = create_index_params_from_dict(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM)
self.milvus_client.create_index(collection_name=self.c_name, index_params=index_params)
self.milvus_client.load_collection(collection_name=self.c_name, replica_number=replica_number) # do load before query
self.insert_data()
self.term_expr = self.get_term_expr()
def get_term_expr(self):
geometry_field_name = random.choice(self.geometry_field_names)
query_polygon = "POLYGON ((-180 -90, 180 -90, 180 90, -180 90, -180 -90))"
return f"ST_WITHIN({geometry_field_name}, '{query_polygon}')"
@trace()
def geo_query(self):
try:
res = self.milvus_client.query(collection_name=self.c_name, filter=self.term_expr, timeout=query_timeout)
return res, True
except Exception as e:
log.info(f"geo_query error: {e}")
return str(e), False
@exception_handler()
def run_task(self):
self.term_expr = self.get_term_expr()
res, result = self.geo_query()
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP / 10)
class DeleteChecker(Checker):
"""check delete operations in a dependent thread"""
def __init__(self, collection_name=None, schema=None, shards_num=2):
if collection_name is None:
collection_name = cf.gen_unique_str("DeleteChecker_")
super().__init__(collection_name=collection_name, schema=schema, shards_num=shards_num)
index_params = create_index_params_from_dict(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM)
self.milvus_client.create_index(collection_name=self.c_name, index_params=index_params)
self.milvus_client.load_collection(collection_name=self.c_name) # load before query
self.insert_data()
query_expr = f'{self.int64_field_name} > 0'
res = self.milvus_client.query(collection_name=self.c_name, filter=query_expr, output_fields=[self.int64_field_name], partition_name=self.p_name)
self.ids = [r[self.int64_field_name] for r in res]
self.query_expr = query_expr
delete_ids = self.ids[:len(self.ids) // 2] # delete half of ids
self.delete_expr = f'{self.int64_field_name} in {delete_ids}'
def update_delete_expr(self):
res = self.milvus_client.query(collection_name=self.c_name, filter=self.query_expr, output_fields=[self.int64_field_name], partition_name=self.p_name)
all_ids = [r[self.int64_field_name] for r in res]
if len(all_ids) < 100:
# insert data to make sure there are enough ids to delete
self.insert_data(nb=10000)
res = self.milvus_client.query(collection_name=self.c_name, filter=self.query_expr, output_fields=[self.int64_field_name], partition_name=self.p_name)
all_ids = [r[self.int64_field_name] for r in res]
delete_ids = all_ids[:3000] # delete 3000 ids
self.delete_expr = f'{self.int64_field_name} in {delete_ids}'
@trace()
def delete_entities(self):
try:
res = self.milvus_client.delete(collection_name=self.c_name, filter=self.delete_expr, timeout=timeout, partition_name=self.p_name)
return res, True
except Exception as e:
log.info(f"delete_entities error: {e}")
return str(e), False
@exception_handler()
def run_task(self):
self.update_delete_expr()
res, result = self.delete_entities()
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP)
class DeleteFreshnessChecker(Checker):
"""check delete freshness operations in a dependent thread"""
def __init__(self, collection_name=None, schema=None):
if collection_name is None:
collection_name = cf.gen_unique_str("DeleteChecker_")
super().__init__(collection_name=collection_name, schema=schema)
index_params = create_index_params_from_dict(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM)
self.milvus_client.create_index(collection_name=self.c_name, index_params=index_params)
self.milvus_client.load_collection(collection_name=self.c_name) # load before query
self.insert_data()
query_expr = f'{self.int64_field_name} > 0'
res = self.milvus_client.query(collection_name=self.c_name, filter=query_expr, output_fields=[self.int64_field_name], partition_name=self.p_name)
self.ids = [r[self.int64_field_name] for r in res]
self.query_expr = query_expr
delete_ids = self.ids[:len(self.ids) // 2] # delete half of ids
self.delete_expr = f'{self.int64_field_name} in {delete_ids}'
def update_delete_expr(self):
res = self.milvus_client.query(collection_name=self.c_name, filter=self.query_expr, output_fields=[self.int64_field_name], partition_name=self.p_name)
all_ids = [r[self.int64_field_name] for r in res]
if len(all_ids) < 100:
# insert data to make sure there are enough ids to delete
self.insert_data(nb=10000)
res = self.milvus_client.query(collection_name=self.c_name, filter=self.query_expr, output_fields=[self.int64_field_name], partition_name=self.p_name)
all_ids = [r[self.int64_field_name] for r in res]
delete_ids = all_ids[:len(all_ids) // 2] # delete half of ids
self.delete_expr = f'{self.int64_field_name} in {delete_ids}'
def delete_entities(self):
try:
res = self.milvus_client.delete(collection_name=self.c_name, filter=self.delete_expr, timeout=timeout, partition_name=self.p_name)
return res, True
except Exception as e:
log.info(f"delete_entities error: {e}")
return str(e), False
@trace()
def delete_freshness(self):
try:
while True:
res = self.milvus_client.query(collection_name=self.c_name, filter=self.delete_expr, output_fields=[f'{self.int64_field_name}'], timeout=timeout)
if len(res) == 0:
break
return res, True
except Exception as e:
log.info(f"delete_freshness error: {e}")
return str(e), False
@exception_handler()
def run_task(self):
self.update_delete_expr()
res, result = self.delete_entities()
res, result = self.delete_freshness()
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP)
class CompactChecker(Checker):
"""check compact operations in a dependent thread"""
def __init__(self, collection_name=None, schema=None):
if collection_name is None:
collection_name = cf.gen_unique_str("CompactChecker_")
super().__init__(collection_name=collection_name, schema=schema)
index_params = create_index_params_from_dict(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM)
self.milvus_client.create_index(collection_name=self.c_name, index_params=index_params)
self.milvus_client.load_collection(collection_name=self.c_name) # load before compact
@trace()
def compact(self):
from pymilvus import Collection
collection = Collection(name=self.c_name, using=self.alias)
res = collection.compact(timeout=timeout)
collection.wait_for_compaction_completed()
collection.get_compaction_plans()
return res, True
@exception_handler()
def run_task(self):
res, result = self.compact()
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP / 10)
class LoadBalanceChecker(Checker):
"""check load balance operations in a dependent thread"""
def __init__(self, collection_name=None, schema=None):
if collection_name is None:
collection_name = cf.gen_unique_str("LoadBalanceChecker_")
super().__init__(collection_name=collection_name, schema=schema)
index_params = create_index_params_from_dict(self.float_vector_field_name, constants.DEFAULT_INDEX_PARAM)
self.milvus_client.create_index(collection_name=self.c_name, index_params=index_params)
self.milvus_client.load_collection(collection_name=self.c_name)
self.sealed_segment_ids = None
self.dst_node_ids = None
self.src_node_id = None
@trace()
def load_balance(self):
from pymilvus import utility
res = utility.load_balance(collection_name=self.c_name, src_node_id=self.src_node_id, dst_node_ids=self.dst_node_ids, sealed_segment_ids=self.sealed_segment_ids, using=self.alias)
return res, True
def prepare(self):
"""prepare load balance params"""
from pymilvus import Collection
collection = Collection(name=self.c_name, using=self.alias)
res = collection.get_replicas()
# find a group which has multi nodes
group_nodes = []
for g in res.groups:
if len(g.group_nodes) >= 2:
group_nodes = list(g.group_nodes)
break
self.src_node_id = group_nodes[0]
self.dst_node_ids = group_nodes[1:]
from pymilvus import utility
res = utility.get_query_segment_info(self.c_name, using=self.alias)
segment_distribution = cf.get_segment_distribution(res)
self.sealed_segment_ids = segment_distribution[self.src_node_id]["sealed"]
@exception_handler()
def run_task(self):
self.prepare()
res, result = self.load_balance()
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP / 10)
class BulkInsertChecker(Checker):
"""check bulk insert operations in a dependent thread"""
def __init__(self, collection_name=None, files=[], use_one_collection=False, dim=ct.default_dim,
schema=None, insert_data=False, minio_endpoint=None, bucket_name=None):
if collection_name is None:
collection_name = cf.gen_unique_str("BulkInsertChecker_")
super().__init__(collection_name=collection_name, dim=dim, schema=schema, insert_data=insert_data)
self.schema = cf.gen_bulk_insert_collection_schema() if schema is None else schema
self.files = files
self.recheck_failed_task = False
self.failed_tasks = []
self.failed_tasks_id = []
self.use_one_collection = use_one_collection # if True, all tasks will use one collection to bulk insert
self.c_name = collection_name
self.minio_endpoint = minio_endpoint
self.bucket_name = bucket_name
def prepare(self, data_size=100000):
with RemoteBulkWriter(
schema=self.schema,
file_type=BulkFileType.NUMPY,
remote_path="bulk_data",
connect_param=RemoteBulkWriter.ConnectParam(
endpoint=self.minio_endpoint,
access_key="minioadmin",
secret_key="minioadmin",
bucket_name=self.bucket_name
)
) as remote_writer:
for _ in range(data_size):
row = cf.gen_row_data_by_schema(nb=1, schema=self.schema)[0]
remote_writer.append_row(row)
remote_writer.commit()
batch_files = remote_writer.batch_files
log.info(f"batch files: {batch_files}")
self.files = batch_files[0]
def update(self, files=None, schema=None):
if files is not None:
self.files = files
if schema is not None:
self.schema = schema
def get_bulk_insert_task_state(self):
from pymilvus import utility
state_map = {}
for task_id in self.failed_tasks_id:
state = utility.get_bulk_insert_state(task_id=task_id, using=self.alias)
state_map[task_id] = state
return state_map
@trace()
def bulk_insert(self):
log.info(f"bulk insert collection name: {self.c_name}")
from pymilvus import utility
task_ids = utility.do_bulk_insert(collection_name=self.c_name, files=self.files, using=self.alias)
log.info(f"task ids {task_ids}")
completed = utility.wait_for_bulk_insert_tasks_completed(task_ids=[task_ids], timeout=720, using=self.alias)
return task_ids, completed
@exception_handler()
def run_task(self):
if not self.use_one_collection:
if self.recheck_failed_task and self.failed_tasks:
self.c_name = self.failed_tasks.pop(0)
log.debug(f"check failed task: {self.c_name}")
else:
self.c_name = cf.gen_unique_str("BulkInsertChecker_")
self.milvus_client.create_collection(collection_name=self.c_name, schema=self.schema)
log.info(f"collection schema: {self.milvus_client.describe_collection(self.c_name)}")
# bulk insert data
num_entities = self.milvus_client.get_collection_stats(collection_name=self.c_name).get("row_count", 0)
log.info(f"before bulk insert, collection {self.c_name} has num entities {num_entities}")
task_ids, completed = self.bulk_insert()
num_entities = self.milvus_client.get_collection_stats(collection_name=self.c_name).get("row_count", 0)
log.info(f"after bulk insert, collection {self.c_name} has num entities {num_entities}")
if not completed:
self.failed_tasks.append(self.c_name)
self.failed_tasks_id.append(task_ids)
return task_ids, completed
def keep_running(self):
self.prepare()
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP / 10)
class AlterCollectionChecker(Checker):
def __init__(self, collection_name=None, schema=None):
if collection_name is None:
collection_name = cf.gen_unique_str("AlterCollectionChecker")
super().__init__(collection_name=collection_name, schema=schema, enable_dynamic_field=False)
self.milvus_client.release_collection(collection_name=self.c_name)
res = self.milvus_client.describe_collection(collection_name=self.c_name)
log.info(f"before alter collection {self.c_name} schema: {res}")
# alter collection attributes
self.milvus_client.alter_collection_properties(collection_name=self.c_name,
properties={"mmap.enabled": True})
self.milvus_client.alter_collection_properties(collection_name=self.c_name,
properties={"collection.ttl.seconds": 3600})
self.milvus_client.alter_collection_properties(collection_name=self.c_name,
properties={"dynamicfield.enabled": True})
res = self.milvus_client.describe_collection(collection_name=self.c_name)
log.info(f"after alter collection {self.c_name} schema: {res}")
@trace()
def alter_check(self):
try:
res = self.milvus_client.describe_collection(collection_name=self.c_name)
properties = res.get("properties", {})
if properties.get("mmap.enabled") != "True":
return res, False
if properties.get("collection.ttl.seconds") != "3600":
return res, False
if res["enable_dynamic_field"] != True:
return res, False
return res, True
except Exception as e:
return str(e), False
@exception_handler()
def run_task(self):
res, result = self.alter_check()
return res, result
def keep_running(self):
while self._keep_running:
self.run_task()
sleep(constants.WAIT_PER_OP)
class TestResultAnalyzer(unittest.TestCase):
def test_get_stage_success_rate(self):
ra = ResultAnalyzer()
res = ra.get_stage_success_rate()
print(res)
if __name__ == '__main__':
unittest.main()