milvus/internal/core/src/exec/expression/BinaryRangeExpr.cpp
Xianhui Lin 3d4889586d
fix: JsonStats filter by conjunctExpr and improve the task slot calculation logic (#41459)
Optimized JSON filter execution by introducing
ProcessJsonStatsChunkPos() for unified position calculation and
GetNextBatchSize() for better batch processing.
Improved JSON key generation by replacing manual path joining with
milvus::Json::pointer() and adjusted slot size calculation for JSON key
index jobs.
Updated the task slot calculation logic in calculateStatsTaskSlot() to
handle the increased resource needs of JSON key index jobs.
issue: https://github.com/milvus-io/milvus/issues/41378
https://github.com/milvus-io/milvus/issues/41218

---------

Signed-off-by: Xianhui.Lin <xianhui.lin@zilliz.com>
2025-04-23 16:30:37 +08:00

927 lines
39 KiB
C++

// Licensed to the LF AI & Data foundation under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "BinaryRangeExpr.h"
#include <utility>
#include "query/Utils.h"
namespace milvus {
namespace exec {
void
PhyBinaryRangeFilterExpr::Eval(EvalCtx& context, VectorPtr& result) {
auto input = context.get_offset_input();
SetHasOffsetInput((input != nullptr));
switch (expr_->column_.data_type_) {
case DataType::BOOL: {
result = ExecRangeVisitorImpl<bool>(context);
break;
}
case DataType::INT8: {
result = ExecRangeVisitorImpl<int8_t>(context);
break;
}
case DataType::INT16: {
result = ExecRangeVisitorImpl<int16_t>(context);
break;
}
case DataType::INT32: {
result = ExecRangeVisitorImpl<int32_t>(context);
break;
}
case DataType::INT64: {
result = ExecRangeVisitorImpl<int64_t>(context);
break;
}
case DataType::FLOAT: {
result = ExecRangeVisitorImpl<float>(context);
break;
}
case DataType::DOUBLE: {
result = ExecRangeVisitorImpl<double>(context);
break;
}
case DataType::VARCHAR: {
if (segment_->type() == SegmentType::Growing &&
!storage::MmapManager::GetInstance()
.GetMmapConfig()
.growing_enable_mmap) {
result = ExecRangeVisitorImpl<std::string>(context);
} else {
result = ExecRangeVisitorImpl<std::string_view>(context);
}
break;
}
case DataType::JSON: {
auto value_type = expr_->lower_val_.val_case();
if (is_index_mode_ && !has_offset_input_) {
switch (value_type) {
case proto::plan::GenericValue::ValCase::kInt64Val: {
proto::plan::GenericValue double_lower_val;
double_lower_val.set_float_val(
static_cast<double>(expr_->lower_val_.int64_val()));
proto::plan::GenericValue double_upper_val;
double_upper_val.set_float_val(
static_cast<double>(expr_->upper_val_.int64_val()));
lower_arg_.SetValue<double>(double_lower_val);
upper_arg_.SetValue<double>(double_upper_val);
arg_inited_ = true;
result = ExecRangeVisitorImplForIndex<double>();
break;
}
case proto::plan::GenericValue::ValCase::kFloatVal: {
result = ExecRangeVisitorImplForIndex<double>();
break;
}
case proto::plan::GenericValue::ValCase::kStringVal: {
result =
ExecRangeVisitorImplForJson<std::string>(context);
break;
}
default: {
PanicInfo(DataTypeInvalid,
fmt::format(
"unsupported value type {} in expression",
value_type));
}
}
} else {
switch (value_type) {
case proto::plan::GenericValue::ValCase::kInt64Val: {
result = ExecRangeVisitorImplForJson<int64_t>(context);
break;
}
case proto::plan::GenericValue::ValCase::kFloatVal: {
result = ExecRangeVisitorImplForJson<double>(context);
break;
}
case proto::plan::GenericValue::ValCase::kStringVal: {
result =
ExecRangeVisitorImplForJson<std::string>(context);
break;
}
default: {
PanicInfo(DataTypeInvalid,
fmt::format(
"unsupported value type {} in expression",
value_type));
}
}
}
break;
}
case DataType::ARRAY: {
auto value_type = expr_->lower_val_.val_case();
switch (value_type) {
case proto::plan::GenericValue::ValCase::kInt64Val: {
SetNotUseIndex();
result = ExecRangeVisitorImplForArray<int64_t>(context);
break;
}
case proto::plan::GenericValue::ValCase::kFloatVal: {
SetNotUseIndex();
result = ExecRangeVisitorImplForArray<double>(context);
break;
}
case proto::plan::GenericValue::ValCase::kStringVal: {
SetNotUseIndex();
result = ExecRangeVisitorImplForArray<std::string>(context);
break;
}
default: {
PanicInfo(
DataTypeInvalid,
fmt::format("unsupported value type {} in expression",
value_type));
}
}
break;
}
default:
PanicInfo(DataTypeInvalid,
"unsupported data type: {}",
expr_->column_.data_type_);
}
}
template <typename T>
VectorPtr
PhyBinaryRangeFilterExpr::ExecRangeVisitorImpl(EvalCtx& context) {
if (is_index_mode_ && !has_offset_input_) {
return ExecRangeVisitorImplForIndex<T>();
} else {
return ExecRangeVisitorImplForData<T>(context);
}
}
template <typename T, typename IndexInnerType, typename HighPrecisionType>
ColumnVectorPtr
PhyBinaryRangeFilterExpr::PreCheckOverflow(HighPrecisionType& val1,
HighPrecisionType& val2,
bool& lower_inclusive,
bool& upper_inclusive,
OffsetVector* input) {
lower_inclusive = expr_->lower_inclusive_;
upper_inclusive = expr_->upper_inclusive_;
if (!arg_inited_) {
lower_arg_.SetValue<HighPrecisionType>(expr_->lower_val_);
upper_arg_.SetValue<HighPrecisionType>(expr_->upper_val_);
arg_inited_ = true;
}
val1 = lower_arg_.GetValue<HighPrecisionType>();
val2 = upper_arg_.GetValue<HighPrecisionType>();
auto get_next_overflow_batch =
[this](OffsetVector* input) -> ColumnVectorPtr {
int64_t batch_size;
if (input != nullptr) {
batch_size = input->size();
} else {
batch_size = overflow_check_pos_ + batch_size_ >= active_count_
? active_count_ - overflow_check_pos_
: batch_size_;
overflow_check_pos_ += batch_size;
}
auto valid_res =
(input != nullptr)
? ProcessChunksForValidByOffsets<T>(is_index_mode_, *input)
: ProcessChunksForValid<T>(is_index_mode_);
auto res_vec = std::make_shared<ColumnVector>(TargetBitmap(batch_size),
std::move(valid_res));
return res_vec;
};
if constexpr (std::is_integral_v<T> && !std::is_same_v<bool, T>) {
if (milvus::query::gt_ub<T>(val1)) {
return get_next_overflow_batch(input);
} else if (milvus::query::lt_lb<T>(val1)) {
val1 = std::numeric_limits<T>::min();
lower_inclusive = true;
}
if (milvus::query::gt_ub<T>(val2)) {
val2 = std::numeric_limits<T>::max();
upper_inclusive = true;
} else if (milvus::query::lt_lb<T>(val2)) {
return get_next_overflow_batch(input);
}
}
return nullptr;
}
template <typename T>
VectorPtr
PhyBinaryRangeFilterExpr::ExecRangeVisitorImplForIndex() {
typedef std::
conditional_t<std::is_same_v<T, std::string_view>, std::string, T>
IndexInnerType;
using Index = index::ScalarIndex<IndexInnerType>;
typedef std::conditional_t<std::is_integral_v<IndexInnerType> &&
!std::is_same_v<bool, T>,
int64_t,
IndexInnerType>
HighPrecisionType;
HighPrecisionType val1;
HighPrecisionType val2;
bool lower_inclusive = false;
bool upper_inclusive = false;
if (auto res =
PreCheckOverflow<T>(val1, val2, lower_inclusive, upper_inclusive)) {
return res;
}
auto real_batch_size = GetNextBatchSize();
if (real_batch_size == 0) {
return nullptr;
}
auto execute_sub_batch =
[lower_inclusive, upper_inclusive](
Index* index_ptr, HighPrecisionType val1, HighPrecisionType val2) {
BinaryRangeIndexFunc<T> func;
return std::move(
func(index_ptr, val1, val2, lower_inclusive, upper_inclusive));
};
auto res = ProcessIndexChunks<T>(execute_sub_batch, val1, val2);
AssertInfo(res->size() == real_batch_size,
"internal error: expr processed rows {} not equal "
"expect batch size {}",
res->size(),
real_batch_size);
return res;
}
template <typename T>
VectorPtr
PhyBinaryRangeFilterExpr::ExecRangeVisitorImplForData(EvalCtx& context) {
typedef std::
conditional_t<std::is_same_v<T, std::string_view>, std::string, T>
IndexInnerType;
using Index = index::ScalarIndex<IndexInnerType>;
typedef std::conditional_t<std::is_integral_v<IndexInnerType> &&
!std::is_same_v<bool, T>,
int64_t,
IndexInnerType>
HighPrecisionType;
const auto& bitmap_input = context.get_bitmap_input();
auto* input = context.get_offset_input();
HighPrecisionType val1;
HighPrecisionType val2;
bool lower_inclusive = false;
bool upper_inclusive = false;
if (auto res = PreCheckOverflow<T>(
val1, val2, lower_inclusive, upper_inclusive, input)) {
return res;
}
auto real_batch_size =
has_offset_input_ ? input->size() : GetNextBatchSize();
if (real_batch_size == 0) {
return nullptr;
}
auto res_vec =
std::make_shared<ColumnVector>(TargetBitmap(real_batch_size, false),
TargetBitmap(real_batch_size, true));
TargetBitmapView res(res_vec->GetRawData(), real_batch_size);
TargetBitmapView valid_res(res_vec->GetValidRawData(), real_batch_size);
size_t processed_cursor = 0;
auto execute_sub_batch =
[ lower_inclusive, upper_inclusive, &processed_cursor, &
bitmap_input ]<FilterType filter_type = FilterType::sequential>(
const T* data,
const bool* valid_data,
const int32_t* offsets,
const int size,
TargetBitmapView res,
TargetBitmapView valid_res,
HighPrecisionType val1,
HighPrecisionType val2) {
if (lower_inclusive && upper_inclusive) {
BinaryRangeElementFunc<T, true, true, filter_type> func;
func(val1,
val2,
data,
size,
res,
bitmap_input,
processed_cursor,
offsets);
} else if (lower_inclusive && !upper_inclusive) {
BinaryRangeElementFunc<T, true, false, filter_type> func;
func(val1,
val2,
data,
size,
res,
bitmap_input,
processed_cursor,
offsets);
} else if (!lower_inclusive && upper_inclusive) {
BinaryRangeElementFunc<T, false, true, filter_type> func;
func(val1,
val2,
data,
size,
res,
bitmap_input,
processed_cursor,
offsets);
} else {
BinaryRangeElementFunc<T, false, false, filter_type> func;
func(val1,
val2,
data,
size,
res,
bitmap_input,
processed_cursor,
offsets);
}
// there is a batch operation in BinaryRangeElementFunc,
// so not divide data again for the reason that it may reduce performance if the null distribution is scattered
// but to mask res with valid_data after the batch operation.
if (valid_data != nullptr) {
for (int i = 0; i < size; i++) {
auto offset = i;
if constexpr (filter_type == FilterType::random) {
offset = (offsets) ? offsets[i] : i;
}
if (!valid_data[offset]) {
res[i] = valid_res[i] = false;
}
}
}
processed_cursor += size;
};
auto skip_index_func =
[val1, val2, lower_inclusive, upper_inclusive](
const SkipIndex& skip_index, FieldId field_id, int64_t chunk_id) {
if (lower_inclusive && upper_inclusive) {
return skip_index.CanSkipBinaryRange<T>(
field_id, chunk_id, val1, val2, true, true);
} else if (lower_inclusive && !upper_inclusive) {
return skip_index.CanSkipBinaryRange<T>(
field_id, chunk_id, val1, val2, true, false);
} else if (!lower_inclusive && upper_inclusive) {
return skip_index.CanSkipBinaryRange<T>(
field_id, chunk_id, val1, val2, false, true);
} else {
return skip_index.CanSkipBinaryRange<T>(
field_id, chunk_id, val1, val2, false, false);
}
};
int64_t processed_size;
if (has_offset_input_) {
processed_size = ProcessDataByOffsets<T>(execute_sub_batch,
skip_index_func,
input,
res,
valid_res,
val1,
val2);
} else {
processed_size = ProcessDataChunks<T>(
execute_sub_batch, skip_index_func, res, valid_res, val1, val2);
}
AssertInfo(processed_size == real_batch_size,
"internal error: expr processed rows {} not equal "
"expect batch size {}",
processed_size,
real_batch_size);
return res_vec;
}
template <typename ValueType>
VectorPtr
PhyBinaryRangeFilterExpr::ExecRangeVisitorImplForJson(EvalCtx& context) {
using GetType = std::conditional_t<std::is_same_v<ValueType, std::string>,
std::string_view,
ValueType>;
const auto& bitmap_input = context.get_bitmap_input();
auto* input = context.get_offset_input();
FieldId field_id = expr_->column_.field_id_;
if (CanUseJsonKeyIndex(field_id) && !has_offset_input_) {
return ExecRangeVisitorImplForJsonForIndex<ValueType>();
}
auto real_batch_size =
has_offset_input_ ? input->size() : GetNextBatchSize();
if (real_batch_size == 0) {
return nullptr;
}
auto res_vec =
std::make_shared<ColumnVector>(TargetBitmap(real_batch_size, false),
TargetBitmap(real_batch_size, true));
TargetBitmapView res(res_vec->GetRawData(), real_batch_size);
TargetBitmapView valid_res(res_vec->GetValidRawData(), real_batch_size);
bool lower_inclusive = expr_->lower_inclusive_;
bool upper_inclusive = expr_->upper_inclusive_;
if (!arg_inited_) {
lower_arg_.SetValue<ValueType>(expr_->lower_val_);
upper_arg_.SetValue<ValueType>(expr_->upper_val_);
arg_inited_ = true;
}
ValueType val1 = lower_arg_.GetValue<ValueType>();
ValueType val2 = upper_arg_.GetValue<ValueType>();
auto pointer = milvus::Json::pointer(expr_->column_.nested_path_);
size_t processed_cursor = 0;
auto execute_sub_batch =
[
lower_inclusive,
upper_inclusive,
pointer,
&bitmap_input,
&processed_cursor
]<FilterType filter_type = FilterType::sequential>(
const milvus::Json* data,
const bool* valid_data,
const int32_t* offsets,
const int size,
TargetBitmapView res,
TargetBitmapView valid_res,
ValueType val1,
ValueType val2) {
if (lower_inclusive && upper_inclusive) {
BinaryRangeElementFuncForJson<ValueType, true, true, filter_type>
func;
func(val1,
val2,
pointer,
data,
valid_data,
size,
res,
valid_res,
bitmap_input,
processed_cursor,
offsets);
} else if (lower_inclusive && !upper_inclusive) {
BinaryRangeElementFuncForJson<ValueType, true, false, filter_type>
func;
func(val1,
val2,
pointer,
data,
valid_data,
size,
res,
valid_res,
bitmap_input,
processed_cursor,
offsets);
} else if (!lower_inclusive && upper_inclusive) {
BinaryRangeElementFuncForJson<ValueType, false, true, filter_type>
func;
func(val1,
val2,
pointer,
data,
valid_data,
size,
res,
valid_res,
bitmap_input,
processed_cursor,
offsets);
} else {
BinaryRangeElementFuncForJson<ValueType, false, false, filter_type>
func;
func(val1,
val2,
pointer,
data,
valid_data,
size,
res,
valid_res,
bitmap_input,
processed_cursor,
offsets);
}
processed_cursor += size;
};
int64_t processed_size;
if (has_offset_input_) {
processed_size = ProcessDataByOffsets<milvus::Json>(execute_sub_batch,
std::nullptr_t{},
input,
res,
valid_res,
val1,
val2);
} else {
processed_size = ProcessDataChunks<milvus::Json>(
execute_sub_batch, std::nullptr_t{}, res, valid_res, val1, val2);
}
AssertInfo(processed_size == real_batch_size,
"internal error: expr processed rows {} not equal "
"expect batch size {}",
processed_size,
real_batch_size);
return res_vec;
}
template <typename ValueType>
VectorPtr
PhyBinaryRangeFilterExpr::ExecRangeVisitorImplForJsonForIndex() {
using GetType = std::conditional_t<std::is_same_v<ValueType, std::string>,
std::string_view,
ValueType>;
auto real_batch_size = current_data_chunk_pos_ + batch_size_ > active_count_
? active_count_ - current_data_chunk_pos_
: batch_size_;
auto pointer = milvus::Json::pointer(expr_->column_.nested_path_);
#define BinaryRangeJSONIndexCompare(cmp) \
do { \
auto val = json.at<GetType>(offset, size); \
if (val.error()) { \
if constexpr (std::is_same_v<GetType, int64_t>) { \
auto val = json.at<double>(offset, size); \
return !val.error() && (cmp); \
} \
return false; \
} \
return (cmp); \
} while (false)
#define BinaryRangeJSONTypeCompare(cmp) \
do { \
if constexpr (std::is_same_v<GetType, std::string_view>) { \
if (type == uint8_t(milvus::index::JSONType::STRING)) { \
auto val = json.at_string(offset, size); \
return (cmp); \
} else { \
return false; \
} \
} else if constexpr (std::is_same_v<GetType, double>) { \
if (type == uint8_t(milvus::index::JSONType::INT64)) { \
auto val = \
std::stoll(std::string(json.at_string(offset, size))); \
return (cmp); \
} else if (type == uint8_t(milvus::index::JSONType::DOUBLE)) { \
auto val = \
std::stod(std::string(json.at_string(offset, size))); \
return (cmp); \
} else { \
return false; \
} \
} else if constexpr (std::is_same_v<GetType, int64_t>) { \
if (type == uint8_t(milvus::index::JSONType::INT64)) { \
auto val = \
std::stoll(std::string(json.at_string(offset, size))); \
return (cmp); \
} else if (type == uint8_t(milvus::index::JSONType::DOUBLE)) { \
auto val = \
std::stod(std::string(json.at_string(offset, size))); \
return (cmp); \
} else { \
return false; \
} \
} \
} while (false)
#define BinaryRangeJSONTypeCompareWithValue(cmp) \
do { \
if constexpr (std::is_same_v<GetType, int64_t>) { \
if (type == uint8_t(milvus::index::JSONType::FLOAT)) { \
float val = *reinterpret_cast<float*>(&value); \
return (cmp); \
} else { \
int64_t val = value; \
return (cmp); \
} \
} else if constexpr (std::is_same_v<GetType, double>) { \
if (type == uint8_t(milvus::index::JSONType::FLOAT)) { \
float val = *reinterpret_cast<float*>(&value); \
return (cmp); \
} else { \
int64_t val = value; \
return (cmp); \
} \
} else if constexpr (std::is_same_v<GetType, bool>) { \
bool val = *reinterpret_cast<bool*>(&value); \
return (cmp); \
} \
} while (false)
bool lower_inclusive = expr_->lower_inclusive_;
bool upper_inclusive = expr_->upper_inclusive_;
ValueType val1 = GetValueFromProto<ValueType>(expr_->lower_val_);
ValueType val2 = GetValueFromProto<ValueType>(expr_->upper_val_);
if (cached_index_chunk_id_ != 0) {
const segcore::SegmentInternalInterface* segment = nullptr;
if (segment_->type() == SegmentType::Growing) {
segment =
dynamic_cast<const segcore::SegmentGrowingImpl*>(segment_);
} else if (segment_->type() == SegmentType::Sealed) {
segment = dynamic_cast<const segcore::SegmentSealed*>(segment_);
}
auto field_id = expr_->column_.field_id_;
auto* index = segment->GetJsonKeyIndex(field_id);
Assert(index != nullptr);
auto filter_func = [segment,
&field_id,
val1,
val2,
lower_inclusive,
upper_inclusive](bool valid,
uint8_t type,
uint32_t row_id,
uint16_t offset,
uint16_t size,
int32_t value) {
if (valid) {
if constexpr (std::is_same_v<GetType, int64_t>) {
if (type != uint8_t(milvus::index::JSONType::INT32) &&
type != uint8_t(milvus::index::JSONType::INT64) &&
type != uint8_t(milvus::index::JSONType::FLOAT) &&
type != uint8_t(milvus::index::JSONType::DOUBLE)) {
return false;
}
} else if constexpr (std::is_same_v<GetType,
std::string_view>) {
if (type != uint8_t(milvus::index::JSONType::STRING) &&
type !=
uint8_t(milvus::index::JSONType::STRING_ESCAPE)) {
return false;
}
} else if constexpr (std::is_same_v<GetType, double>) {
if (type != uint8_t(milvus::index::JSONType::INT32) &&
type != uint8_t(milvus::index::JSONType::INT64) &&
type != uint8_t(milvus::index::JSONType::FLOAT) &&
type != uint8_t(milvus::index::JSONType::DOUBLE)) {
return false;
}
} else if constexpr (std::is_same_v<GetType, bool>) {
if (type != uint8_t(milvus::index::JSONType::BOOL)) {
return false;
}
}
if (lower_inclusive && upper_inclusive) {
if (type == uint8_t(milvus::index::JSONType::FLOAT)) {
BinaryRangeJSONTypeCompareWithValue(
static_cast<float>(val1) <= val &&
val <= static_cast<float>(val2));
} else {
BinaryRangeJSONTypeCompareWithValue(val1 <= val &&
val <= val2);
}
} else if (lower_inclusive && !upper_inclusive) {
if (type == uint8_t(milvus::index::JSONType::FLOAT)) {
BinaryRangeJSONTypeCompareWithValue(
static_cast<float>(val1) <= val &&
val < static_cast<float>(val2));
} else {
BinaryRangeJSONTypeCompareWithValue(val1 <= val &&
val < val2);
}
} else if (!lower_inclusive && upper_inclusive) {
if (type == uint8_t(milvus::index::JSONType::FLOAT)) {
BinaryRangeJSONTypeCompareWithValue(
static_cast<float>(val1) < val &&
val <= static_cast<float>(val2));
} else {
BinaryRangeJSONTypeCompareWithValue(val1 < val &&
val <= val2);
}
} else {
if (type == uint8_t(milvus::index::JSONType::FLOAT)) {
BinaryRangeJSONTypeCompareWithValue(
static_cast<float>(val1) < val &&
val < static_cast<float>(val2));
} else {
BinaryRangeJSONTypeCompareWithValue(val1 < val &&
val < val2);
}
}
} else {
auto json_pair = segment->GetJsonData(field_id, row_id);
if (!json_pair.second) {
return false;
}
auto json = milvus::Json(json_pair.first.data(),
json_pair.first.size());
if (lower_inclusive && upper_inclusive) {
if (type == uint8_t(milvus::index::JSONType::STRING) ||
type == uint8_t(milvus::index::JSONType::DOUBLE) ||
type == uint8_t(milvus::index::JSONType::INT64)) {
BinaryRangeJSONTypeCompare(val1 <= val && val <= val2);
} else {
BinaryRangeJSONIndexCompare(
val1 <= ValueType(val.value()) &&
ValueType(val.value()) <= val2);
}
} else if (lower_inclusive && !upper_inclusive) {
if (type == uint8_t(milvus::index::JSONType::STRING) ||
type == uint8_t(milvus::index::JSONType::DOUBLE) ||
type == uint8_t(milvus::index::JSONType::INT64)) {
BinaryRangeJSONTypeCompare(val1 <= val && val < val2);
} else {
BinaryRangeJSONIndexCompare(
val1 <= ValueType(val.value()) &&
ValueType(val.value()) < val2);
}
} else if (!lower_inclusive && upper_inclusive) {
if (type == uint8_t(milvus::index::JSONType::STRING) ||
type == uint8_t(milvus::index::JSONType::DOUBLE) ||
type == uint8_t(milvus::index::JSONType::INT64)) {
BinaryRangeJSONTypeCompare(val1 < val && val <= val2);
} else {
BinaryRangeJSONIndexCompare(
val1 < ValueType(val.value()) &&
ValueType(val.value()) <= val2);
}
} else {
if (type == uint8_t(milvus::index::JSONType::STRING) ||
type == uint8_t(milvus::index::JSONType::DOUBLE) ||
type == uint8_t(milvus::index::JSONType::INT64)) {
BinaryRangeJSONTypeCompare(val1 < val && val < val2);
} else {
BinaryRangeJSONIndexCompare(
val1 < ValueType(val.value()) &&
ValueType(val.value()) < val2);
}
}
}
};
bool is_growing = segment_->type() == SegmentType::Growing;
bool is_strong_consistency = consistency_level_ == 0;
cached_index_chunk_res_ = index
->FilterByPath(pointer,
active_count_,
is_growing,
is_strong_consistency,
filter_func)
.clone();
cached_index_chunk_id_ = 0;
}
TargetBitmap result;
result.append(
cached_index_chunk_res_, current_data_global_pos_, real_batch_size);
MoveCursor();
return std::make_shared<ColumnVector>(std::move(result),
TargetBitmap(real_batch_size, true));
}
template <typename ValueType>
VectorPtr
PhyBinaryRangeFilterExpr::ExecRangeVisitorImplForArray(EvalCtx& context) {
using GetType = std::conditional_t<std::is_same_v<ValueType, std::string>,
std::string_view,
ValueType>;
const auto& bitmap_input = context.get_bitmap_input();
auto* input = context.get_offset_input();
auto real_batch_size =
has_offset_input_ ? input->size() : GetNextBatchSize();
if (real_batch_size == 0) {
return nullptr;
}
auto res_vec =
std::make_shared<ColumnVector>(TargetBitmap(real_batch_size, false),
TargetBitmap(real_batch_size, true));
TargetBitmapView res(res_vec->GetRawData(), real_batch_size);
TargetBitmapView valid_res(res_vec->GetValidRawData(), real_batch_size);
bool lower_inclusive = expr_->lower_inclusive_;
bool upper_inclusive = expr_->upper_inclusive_;
if (!arg_inited_) {
lower_arg_.SetValue<ValueType>(expr_->lower_val_);
upper_arg_.SetValue<ValueType>(expr_->upper_val_);
arg_inited_ = true;
}
ValueType val1 = lower_arg_.GetValue<ValueType>();
ValueType val2 = upper_arg_.GetValue<ValueType>();
int index = -1;
if (expr_->column_.nested_path_.size() > 0) {
index = std::stoi(expr_->column_.nested_path_[0]);
}
size_t processed_cursor = 0;
auto execute_sub_batch =
[ lower_inclusive, upper_inclusive, &processed_cursor, &
bitmap_input ]<FilterType filter_type = FilterType::sequential>(
const milvus::ArrayView* data,
const bool* valid_data,
const int32_t* offsets,
const int size,
TargetBitmapView res,
TargetBitmapView valid_res,
ValueType val1,
ValueType val2,
int index) {
if (lower_inclusive && upper_inclusive) {
BinaryRangeElementFuncForArray<ValueType, true, true, filter_type>
func;
func(val1,
val2,
index,
data,
valid_data,
size,
res,
valid_res,
bitmap_input,
processed_cursor,
offsets);
} else if (lower_inclusive && !upper_inclusive) {
BinaryRangeElementFuncForArray<ValueType, true, false, filter_type>
func;
func(val1,
val2,
index,
data,
valid_data,
size,
res,
valid_res,
bitmap_input,
processed_cursor,
offsets);
} else if (!lower_inclusive && upper_inclusive) {
BinaryRangeElementFuncForArray<ValueType, false, true, filter_type>
func;
func(val1,
val2,
index,
data,
valid_data,
size,
res,
valid_res,
bitmap_input,
processed_cursor,
offsets);
} else {
BinaryRangeElementFuncForArray<ValueType, false, false, filter_type>
func;
func(val1,
val2,
index,
data,
valid_data,
size,
res,
valid_res,
bitmap_input,
processed_cursor,
offsets);
}
processed_cursor += size;
};
int64_t processed_size;
if (has_offset_input_) {
processed_size =
ProcessDataByOffsets<milvus::ArrayView>(execute_sub_batch,
std::nullptr_t{},
input,
res,
valid_res,
val1,
val2,
index);
} else {
processed_size = ProcessDataChunks<milvus::ArrayView>(execute_sub_batch,
std::nullptr_t{},
res,
valid_res,
val1,
val2,
index);
}
AssertInfo(processed_size == real_batch_size,
"internal error: expr processed rows {} not equal "
"expect batch size {}",
processed_size,
real_batch_size);
return res_vec;
}
} //namespace exec
} // namespace milvus