mirror of
https://gitee.com/milvus-io/milvus.git
synced 2025-12-07 17:48:29 +08:00
Cherry-pick from master pr: #43299 Related to #43031 Previous pr: #43064 Since old version may create collection with invalidate collection name, milvus shall allow some API to let user notice such collection still exists. This patch removes collection name validation from `DescribeCollection` call, letting user know that such collection still exists. --------- Signed-off-by: Congqi Xia <congqi.xia@zilliz.com>
1263 lines
68 KiB
Python
1263 lines
68 KiB
Python
import pytest
|
|
|
|
from base.client_v2_base import TestMilvusClientV2Base
|
|
from utils.util_log import test_log as log
|
|
from common import common_func as cf
|
|
from common import common_type as ct
|
|
from common.common_type import CaseLabel, CheckTasks
|
|
from utils.util_pymilvus import *
|
|
|
|
prefix = "client_insert"
|
|
epsilon = ct.epsilon
|
|
default_nb = ct.default_nb
|
|
default_nb_medium = ct.default_nb_medium
|
|
default_nq = ct.default_nq
|
|
default_dim = ct.default_dim
|
|
default_limit = ct.default_limit
|
|
default_search_exp = "id >= 0"
|
|
exp_res = "exp_res"
|
|
default_search_string_exp = "varchar >= \"0\""
|
|
default_search_mix_exp = "int64 >= 0 && varchar >= \"0\""
|
|
default_invaild_string_exp = "varchar >= 0"
|
|
default_json_search_exp = "json_field[\"number\"] >= 0"
|
|
perfix_expr = 'varchar like "0%"'
|
|
default_search_field = ct.default_float_vec_field_name
|
|
default_search_params = ct.default_search_params
|
|
default_primary_key_field_name = "id"
|
|
default_vector_field_name = "vector"
|
|
default_float_field_name = ct.default_float_field_name
|
|
default_bool_field_name = ct.default_bool_field_name
|
|
default_string_field_name = ct.default_string_field_name
|
|
default_int32_array_field_name = ct.default_int32_array_field_name
|
|
default_string_array_field_name = ct.default_string_array_field_name
|
|
|
|
|
|
class TestMilvusClientInsertInvalid(TestMilvusClientV2Base):
|
|
""" Test case of search interface """
|
|
|
|
@pytest.fixture(scope="function", params=[False, True])
|
|
def auto_id(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(scope="function", params=["COSINE", "L2"])
|
|
def metric_type(self, request):
|
|
yield request.param
|
|
|
|
"""
|
|
******************************************************************
|
|
# The following are invalid base cases
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.skip(reason="pymilvus issue 1883")
|
|
def test_milvus_client_insert_column_data(self):
|
|
"""
|
|
target: test insert column data
|
|
method: create connection, collection, insert and search
|
|
expected: raise error
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
# 2. insert
|
|
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nb)]
|
|
data = [[i for i in range(default_nb)], vectors]
|
|
error = {ct.err_code: 1, ct.err_msg: "Unexpected error, message=<'list' object has no attribute 'items'"}
|
|
self.insert(client, collection_name, data,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_insert_empty_collection_name(self):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = ""
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 1, ct.err_msg: f"`collection_name` value {collection_name} is illegal"}
|
|
self.insert(client, collection_name, rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("collection_name", ["12-s", "12 s", "(mn)", "中文", "%$#"])
|
|
@pytest.mark.skip(reason="https://github.com/milvus-io/milvus/issues/43031, pr#43299, remove name check for describe collection")
|
|
def test_milvus_client_insert_invalid_collection_name(self, collection_name):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 1100, ct.err_msg: f"Invalid collection name: {collection_name}. the first character of a "
|
|
f"collection name must be an underscore or letter: invalid parameter"}
|
|
self.insert(client, collection_name, rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.skip(reason="https://github.com/milvus-io/milvus/issues/43031, pr#43299, remove name check for describe collection")
|
|
def test_milvus_client_insert_collection_name_over_max_length(self):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = "a".join("a" for i in range(256))
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 1100, ct.err_msg: f"the length of a collection name must be less than 255 characters"}
|
|
self.insert(client, collection_name, rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_insert_not_exist_collection_name(self):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str("insert_not_exist")
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 100, ct.err_msg: f"can't find collection[database=default][collection={collection_name}]"}
|
|
self.insert(client, collection_name, rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
@pytest.mark.parametrize("data", ["12-s", "12 s", "(mn)", "中文", "%$#", " ", ""])
|
|
def test_milvus_client_insert_data_invalid_type(self, data):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
error = {ct.err_code: 999,
|
|
ct.err_msg: "wrong type of argument 'data',expected 'Dict' or list of 'Dict', got 'str'"}
|
|
self.insert(client, collection_name, data,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_insert_data_vector_field_missing(self):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i,
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 1,
|
|
ct.err_msg: f"Insert missed an field `vector` to collection "
|
|
f"without set nullable==true or set default_value"}
|
|
self.insert(client, collection_name, data=rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_insert_data_id_field_missing(self):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 1,
|
|
ct.err_msg: f"Insert missed an field `id` to collection without set nullable==true or set default_value"}
|
|
self.insert(client, collection_name, data=rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_insert_data_extra_field(self):
|
|
"""
|
|
target: test milvus client: insert extra field than schema
|
|
method: insert extra field than schema when enable_dynamic_field is False
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, enable_dynamic_field=False)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 1,
|
|
ct.err_msg: f"Attempt to insert an unexpected field `float` to collection without enabling dynamic field"}
|
|
self.insert(client, collection_name, data=rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_insert_data_dim_not_match(self):
|
|
"""
|
|
target: test milvus client: insert extra field than schema
|
|
method: insert extra field than schema when enable_dynamic_field is False
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [
|
|
{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim + 1))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 65536, ct.err_msg: f"of float data should divide the dim({default_dim})"}
|
|
self.insert(client, collection_name, data=rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_insert_not_matched_data(self):
|
|
"""
|
|
target: test milvus client: insert not matched data then defined
|
|
method: insert string to int primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [
|
|
{default_primary_key_field_name: str(i), default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 1,
|
|
ct.err_msg: f"The Input data type is inconsistent with defined schema, "
|
|
f"{{id}} field should be a int64"}
|
|
self.insert(client, collection_name, data=rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("partition_name", ["12 s", "(mn)", "中文", "%$#", " "])
|
|
def test_milvus_client_insert_invalid_partition_name(self, partition_name):
|
|
"""
|
|
target: test milvus client: insert extra field than schema
|
|
method: insert extra field than schema when enable_dynamic_field is False
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 65535, ct.err_msg: f"Invalid partition name: {partition_name}."}
|
|
if partition_name == " ":
|
|
error = {ct.err_code: 1, ct.err_msg: f"Invalid partition name: . Partition name should not be empty."}
|
|
self.insert(client, collection_name, data=rows, partition_name=partition_name,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_insert_not_exist_partition_name(self):
|
|
"""
|
|
target: test milvus client: insert extra field than schema
|
|
method: insert extra field than schema when enable_dynamic_field is False
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
partition_name = cf.gen_unique_str("partition_not_exist")
|
|
error = {ct.err_code: 200, ct.err_msg: f"partition not found[partition={partition_name}]"}
|
|
self.insert(client, collection_name, data=rows, partition_name=partition_name,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_insert_collection_partition_not_match(self):
|
|
"""
|
|
target: test milvus client: insert extra field than schema
|
|
method: insert extra field than schema when enable_dynamic_field is False
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
another_collection_name = cf.gen_unique_str(prefix + "another")
|
|
partition_name = cf.gen_unique_str("partition")
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
self.create_collection(client, another_collection_name, default_dim)
|
|
self.create_partition(client, another_collection_name, partition_name)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 200, ct.err_msg: f"partition not found[partition={partition_name}]"}
|
|
self.insert(client, collection_name, data=rows, partition_name=partition_name,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
|
|
class TestMilvusClientInsertValid(TestMilvusClientV2Base):
|
|
""" Test case of search interface """
|
|
|
|
@pytest.fixture(scope="function", params=[False, True])
|
|
def auto_id(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(scope="function", params=["COSINE", "L2"])
|
|
def metric_type(self, request):
|
|
yield request.param
|
|
|
|
"""
|
|
******************************************************************
|
|
# The following are valid base cases
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_milvus_client_insert_default(self):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
collections = self.list_collections(client)[0]
|
|
assert collection_name in collections
|
|
self.describe_collection(client, collection_name,
|
|
check_task=CheckTasks.check_describe_collection_property,
|
|
check_items={"collection_name": collection_name,
|
|
"dim": default_dim,
|
|
"consistency_level": 0})
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
results = self.insert(client, collection_name, rows)[0]
|
|
assert results['insert_count'] == default_nb
|
|
# 3. search
|
|
vectors_to_search = rng.random((1, default_dim))
|
|
insert_ids = [i for i in range(default_nb)]
|
|
self.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"limit": default_limit})
|
|
# 4. query
|
|
self.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"with_vec": True,
|
|
"primary_field": default_primary_key_field_name})
|
|
self.release_collection(client, collection_name)
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_insert_different_fields(self):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
collections = self.list_collections(client)[0]
|
|
assert collection_name in collections
|
|
self.describe_collection(client, collection_name,
|
|
check_task=CheckTasks.check_describe_collection_property,
|
|
check_items={"collection_name": collection_name,
|
|
"dim": default_dim,
|
|
"consistency_level": 0})
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
results = self.insert(client, collection_name, rows)[0]
|
|
assert results['insert_count'] == default_nb
|
|
# 3. insert diff fields
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, "new_diff_str_field": str(i)} for i in range(default_nb)]
|
|
results = self.insert(client, collection_name, rows)[0]
|
|
assert results['insert_count'] == default_nb
|
|
# 3. search
|
|
vectors_to_search = rng.random((1, default_dim))
|
|
insert_ids = [i for i in range(default_nb)]
|
|
self.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"limit": default_limit})
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_insert_empty_data(self):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
rows = []
|
|
results = self.insert(client, collection_name, rows)[0]
|
|
assert results['insert_count'] == 0
|
|
# 3. search
|
|
rng = np.random.default_rng(seed=19530)
|
|
vectors_to_search = rng.random((1, default_dim))
|
|
self.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": [],
|
|
"limit": 0})
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_insert_partition(self):
|
|
"""
|
|
target: test fast create collection normal case
|
|
method: create collection
|
|
expected: create collection with default schema, index, and load successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
partition_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. create partition
|
|
self.create_partition(client, collection_name, partition_name)
|
|
partitions = self.list_partitions(client, collection_name)[0]
|
|
assert partition_name in partitions
|
|
index = self.list_indexes(client, collection_name)[0]
|
|
assert index == ['vector']
|
|
# load_state = self.get_load_state(collection_name)[0]
|
|
# 3. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
results = self.insert(client, collection_name, rows, partition_name=partition_name)[0]
|
|
assert results['insert_count'] == default_nb
|
|
# 3. search
|
|
vectors_to_search = rng.random((1, default_dim))
|
|
insert_ids = [i for i in range(default_nb)]
|
|
self.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"limit": default_limit})
|
|
# partition_number = self.get_partition_stats(client, collection_name, "_default")[0]
|
|
# assert partition_number == default_nb
|
|
# partition_number = self.get_partition_stats(client, collection_name, partition_name)[0]
|
|
# assert partition_number[0]['value'] == 0
|
|
if self.has_partition(client, collection_name, partition_name)[0]:
|
|
self.release_partitions(client, collection_name, partition_name)
|
|
self.drop_partition(client, collection_name, partition_name)
|
|
if self.has_collection(client, collection_name)[0]:
|
|
self.drop_collection(client, collection_name)
|
|
|
|
|
|
class TestMilvusClientUpsertInvalid(TestMilvusClientV2Base):
|
|
""" Test case of search interface """
|
|
|
|
@pytest.fixture(scope="function", params=[False, True])
|
|
def auto_id(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(scope="function", params=["COSINE", "L2"])
|
|
def metric_type(self, request):
|
|
yield request.param
|
|
|
|
"""
|
|
******************************************************************
|
|
# The following are invalid base cases
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.skip(reason="pymilvus issue 1883")
|
|
def test_milvus_client_upsert_column_data(self):
|
|
"""
|
|
target: test insert column data
|
|
method: create connection, collection, insert and search
|
|
expected: raise error
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
# 2. insert
|
|
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nb)]
|
|
data = [[i for i in range(default_nb)], vectors]
|
|
error = {ct.err_code: 1, ct.err_msg: "Unexpected error, message=<'list' object has no attribute 'items'"}
|
|
self.upsert(client, collection_name, data,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_upsert_empty_collection_name(self):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = ""
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 1, ct.err_msg: f"`collection_name` value {collection_name} is illegal"}
|
|
self.upsert(client, collection_name, rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("collection_name", ["12-s", "12 s", "(mn)", "中文", "%$#"])
|
|
@pytest.mark.skip(reason="https://github.com/milvus-io/milvus/issues/43031, pr#43299, remove name check for describe collection")
|
|
def test_milvus_client_upsert_invalid_collection_name(self, collection_name):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 1100, ct.err_msg: f"Invalid collection name: {collection_name}. the first character of a "
|
|
f"collection name must be an underscore or letter: invalid parameter"}
|
|
self.upsert(client, collection_name, rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.skip(reason="https://github.com/milvus-io/milvus/issues/43031, pr#43299, remove name check for describe collection")
|
|
def test_milvus_client_upsert_collection_name_over_max_length(self):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = "a".join("a" for i in range(256))
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 1100, ct.err_msg: f"the length of a collection name must be less than 255 characters"}
|
|
self.upsert(client, collection_name, rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_upsert_not_exist_collection_name(self):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str("insert_not_exist")
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 100, ct.err_msg: f"can't find collection[database=default][collection={collection_name}]"}
|
|
self.upsert(client, collection_name, rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("data", ["12-s", "12 s", "(mn)", "中文", "%$#", " "])
|
|
def test_milvus_client_upsert_data_invalid_type(self, data):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
error = {ct.err_code: 1, ct.err_msg: f"wrong type of argument 'data',expected 'Dict' or list of 'Dict'"}
|
|
self.upsert(client, collection_name, data,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_upsert_data_empty(self):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
error = {ct.err_code: 1, ct.err_msg: f"wrong type of argument 'data',expected 'Dict' or list of 'Dict'"}
|
|
self.upsert(client, collection_name, data="",
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_upsert_data_vector_field_missing(self):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i,
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(10)]
|
|
error = {ct.err_code: 1,
|
|
ct.err_msg: "Insert missed an field `vector` to collection without set nullable==true or set default_value"}
|
|
self.upsert(client, collection_name, data=rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_upsert_data_id_field_missing(self):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(20)]
|
|
error = {ct.err_code: 1,
|
|
ct.err_msg: f"Insert missed an field `id` to collection without set nullable==true or set default_value"}
|
|
self.upsert(client, collection_name, data=rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_upsert_data_extra_field(self):
|
|
"""
|
|
target: test milvus client: insert extra field than schema
|
|
method: insert extra field than schema when enable_dynamic_field is False
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
dim = 32
|
|
self.create_collection(client, collection_name, dim, enable_dynamic_field=False)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(10)]
|
|
error = {ct.err_code: 1,
|
|
ct.err_msg: f"Attempt to insert an unexpected field `float` to collection without enabling dynamic field"}
|
|
self.upsert(client, collection_name, data=rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_upsert_data_dim_not_match(self):
|
|
"""
|
|
target: test milvus client: insert extra field than schema
|
|
method: insert extra field than schema when enable_dynamic_field is False
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [
|
|
{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim + 1))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 65536, ct.err_msg: f"of float data should divide the dim({default_dim})"}
|
|
self.upsert(client, collection_name, data=rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_upsert_not_matched_data(self):
|
|
"""
|
|
target: test milvus client: insert not matched data then defined
|
|
method: insert string to int primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [
|
|
{default_primary_key_field_name: str(i), default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 1,
|
|
ct.err_msg: "The Input data type is inconsistent with defined schema, {id} field should be a int64"}
|
|
self.upsert(client, collection_name, data=rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("partition_name", ["12 s", "(mn)", "中文", "%$#", " "])
|
|
def test_milvus_client_upsert_invalid_partition_name(self, partition_name):
|
|
"""
|
|
target: test milvus client: insert extra field than schema
|
|
method: insert extra field than schema when enable_dynamic_field is False
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 65535, ct.err_msg: f"Invalid partition name: {partition_name}"}
|
|
if partition_name == " ":
|
|
error = {ct.err_code: 1, ct.err_msg: f"Invalid partition name: . Partition name should not be empty."}
|
|
self.upsert(client, collection_name, data=rows, partition_name=partition_name,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_upsert_not_exist_partition_name(self):
|
|
"""
|
|
target: test milvus client: insert extra field than schema
|
|
method: insert extra field than schema when enable_dynamic_field is False
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
partition_name = cf.gen_unique_str("partition_not_exist")
|
|
error = {ct.err_code: 200, ct.err_msg: f"partition not found[partition={partition_name}]"}
|
|
self.upsert(client, collection_name, data=rows, partition_name=partition_name,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_upsert_collection_partition_not_match(self):
|
|
"""
|
|
target: test milvus client: insert extra field than schema
|
|
method: insert extra field than schema when enable_dynamic_field is False
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
another_collection_name = cf.gen_unique_str(prefix + "another")
|
|
partition_name = cf.gen_unique_str("partition")
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
self.create_collection(client, another_collection_name, default_dim)
|
|
self.create_partition(client, another_collection_name, partition_name)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 200, ct.err_msg: f"partition not found[partition={partition_name}]"}
|
|
self.upsert(client, collection_name, data=rows, partition_name=partition_name,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("nullable", [True, False])
|
|
def test_milvus_client_insert_array_element_null(self, nullable):
|
|
"""
|
|
target: test search with null expression on each key of json
|
|
method: create connection, collection, insert and search
|
|
expected: raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
dim = 5
|
|
# 1. create collection
|
|
nullable_field_name = "nullable_field"
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.VARCHAR, max_length=64, is_primary=True,
|
|
auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=dim)
|
|
schema.add_field(nullable_field_name, DataType.ARRAY, element_type=DataType.INT64, max_capacity=12,
|
|
max_length=64, nullable=nullable)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_vector_field_name, metric_type="COSINE")
|
|
self.create_collection(client, collection_name, dimension=dim, schema=schema, index_params=index_params)
|
|
# 2. insert
|
|
vectors = cf.gen_vectors(default_nb, dim)
|
|
rows = [{default_primary_key_field_name: str(i), default_vector_field_name: vectors[i],
|
|
nullable_field_name: [None, 2, 3]} for i in range(default_nb)]
|
|
error = {ct.err_code: 1,
|
|
ct.err_msg: "The Input data type is inconsistent with defined schema, {nullable_field} field "
|
|
"should be a array, but got a {<class 'list'>} instead."}
|
|
self.insert(client, collection_name, rows,
|
|
check_task=CheckTasks.err_res,
|
|
check_items=error)
|
|
|
|
|
|
class TestMilvusClientUpsertValid(TestMilvusClientV2Base):
|
|
""" Test case of search interface """
|
|
|
|
@pytest.fixture(scope="function", params=[False, True])
|
|
def auto_id(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(scope="function", params=["COSINE", "L2"])
|
|
def metric_type(self, request):
|
|
yield request.param
|
|
|
|
"""
|
|
******************************************************************
|
|
# The following are valid base cases
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_milvus_client_upsert_default(self):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
collections = self.list_collections(client)[0]
|
|
assert collection_name in collections
|
|
self.describe_collection(client, collection_name,
|
|
check_task=CheckTasks.check_describe_collection_property,
|
|
check_items={"collection_name": collection_name,
|
|
"dim": default_dim,
|
|
"consistency_level": 0})
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
results = self.upsert(client, collection_name, rows)[0]
|
|
assert results['upsert_count'] == default_nb
|
|
# 3. search
|
|
vectors_to_search = rng.random((1, default_dim))
|
|
insert_ids = [i for i in range(default_nb)]
|
|
self.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"limit": default_limit})
|
|
# 4. query
|
|
self.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"with_vec": True,
|
|
"primary_field": default_primary_key_field_name})
|
|
self.release_collection(client, collection_name)
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_upsert_empty_data(self):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
rows = []
|
|
results = self.upsert(client, collection_name, rows)[0]
|
|
assert results['upsert_count'] == 0
|
|
# 3. search
|
|
rng = np.random.default_rng(seed=19530)
|
|
vectors_to_search = rng.random((1, default_dim))
|
|
self.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": [],
|
|
"limit": 0})
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_upsert_partition(self):
|
|
"""
|
|
target: test fast create collection normal case
|
|
method: create collection
|
|
expected: create collection with default schema, index, and load successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
partition_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. create partition
|
|
self.create_partition(client, collection_name, partition_name)
|
|
partitions = self.list_partitions(client, collection_name)[0]
|
|
assert partition_name in partitions
|
|
index = self.list_indexes(client, collection_name)[0]
|
|
assert index == ['vector']
|
|
# load_state = self.get_load_state(collection_name)[0]
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
# 3. upsert to default partition
|
|
results = self.upsert(client, collection_name, rows, partition_name=partitions[0])[0]
|
|
assert results['upsert_count'] == default_nb
|
|
# 4. upsert to non-default partition
|
|
results = self.upsert(client, collection_name, rows, partition_name=partition_name)[0]
|
|
assert results['upsert_count'] == default_nb
|
|
# 5. search
|
|
vectors_to_search = rng.random((1, default_dim))
|
|
insert_ids = [i for i in range(default_nb)]
|
|
self.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"limit": default_limit})
|
|
# partition_number = self.get_partition_stats(client, collection_name, "_default")[0]
|
|
# assert partition_number == default_nb
|
|
# partition_number = self.get_partition_stats(client, collection_name, partition_name)[0]
|
|
# assert partition_number[0]['value'] == 0
|
|
if self.has_partition(client, collection_name, partition_name)[0]:
|
|
self.release_partitions(client, collection_name, partition_name)
|
|
self.drop_partition(client, collection_name, partition_name)
|
|
if self.has_collection(client, collection_name)[0]:
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_insert_upsert(self):
|
|
"""
|
|
target: test fast create collection normal case
|
|
method: create collection
|
|
expected: create collection with default schema, index, and load successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
partition_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. create partition
|
|
self.create_partition(client, collection_name, partition_name)
|
|
partitions = self.list_partitions(client, collection_name)[0]
|
|
assert partition_name in partitions
|
|
index = self.list_indexes(client, collection_name)[0]
|
|
assert index == ['vector']
|
|
# load_state = self.get_load_state(collection_name)[0]
|
|
# 3. insert and upsert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
results = self.insert(client, collection_name, rows, partition_name=partition_name)[0]
|
|
assert results['insert_count'] == default_nb
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, "new_diff_str_field": str(i)} for i in range(default_nb)]
|
|
results = self.upsert(client, collection_name, rows, partition_name=partition_name)[0]
|
|
assert results['upsert_count'] == default_nb
|
|
# 3. search
|
|
vectors_to_search = rng.random((1, default_dim))
|
|
insert_ids = [i for i in range(default_nb)]
|
|
self.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"limit": default_limit})
|
|
if self.has_partition(client, collection_name, partition_name)[0]:
|
|
self.release_partitions(client, collection_name, partition_name)
|
|
self.drop_partition(client, collection_name, partition_name)
|
|
if self.has_collection(client, collection_name)[0]:
|
|
self.drop_collection(client, collection_name)
|
|
|
|
|
|
class TestMilvusClientInsertJsonPathIndexValid(TestMilvusClientV2Base):
|
|
""" Test case of insert interface """
|
|
|
|
@pytest.fixture(scope="function", params=["INVERTED"])
|
|
def supported_varchar_scalar_index(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(scope="function", params=["DOUBLE", "VARCHAR", "BOOL", "Double", "Varchar", "Bool"])
|
|
def supported_json_cast_type(self, request):
|
|
yield request.param
|
|
|
|
"""
|
|
******************************************************************
|
|
# The following are valid base cases
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("enable_dynamic_field", [True, False])
|
|
def test_milvus_client_insert_before_json_path_index(self, enable_dynamic_field, supported_json_cast_type,
|
|
supported_varchar_scalar_index):
|
|
"""
|
|
target: test insert and then create json path index
|
|
method: create json path index after insert
|
|
steps: 1. create schema
|
|
2. create collection
|
|
3. insert
|
|
4. prepare json path index params with parameter "json_cast_type" and "json_path"
|
|
5. create index
|
|
expected: insert and create json path index successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
json_field_name = "my_json"
|
|
schema = self.create_schema(client, enable_dynamic_field=enable_dynamic_field)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_string_field_name, DataType.VARCHAR, max_length=64)
|
|
if not enable_dynamic_field:
|
|
schema.add_field(json_field_name, DataType.JSON)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_vector_field_name, metric_type="COSINE")
|
|
self.create_collection(client, collection_name, schema=schema, index_params=index_params)
|
|
# 2. insert with different data distribution
|
|
vectors = cf.gen_vectors(default_nb+50, default_dim)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: {'a': {"b": i}}} for i in
|
|
range(default_nb)]
|
|
self.insert(client, collection_name, rows)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: i} for i in
|
|
range(default_nb, default_nb+10)]
|
|
self.insert(client, collection_name, rows)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: {}} for i in
|
|
range(default_nb+10, default_nb+20)]
|
|
self.insert(client, collection_name, rows)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: {'a': [1, 2, 3]}} for i in
|
|
range(default_nb + 20, default_nb + 30)]
|
|
self.insert(client, collection_name, rows)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: {'a': [{'b': 1}, 2, 3]}} for i in
|
|
range(default_nb + 20, default_nb + 30)]
|
|
self.insert(client, collection_name, rows)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: {'a': [{'b': None}, 2, 3]}} for i in
|
|
range(default_nb + 30, default_nb + 40)]
|
|
self.insert(client, collection_name, rows)
|
|
# 2. prepare index params
|
|
index_name = "json_index"
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(field_name=default_vector_field_name, index_type="AUTOINDEX", metric_type="COSINE")
|
|
index_params.add_index(field_name=json_field_name, index_name=index_name, index_type=supported_varchar_scalar_index,
|
|
params={"json_cast_type": supported_json_cast_type, "json_path": f"{json_field_name}['a']['b']"})
|
|
index_params.add_index(field_name=json_field_name, index_name=index_name + '1',
|
|
index_type=supported_varchar_scalar_index,
|
|
params={"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a']"})
|
|
index_params.add_index(field_name=json_field_name, index_name=index_name + '2',
|
|
index_type=supported_varchar_scalar_index,
|
|
params={"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}"})
|
|
index_params.add_index(field_name=json_field_name, index_name=index_name + '3',
|
|
index_type=supported_varchar_scalar_index,
|
|
params={"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a'][0]['b']"})
|
|
index_params.add_index(field_name=json_field_name, index_name=index_name + '4',
|
|
index_type=supported_varchar_scalar_index,
|
|
params={"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a'][0]"})
|
|
# 3. create index
|
|
self.create_index(client, collection_name, index_params)
|
|
self.describe_index(client, collection_name, index_name,
|
|
check_task=CheckTasks.check_describe_index_property,
|
|
check_items={
|
|
"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a']['b']",
|
|
"index_type": supported_varchar_scalar_index,
|
|
"field_name": json_field_name,
|
|
"index_name": index_name})
|
|
self.describe_index(client, collection_name, index_name + '1',
|
|
check_task=CheckTasks.check_describe_index_property,
|
|
check_items={
|
|
"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a']",
|
|
"index_type": supported_varchar_scalar_index,
|
|
"field_name": json_field_name,
|
|
"index_name": index_name + '1'})
|
|
self.describe_index(client, collection_name, index_name +'2',
|
|
check_task=CheckTasks.check_describe_index_property,
|
|
check_items={
|
|
"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}",
|
|
"index_type": supported_varchar_scalar_index,
|
|
"field_name": json_field_name,
|
|
"index_name": index_name + '2'})
|
|
self.describe_index(client, collection_name, index_name + '3',
|
|
check_task=CheckTasks.check_describe_index_property,
|
|
check_items={
|
|
"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a'][0]['b']",
|
|
"index_type": supported_varchar_scalar_index,
|
|
"field_name": json_field_name,
|
|
"index_name": index_name + '3'})
|
|
self.describe_index(client, collection_name, index_name + '4',
|
|
check_task=CheckTasks.check_describe_index_property,
|
|
check_items={
|
|
"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a'][0]",
|
|
"index_type": supported_varchar_scalar_index,
|
|
"field_name": json_field_name,
|
|
"index_name": index_name + '4'})
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("enable_dynamic_field", [True, False])
|
|
def test_milvus_client_insert_after_json_path_index(self, enable_dynamic_field, supported_json_cast_type,
|
|
supported_varchar_scalar_index):
|
|
"""
|
|
target: test insert after create json path index
|
|
method: create json path index after insert
|
|
steps: 1. create schema
|
|
2. create all the index parameters including json path index
|
|
3. create collection with schema and index params
|
|
4. insert
|
|
5. check the index
|
|
expected: insert successfully after create json path index
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection with schema and all the index parameters
|
|
json_field_name = "my_json"
|
|
schema = self.create_schema(client, enable_dynamic_field=enable_dynamic_field)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_string_field_name, DataType.VARCHAR, max_length=64)
|
|
if not enable_dynamic_field:
|
|
schema.add_field(json_field_name, DataType.JSON)
|
|
index_name = "json_index"
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_vector_field_name, metric_type="COSINE")
|
|
index_params.add_index(field_name=json_field_name, index_name=index_name, index_type=supported_varchar_scalar_index,
|
|
params={"json_cast_type": supported_json_cast_type, "json_path": f"{json_field_name}['a']['b']"})
|
|
index_params.add_index(field_name=json_field_name, index_name=index_name + '1',
|
|
index_type=supported_varchar_scalar_index,
|
|
params={"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a']"})
|
|
index_params.add_index(field_name=json_field_name, index_name=index_name + '2',
|
|
index_type=supported_varchar_scalar_index,
|
|
params={"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}"})
|
|
index_params.add_index(field_name=json_field_name, index_name=index_name + '3',
|
|
index_type=supported_varchar_scalar_index,
|
|
params={"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a'][0]['b']"})
|
|
index_params.add_index(field_name=json_field_name, index_name=index_name + '4',
|
|
index_type=supported_varchar_scalar_index,
|
|
params={"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a'][0]"})
|
|
self.create_collection(client, collection_name, schema=schema, index_params=index_params)
|
|
# 2. insert with different data distribution
|
|
vectors = cf.gen_vectors(default_nb+50, default_dim)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: {'a': {"b": i}}} for i in
|
|
range(default_nb)]
|
|
self.insert(client, collection_name, rows)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: i} for i in
|
|
range(default_nb, default_nb+10)]
|
|
self.insert(client, collection_name, rows)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: {}} for i in
|
|
range(default_nb+10, default_nb+20)]
|
|
self.insert(client, collection_name, rows)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: {'a': [1, 2, 3]}} for i in
|
|
range(default_nb + 20, default_nb + 30)]
|
|
self.insert(client, collection_name, rows)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: {'a': [{'b': 1}, 2, 3]}} for i in
|
|
range(default_nb + 20, default_nb + 30)]
|
|
self.insert(client, collection_name, rows)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: {'a': [{'b': None}, 2, 3]}} for i in
|
|
range(default_nb + 30, default_nb + 40)]
|
|
self.insert(client, collection_name, rows)
|
|
# 3. check the json path index
|
|
self.describe_index(client, collection_name, index_name,
|
|
check_task=CheckTasks.check_describe_index_property,
|
|
check_items={
|
|
"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a']['b']",
|
|
"index_type": supported_varchar_scalar_index,
|
|
"field_name": json_field_name,
|
|
"index_name": index_name})
|
|
self.describe_index(client, collection_name, index_name + '1',
|
|
check_task=CheckTasks.check_describe_index_property,
|
|
check_items={
|
|
"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a']",
|
|
"index_type": supported_varchar_scalar_index,
|
|
"field_name": json_field_name,
|
|
"index_name": index_name + '1'})
|
|
self.describe_index(client, collection_name, index_name +'2',
|
|
check_task=CheckTasks.check_describe_index_property,
|
|
check_items={
|
|
"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}",
|
|
"index_type": supported_varchar_scalar_index,
|
|
"field_name": json_field_name,
|
|
"index_name": index_name + '2'})
|
|
self.describe_index(client, collection_name, index_name + '3',
|
|
check_task=CheckTasks.check_describe_index_property,
|
|
check_items={
|
|
"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a'][0]['b']",
|
|
"index_type": supported_varchar_scalar_index,
|
|
"field_name": json_field_name,
|
|
"index_name": index_name + '3'})
|
|
self.describe_index(client, collection_name, index_name + '4',
|
|
check_task=CheckTasks.check_describe_index_property,
|
|
check_items={
|
|
"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a'][0]",
|
|
"index_type": supported_varchar_scalar_index,
|
|
"field_name": json_field_name,
|
|
"index_name": index_name + '4'})
|
|
|
|
|
|
|
|
|