mirror of
https://gitee.com/milvus-io/milvus.git
synced 2025-12-08 10:08:42 +08:00
Issue: #22837 Move and rename following C++ APIs: datatype_sizeof() ==> GetDataTypeSize() datatype_name() ==> GetDataTypeName() datatype_is_vector() / IsVectorType() ==> IsVectorDataType() datatype_is_variable() ==> IsVariableDataType() datatype_is_sparse_vector() ==> IsSparseFloatVectorDataType() datatype_is_string() / IsString() ==> IsDataTypeString() datatype_is_floating() / IsFloat() ==> IsDataTypeFloat() datatype_is_binary() ==> IsDataTypeBinary() datatype_is_json() ==> IsDataTypeJson() datatype_is_array() ==> IsDataTypeArray() datatype_is_variable() == IsDataTypeVariable() datatype_is_integer() / IsIntegral() ==> IsDataTypeInteger() Signed-off-by: Cai Yudong <yudong.cai@zilliz.com>
366 lines
15 KiB
C++
366 lines
15 KiB
C++
// Copyright (C) 2019-2020 Zilliz. All rights reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
|
|
// with the License. You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software distributed under the License
|
|
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
|
|
// or implied. See the License for the specific language governing permissions and limitations under the License
|
|
|
|
#include <string>
|
|
#include <thread>
|
|
|
|
#include "common/EasyAssert.h"
|
|
#include "fmt/format.h"
|
|
#include "index/ScalarIndexSort.h"
|
|
#include "index/StringIndexSort.h"
|
|
|
|
#include "common/SystemProperty.h"
|
|
#include "segcore/FieldIndexing.h"
|
|
#include "index/VectorMemIndex.h"
|
|
#include "IndexConfigGenerator.h"
|
|
|
|
namespace milvus::segcore {
|
|
using std::unique_ptr;
|
|
|
|
VectorFieldIndexing::VectorFieldIndexing(const FieldMeta& field_meta,
|
|
const FieldIndexMeta& field_index_meta,
|
|
int64_t segment_max_row_count,
|
|
const SegcoreConfig& segcore_config)
|
|
: FieldIndexing(field_meta, segcore_config),
|
|
built_(false),
|
|
sync_with_index_(false),
|
|
config_(std::make_unique<VecIndexConfig>(segment_max_row_count,
|
|
field_index_meta,
|
|
segcore_config,
|
|
SegmentType::Growing)) {
|
|
recreate_index();
|
|
}
|
|
|
|
void
|
|
VectorFieldIndexing::recreate_index() {
|
|
index_ = std::make_unique<index::VectorMemIndex<float>>(
|
|
config_->GetIndexType(),
|
|
config_->GetMetricType(),
|
|
knowhere::Version::GetCurrentVersion().VersionNumber());
|
|
}
|
|
|
|
void
|
|
VectorFieldIndexing::BuildIndexRange(int64_t ack_beg,
|
|
int64_t ack_end,
|
|
const VectorBase* vec_base) {
|
|
// No BuildIndexRange support for sparse vector.
|
|
AssertInfo(field_meta_.get_data_type() == DataType::VECTOR_FLOAT,
|
|
"Data type of vector field is not VECTOR_FLOAT");
|
|
auto dim = field_meta_.get_dim();
|
|
|
|
auto source = dynamic_cast<const ConcurrentVector<FloatVector>*>(vec_base);
|
|
AssertInfo(source, "vec_base can't cast to ConcurrentVector type");
|
|
auto num_chunk = source->num_chunk();
|
|
AssertInfo(ack_end <= num_chunk, "ack_end is bigger than num_chunk");
|
|
auto conf = get_build_params();
|
|
data_.grow_to_at_least(ack_end);
|
|
for (int chunk_id = ack_beg; chunk_id < ack_end; chunk_id++) {
|
|
const auto& chunk = source->get_chunk(chunk_id);
|
|
auto indexing = std::make_unique<index::VectorMemIndex<float>>(
|
|
knowhere::IndexEnum::INDEX_FAISS_IVFFLAT,
|
|
knowhere::metric::L2,
|
|
knowhere::Version::GetCurrentVersion().VersionNumber());
|
|
auto dataset = knowhere::GenDataSet(
|
|
source->get_size_per_chunk(), dim, chunk.data());
|
|
indexing->BuildWithDataset(dataset, conf);
|
|
data_[chunk_id] = std::move(indexing);
|
|
}
|
|
}
|
|
|
|
// for sparse float vector:
|
|
// * element_size is not used
|
|
// * output_raw pooints at a milvus::schema::proto::SparseFloatArray.
|
|
void
|
|
VectorFieldIndexing::GetDataFromIndex(const int64_t* seg_offsets,
|
|
int64_t count,
|
|
int64_t element_size,
|
|
void* output) {
|
|
auto ids_ds = std::make_shared<knowhere::DataSet>();
|
|
ids_ds->SetRows(count);
|
|
ids_ds->SetDim(1);
|
|
ids_ds->SetIds(seg_offsets);
|
|
ids_ds->SetIsOwner(false);
|
|
if (field_meta_.get_data_type() == DataType::VECTOR_SPARSE_FLOAT) {
|
|
auto vector = index_->GetSparseVector(ids_ds);
|
|
SparseRowsToProto(
|
|
[vec_ptr = vector.get()](size_t i) { return vec_ptr + i; },
|
|
count,
|
|
reinterpret_cast<milvus::proto::schema::SparseFloatArray*>(output));
|
|
} else {
|
|
auto vector = index_->GetVector(ids_ds);
|
|
std::memcpy(output, vector.data(), count * element_size);
|
|
}
|
|
}
|
|
|
|
void
|
|
VectorFieldIndexing::AppendSegmentIndexSparse(int64_t reserved_offset,
|
|
int64_t size,
|
|
int64_t new_data_dim,
|
|
const VectorBase* field_raw_data,
|
|
const void* data_source) {
|
|
auto conf = get_build_params();
|
|
auto source = dynamic_cast<const ConcurrentVector<SparseFloatVector>*>(
|
|
field_raw_data);
|
|
AssertInfo(source,
|
|
"field_raw_data can't cast to "
|
|
"ConcurrentVector<SparseFloatVector> type");
|
|
AssertInfo(size > 0, "append 0 sparse rows to index is not allowed");
|
|
if (!built_) {
|
|
AssertInfo(!sync_with_index_, "index marked synced before built");
|
|
idx_t total_rows = reserved_offset + size;
|
|
idx_t chunk_id = 0;
|
|
auto dim = source->Dim();
|
|
|
|
while (total_rows > 0) {
|
|
auto mat = static_cast<const knowhere::sparse::SparseRow<float>*>(
|
|
source->get_chunk_data(chunk_id));
|
|
auto rows = std::min(source->get_size_per_chunk(), total_rows);
|
|
auto dataset = knowhere::GenDataSet(rows, dim, mat);
|
|
dataset->SetIsSparse(true);
|
|
try {
|
|
if (chunk_id == 0) {
|
|
index_->BuildWithDataset(dataset, conf);
|
|
} else {
|
|
index_->AddWithDataset(dataset, conf);
|
|
}
|
|
} catch (SegcoreError& error) {
|
|
LOG_ERROR("growing sparse index build error: {}", error.what());
|
|
recreate_index();
|
|
index_cur_ = 0;
|
|
return;
|
|
}
|
|
index_cur_.fetch_add(rows);
|
|
total_rows -= rows;
|
|
chunk_id++;
|
|
}
|
|
built_ = true;
|
|
sync_with_index_ = true;
|
|
// if not built_, new rows in data_source have already been added to
|
|
// source(ConcurrentVector<SparseFloatVector>) and thus added to the
|
|
// index, thus no need to add again.
|
|
return;
|
|
}
|
|
|
|
auto dataset = knowhere::GenDataSet(size, new_data_dim, data_source);
|
|
dataset->SetIsSparse(true);
|
|
index_->AddWithDataset(dataset, conf);
|
|
index_cur_.fetch_add(size);
|
|
}
|
|
|
|
void
|
|
VectorFieldIndexing::AppendSegmentIndexDense(int64_t reserved_offset,
|
|
int64_t size,
|
|
const VectorBase* field_raw_data,
|
|
const void* data_source) {
|
|
AssertInfo(field_meta_.get_data_type() == DataType::VECTOR_FLOAT,
|
|
"Data type of vector field is not VECTOR_FLOAT");
|
|
auto dim = field_meta_.get_dim();
|
|
auto conf = get_build_params();
|
|
auto source =
|
|
dynamic_cast<const ConcurrentVector<FloatVector>*>(field_raw_data);
|
|
|
|
auto size_per_chunk = source->get_size_per_chunk();
|
|
//append vector [vector_id_beg, vector_id_end] into index
|
|
//build index [vector_id_beg, build_threshold) when index not exist
|
|
if (!built_) {
|
|
idx_t vector_id_beg = index_cur_.load();
|
|
Assert(vector_id_beg == 0);
|
|
idx_t vector_id_end = get_build_threshold() - 1;
|
|
auto chunk_id_beg = vector_id_beg / size_per_chunk;
|
|
auto chunk_id_end = vector_id_end / size_per_chunk;
|
|
|
|
int64_t vec_num = vector_id_end - vector_id_beg + 1;
|
|
// for train index
|
|
const void* data_addr;
|
|
unique_ptr<float[]> vec_data;
|
|
//all train data in one chunk
|
|
if (chunk_id_beg == chunk_id_end) {
|
|
data_addr = field_raw_data->get_chunk_data(chunk_id_beg);
|
|
} else {
|
|
//merge data from multiple chunks together
|
|
vec_data = std::make_unique<float[]>(vec_num * dim);
|
|
int64_t offset = 0;
|
|
//copy vector data [vector_id_beg, vector_id_end]
|
|
for (int chunk_id = chunk_id_beg; chunk_id <= chunk_id_end;
|
|
chunk_id++) {
|
|
int chunk_offset = 0;
|
|
int chunk_copysz =
|
|
chunk_id == chunk_id_end
|
|
? vector_id_end - chunk_id * size_per_chunk + 1
|
|
: size_per_chunk;
|
|
std::memcpy(
|
|
vec_data.get() + offset * dim,
|
|
(const float*)field_raw_data->get_chunk_data(chunk_id) +
|
|
chunk_offset * dim,
|
|
chunk_copysz * dim * sizeof(float));
|
|
offset += chunk_copysz;
|
|
}
|
|
data_addr = vec_data.get();
|
|
}
|
|
auto dataset = knowhere::GenDataSet(vec_num, dim, data_addr);
|
|
dataset->SetIsOwner(false);
|
|
try {
|
|
index_->BuildWithDataset(dataset, conf);
|
|
} catch (SegcoreError& error) {
|
|
LOG_ERROR("growing index build error: {}", error.what());
|
|
recreate_index();
|
|
return;
|
|
}
|
|
index_cur_.fetch_add(vec_num);
|
|
built_ = true;
|
|
}
|
|
//append rest data when index has built
|
|
idx_t vector_id_beg = index_cur_.load();
|
|
idx_t vector_id_end = reserved_offset + size - 1;
|
|
auto chunk_id_beg = vector_id_beg / size_per_chunk;
|
|
auto chunk_id_end = vector_id_end / size_per_chunk;
|
|
int64_t vec_num = vector_id_end - vector_id_beg + 1;
|
|
|
|
if (vec_num <= 0) {
|
|
sync_with_index_.store(true);
|
|
return;
|
|
}
|
|
|
|
if (sync_with_index_.load()) {
|
|
Assert(size == vec_num);
|
|
auto dataset = knowhere::GenDataSet(vec_num, dim, data_source);
|
|
index_->AddWithDataset(dataset, conf);
|
|
index_cur_.fetch_add(vec_num);
|
|
} else {
|
|
for (int chunk_id = chunk_id_beg; chunk_id <= chunk_id_end;
|
|
chunk_id++) {
|
|
int chunk_offset = chunk_id == chunk_id_beg
|
|
? index_cur_ - chunk_id * size_per_chunk
|
|
: 0;
|
|
int chunk_sz =
|
|
chunk_id == chunk_id_end
|
|
? vector_id_end % size_per_chunk - chunk_offset + 1
|
|
: size_per_chunk - chunk_offset;
|
|
auto dataset = knowhere::GenDataSet(
|
|
chunk_sz,
|
|
dim,
|
|
(const float*)source->get_chunk_data(chunk_id) +
|
|
chunk_offset * dim);
|
|
index_->AddWithDataset(dataset, conf);
|
|
index_cur_.fetch_add(chunk_sz);
|
|
}
|
|
sync_with_index_.store(true);
|
|
}
|
|
}
|
|
|
|
knowhere::Json
|
|
VectorFieldIndexing::get_build_params() const {
|
|
auto config = config_->GetBuildBaseParams();
|
|
if (!IsSparseFloatVectorDataType(field_meta_.get_data_type())) {
|
|
config[knowhere::meta::DIM] = std::to_string(field_meta_.get_dim());
|
|
}
|
|
config[knowhere::meta::NUM_BUILD_THREAD] = std::to_string(1);
|
|
// for sparse float vector: drop_ratio_build config is not allowed to be set
|
|
// on growing segment index.
|
|
return config;
|
|
}
|
|
|
|
SearchInfo
|
|
VectorFieldIndexing::get_search_params(const SearchInfo& searchInfo) const {
|
|
auto conf = config_->GetSearchConf(searchInfo);
|
|
return conf;
|
|
}
|
|
|
|
bool
|
|
VectorFieldIndexing::sync_data_with_index() const {
|
|
return sync_with_index_.load();
|
|
}
|
|
|
|
bool
|
|
VectorFieldIndexing::has_raw_data() const {
|
|
return index_->HasRawData();
|
|
}
|
|
|
|
template <typename T>
|
|
void
|
|
ScalarFieldIndexing<T>::BuildIndexRange(int64_t ack_beg,
|
|
int64_t ack_end,
|
|
const VectorBase* vec_base) {
|
|
auto source = dynamic_cast<const ConcurrentVector<T>*>(vec_base);
|
|
AssertInfo(source, "vec_base can't cast to ConcurrentVector type");
|
|
auto num_chunk = source->num_chunk();
|
|
AssertInfo(ack_end <= num_chunk, "Ack_end is bigger than num_chunk");
|
|
data_.grow_to_at_least(ack_end);
|
|
for (int chunk_id = ack_beg; chunk_id < ack_end; chunk_id++) {
|
|
const auto& chunk = source->get_chunk(chunk_id);
|
|
// build index for chunk
|
|
// TODO
|
|
if constexpr (std::is_same_v<T, std::string>) {
|
|
auto indexing = index::CreateStringIndexSort();
|
|
indexing->Build(vec_base->get_size_per_chunk(), chunk.data());
|
|
data_[chunk_id] = std::move(indexing);
|
|
} else {
|
|
auto indexing = index::CreateScalarIndexSort<T>();
|
|
indexing->Build(vec_base->get_size_per_chunk(), chunk.data());
|
|
data_[chunk_id] = std::move(indexing);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::unique_ptr<FieldIndexing>
|
|
CreateIndex(const FieldMeta& field_meta,
|
|
const FieldIndexMeta& field_index_meta,
|
|
int64_t segment_max_row_count,
|
|
const SegcoreConfig& segcore_config) {
|
|
if (field_meta.is_vector()) {
|
|
if (field_meta.get_data_type() == DataType::VECTOR_FLOAT ||
|
|
field_meta.get_data_type() == DataType::VECTOR_FLOAT16 ||
|
|
field_meta.get_data_type() == DataType::VECTOR_BFLOAT16 ||
|
|
field_meta.get_data_type() == DataType::VECTOR_SPARSE_FLOAT) {
|
|
return std::make_unique<VectorFieldIndexing>(field_meta,
|
|
field_index_meta,
|
|
segment_max_row_count,
|
|
segcore_config);
|
|
} else {
|
|
PanicInfo(DataTypeInvalid,
|
|
fmt::format("unsupported vector type in index: {}",
|
|
field_meta.get_data_type()));
|
|
}
|
|
}
|
|
switch (field_meta.get_data_type()) {
|
|
case DataType::BOOL:
|
|
return std::make_unique<ScalarFieldIndexing<bool>>(field_meta,
|
|
segcore_config);
|
|
case DataType::INT8:
|
|
return std::make_unique<ScalarFieldIndexing<int8_t>>(
|
|
field_meta, segcore_config);
|
|
case DataType::INT16:
|
|
return std::make_unique<ScalarFieldIndexing<int16_t>>(
|
|
field_meta, segcore_config);
|
|
case DataType::INT32:
|
|
return std::make_unique<ScalarFieldIndexing<int32_t>>(
|
|
field_meta, segcore_config);
|
|
case DataType::INT64:
|
|
return std::make_unique<ScalarFieldIndexing<int64_t>>(
|
|
field_meta, segcore_config);
|
|
case DataType::FLOAT:
|
|
return std::make_unique<ScalarFieldIndexing<float>>(field_meta,
|
|
segcore_config);
|
|
case DataType::DOUBLE:
|
|
return std::make_unique<ScalarFieldIndexing<double>>(
|
|
field_meta, segcore_config);
|
|
case DataType::VARCHAR:
|
|
return std::make_unique<ScalarFieldIndexing<std::string>>(
|
|
field_meta, segcore_config);
|
|
default:
|
|
PanicInfo(DataTypeInvalid,
|
|
fmt::format("unsupported scalar type in index: {}",
|
|
field_meta.get_data_type()));
|
|
}
|
|
}
|
|
|
|
} // namespace milvus::segcore
|