milvus/internal/core/src/common/FieldData.h
Buqian Zheng 070dfc77bf
feat: [Sparse Float Vector] segcore basics and index building (#30357)
This commit adds sparse float vector support to segcore with the
following:

1. data type enum declarations
2. Adds corresponding data structures for handling sparse float vectors
in various scenarios, including:
* FieldData as a bridge between the binlog and the in memory data
structures
* mmap::Column as the in memory representation of a sparse float vector
column of a sealed segment;
* ConcurrentVector as the in memory representation of a sparse float
vector of a growing segment which supports inserts.
3. Adds logic in payload reader/writer to serialize/deserialize from/to
binlog
4. Adds the ability to allow the index node to build sparse float vector
index
5. Adds the ability to allow the query node to build growing index for
growing segment and temp index for sealed segment without index built

This commit also includes some code cleanness, comment improvement, and
some unit tests for sparse vector.

https://github.com/milvus-io/milvus/issues/29419

Signed-off-by: Buqian Zheng <zhengbuqian@gmail.com>
2024-03-11 14:45:02 +08:00

139 lines
4.4 KiB
C++

// Licensed to the LF AI & Data foundation under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <memory>
#include <oneapi/tbb/concurrent_queue.h>
#include "common/FieldDataInterface.h"
#include "common/Channel.h"
namespace milvus {
template <typename Type>
class FieldData : public FieldDataImpl<Type, true> {
public:
static_assert(IsScalar<Type> || std::is_same_v<Type, PkType>);
explicit FieldData(DataType data_type, int64_t buffered_num_rows = 0)
: FieldDataImpl<Type, true>::FieldDataImpl(
1, data_type, buffered_num_rows) {
}
static_assert(IsScalar<Type> || std::is_same_v<Type, PkType>);
explicit FieldData(DataType data_type, FixedVector<Type>&& inner_data)
: FieldDataImpl<Type, true>::FieldDataImpl(
1, data_type, std::move(inner_data)) {
}
};
template <>
class FieldData<std::string> : public FieldDataStringImpl {
public:
static_assert(IsScalar<std::string> || std::is_same_v<std::string, PkType>);
explicit FieldData(DataType data_type, int64_t buffered_num_rows = 0)
: FieldDataStringImpl(data_type, buffered_num_rows) {
}
};
template <>
class FieldData<Json> : public FieldDataJsonImpl {
public:
static_assert(IsScalar<std::string> || std::is_same_v<std::string, PkType>);
explicit FieldData(DataType data_type, int64_t buffered_num_rows = 0)
: FieldDataJsonImpl(data_type, buffered_num_rows) {
}
};
template <>
class FieldData<Array> : public FieldDataArrayImpl {
public:
static_assert(IsScalar<Array> || std::is_same_v<std::string, PkType>);
explicit FieldData(DataType data_type, int64_t buffered_num_rows = 0)
: FieldDataArrayImpl(data_type, buffered_num_rows) {
}
};
template <>
class FieldData<FloatVector> : public FieldDataImpl<float, false> {
public:
explicit FieldData(int64_t dim,
DataType data_type,
int64_t buffered_num_rows = 0)
: FieldDataImpl<float, false>::FieldDataImpl(
dim, data_type, buffered_num_rows) {
}
};
template <>
class FieldData<BinaryVector> : public FieldDataImpl<uint8_t, false> {
public:
explicit FieldData(int64_t dim,
DataType data_type,
int64_t buffered_num_rows = 0)
: binary_dim_(dim),
FieldDataImpl(dim / 8, data_type, buffered_num_rows) {
Assert(dim % 8 == 0);
}
int64_t
get_dim() const {
return binary_dim_;
}
private:
int64_t binary_dim_;
};
template <>
class FieldData<Float16Vector> : public FieldDataImpl<float16, false> {
public:
explicit FieldData(int64_t dim,
DataType data_type,
int64_t buffered_num_rows = 0)
: FieldDataImpl<float16, false>::FieldDataImpl(
dim, data_type, buffered_num_rows) {
}
};
template <>
class FieldData<BFloat16Vector> : public FieldDataImpl<bfloat16, false> {
public:
explicit FieldData(int64_t dim,
DataType data_type,
int64_t buffered_num_rows = 0)
: FieldDataImpl<bfloat16, false>::FieldDataImpl(
dim, data_type, buffered_num_rows) {
}
};
template <>
class FieldData<SparseFloatVector> : public FieldDataSparseVectorImpl {
public:
explicit FieldData(DataType data_type, int64_t buffered_num_rows = 0)
: FieldDataSparseVectorImpl(data_type, buffered_num_rows) {
}
};
using FieldDataPtr = std::shared_ptr<FieldDataBase>;
using FieldDataChannel = Channel<FieldDataPtr>;
using FieldDataChannelPtr = std::shared_ptr<FieldDataChannel>;
FieldDataPtr
InitScalarFieldData(const DataType& type, int64_t cap_rows);
} // namespace milvus