mirror of
https://gitee.com/milvus-io/milvus.git
synced 2025-12-08 01:58:34 +08:00
Issue: #43872 <fix>: <fix after accidental force pull> Changes to be committed: modified: chaos/checker.py modified: chaos/testcases/test_single_request_operation.py modified: common/common_func.py modified: common/common_type.py modified: milvus_client/test_milvus_client_insert.py This includes e2e cases and chaos checker. All the cases are currently skipped due to partial update feature not ready. 1. test_milvus_client_partial_update_insert_delete_upsert_with_flush(): insert -> delete -> flush -> query -> upsert -> flush -> query 2. test_milvus_client_partial_update_insert_upsert_delete_upsert_flush(): insert -> upsert -> delete -> upsert -> flush -> query 3. test_milvus_client_partial_update_insert_upsert_flush_delete_upsert_flush(): insert -> upsert -> flush -> delete -> upsert -> flush -> query Also update requirements.txt to use latest pymilvus version --------- Signed-off-by: Eric Hou <eric.hou@zilliz.com> Co-authored-by: Eric Hou <eric.hou@zilliz.com>
2553 lines
136 KiB
Python
2553 lines
136 KiB
Python
import pytest
|
|
import numpy as np
|
|
|
|
from base.client_v2_base import TestMilvusClientV2Base
|
|
from utils.util_log import test_log as log
|
|
from common import common_func as cf
|
|
from common import common_type as ct
|
|
from common.common_type import CaseLabel, CheckTasks
|
|
from utils.util_pymilvus import *
|
|
|
|
prefix = "client_insert"
|
|
epsilon = ct.epsilon
|
|
default_nb = ct.default_nb
|
|
default_nb_medium = ct.default_nb_medium
|
|
default_nq = ct.default_nq
|
|
default_dim = ct.default_dim
|
|
default_limit = ct.default_limit
|
|
default_search_exp = "id >= 0"
|
|
exp_res = "exp_res"
|
|
default_search_string_exp = "varchar >= \"0\""
|
|
default_search_mix_exp = "int64 >= 0 && varchar >= \"0\""
|
|
default_invaild_string_exp = "varchar >= 0"
|
|
default_json_search_exp = "json_field[\"number\"] >= 0"
|
|
perfix_expr = 'varchar like "0%"'
|
|
default_search_field = ct.default_float_vec_field_name
|
|
default_search_params = ct.default_search_params
|
|
default_primary_key_field_name = "id"
|
|
default_vector_field_name = "vector"
|
|
default_dynamic_field_name = "field_new"
|
|
default_float_field_name = ct.default_float_field_name
|
|
default_bool_field_name = ct.default_bool_field_name
|
|
default_string_field_name = ct.default_string_field_name
|
|
default_int32_array_field_name = ct.default_int32_array_field_name
|
|
default_string_array_field_name = ct.default_string_array_field_name
|
|
default_int32_field_name = ct.default_int32_field_name
|
|
default_int32_value = ct.default_int32_value
|
|
|
|
class TestMilvusClientInsertInvalid(TestMilvusClientV2Base):
|
|
""" Test case of search interface """
|
|
|
|
@pytest.fixture(scope="function", params=[False, True])
|
|
def auto_id(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(scope="function", params=["COSINE", "L2"])
|
|
def metric_type(self, request):
|
|
yield request.param
|
|
|
|
"""
|
|
******************************************************************
|
|
# The following are invalid base cases
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.skip(reason="pymilvus issue 1883")
|
|
def test_milvus_client_insert_column_data(self):
|
|
"""
|
|
target: test insert column data
|
|
method: create connection, collection, insert and search
|
|
expected: raise error
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
# 2. insert
|
|
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nb)]
|
|
data = [[i for i in range(default_nb)], vectors]
|
|
error = {ct.err_code: 1, ct.err_msg: "Unexpected error, message=<'list' object has no attribute 'items'"}
|
|
self.insert(client, collection_name, data,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_insert_empty_collection_name(self):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = ""
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 1, ct.err_msg: f"`collection_name` value {collection_name} is illegal"}
|
|
self.insert(client, collection_name, rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("collection_name", ["12-s", "12 s", "(mn)", "中文", "%$#"])
|
|
def test_milvus_client_insert_invalid_collection_name(self, collection_name):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 1100, ct.err_msg: f"Invalid collection name: {collection_name}. the first character of a "
|
|
f"collection name must be an underscore or letter: invalid parameter"}
|
|
self.insert(client, collection_name, rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_insert_collection_name_over_max_length(self):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = "a".join("a" for i in range(256))
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 1100, ct.err_msg: f"the length of a collection name must be less than 255 characters"}
|
|
self.insert(client, collection_name, rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_insert_not_exist_collection_name(self):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str("insert_not_exist")
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 100, ct.err_msg: f"can't find collection[database=default][collection={collection_name}]"}
|
|
self.insert(client, collection_name, rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
@pytest.mark.parametrize("data", ["12-s", "12 s", "(mn)", "中文", "%$#", " ", ""])
|
|
def test_milvus_client_insert_data_invalid_type(self, data):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
error = {ct.err_code: 999,
|
|
ct.err_msg: "wrong type of argument 'data',expected 'Dict' or list of 'Dict', got 'str'"}
|
|
self.insert(client, collection_name, data,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_insert_data_vector_field_missing(self):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i,
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 1,
|
|
ct.err_msg: f"Insert missed an field `vector` to collection "
|
|
f"without set nullable==true or set default_value"}
|
|
self.insert(client, collection_name, data=rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_insert_data_id_field_missing(self):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 1,
|
|
ct.err_msg: f"Insert missed an field `id` to collection without set nullable==true or set default_value"}
|
|
self.insert(client, collection_name, data=rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_insert_data_extra_field(self):
|
|
"""
|
|
target: test milvus client: insert extra field than schema
|
|
method: insert extra field than schema when enable_dynamic_field is False
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, enable_dynamic_field=False)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 1,
|
|
ct.err_msg: f"Attempt to insert an unexpected field `float` to collection without enabling dynamic field"}
|
|
self.insert(client, collection_name, data=rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_insert_data_dim_not_match(self):
|
|
"""
|
|
target: test milvus client: insert extra field than schema
|
|
method: insert extra field than schema when enable_dynamic_field is False
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [
|
|
{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim + 1))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 65536, ct.err_msg: f"of float data should divide the dim({default_dim})"}
|
|
self.insert(client, collection_name, data=rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_insert_not_matched_data(self):
|
|
"""
|
|
target: test milvus client: insert not matched data then defined
|
|
method: insert string to int primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [
|
|
{default_primary_key_field_name: str(i), default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 1,
|
|
ct.err_msg: f"The Input data type is inconsistent with defined schema, "
|
|
f"{{id}} field should be a int64"}
|
|
self.insert(client, collection_name, data=rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("partition_name", ["12 s", "(mn)", "中文", "%$#", " "])
|
|
def test_milvus_client_insert_invalid_partition_name(self, partition_name):
|
|
"""
|
|
target: test milvus client: insert extra field than schema
|
|
method: insert extra field than schema when enable_dynamic_field is False
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 65535, ct.err_msg: f"Invalid partition name: {partition_name}."}
|
|
if partition_name == " ":
|
|
error = {ct.err_code: 1, ct.err_msg: f"Invalid partition name: . Partition name should not be empty."}
|
|
self.insert(client, collection_name, data=rows, partition_name=partition_name,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_insert_not_exist_partition_name(self):
|
|
"""
|
|
target: test milvus client: insert extra field than schema
|
|
method: insert extra field than schema when enable_dynamic_field is False
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
partition_name = cf.gen_unique_str("partition_not_exist")
|
|
error = {ct.err_code: 200, ct.err_msg: f"partition not found[partition={partition_name}]"}
|
|
self.insert(client, collection_name, data=rows, partition_name=partition_name,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_insert_collection_partition_not_match(self):
|
|
"""
|
|
target: test milvus client: insert extra field than schema
|
|
method: insert extra field than schema when enable_dynamic_field is False
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
another_collection_name = cf.gen_unique_str(prefix + "another")
|
|
partition_name = cf.gen_unique_str("partition")
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
self.create_collection(client, another_collection_name, default_dim)
|
|
self.create_partition(client, another_collection_name, partition_name)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 200, ct.err_msg: f"partition not found[partition={partition_name}]"}
|
|
self.insert(client, collection_name, data=rows, partition_name=partition_name,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
|
|
class TestMilvusClientInsertValid(TestMilvusClientV2Base):
|
|
""" Test case of search interface """
|
|
|
|
@pytest.fixture(scope="function", params=[False, True])
|
|
def auto_id(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(scope="function", params=["COSINE", "L2"])
|
|
def metric_type(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(scope="function", params=[True, False])
|
|
def nullable(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(scope="function", params=[DataType.FLOAT_VECTOR, DataType.FLOAT16_VECTOR,
|
|
DataType.BFLOAT16_VECTOR, DataType.INT8_VECTOR])
|
|
def vector_type(self, request):
|
|
yield request.param
|
|
|
|
"""
|
|
******************************************************************
|
|
# The following are valid base cases
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_milvus_client_insert_default(self, vector_type, nullable):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
dim = 8
|
|
# 1. create collection
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, max_length=64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, vector_type, dim=dim)
|
|
schema.add_field(default_string_field_name, DataType.VARCHAR, max_length=64, is_partition_key=True)
|
|
schema.add_field(default_float_field_name, DataType.FLOAT, nullable=nullable)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_vector_field_name, metric_type="COSINE")
|
|
self.create_collection(client, collection_name, dimension=dim, schema=schema, index_params=index_params)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
vectors = cf.gen_vectors(default_nb, dim, vector_data_type=vector_type)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
results = self.insert(client, collection_name, rows)[0]
|
|
assert results['insert_count'] == default_nb
|
|
# 3. search
|
|
vectors_to_search = [vectors[0]]
|
|
insert_ids = [i for i in range(default_nb)]
|
|
self.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"limit": default_limit,
|
|
"pk_name": default_primary_key_field_name})
|
|
# 4. query
|
|
self.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name,
|
|
"vector_type": vector_type})
|
|
self.release_collection(client, collection_name)
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_insert_different_fields(self):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
collections = self.list_collections(client)[0]
|
|
assert collection_name in collections
|
|
self.describe_collection(client, collection_name,
|
|
check_task=CheckTasks.check_describe_collection_property,
|
|
check_items={"collection_name": collection_name,
|
|
"dim": default_dim,
|
|
"consistency_level": 0})
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
results = self.insert(client, collection_name, rows)[0]
|
|
assert results['insert_count'] == default_nb
|
|
# 3. insert diff fields
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, "new_diff_str_field": str(i)} for i in range(default_nb)]
|
|
results = self.insert(client, collection_name, rows)[0]
|
|
assert results['insert_count'] == default_nb
|
|
# 3. search
|
|
vectors_to_search = rng.random((1, default_dim))
|
|
insert_ids = [i for i in range(default_nb)]
|
|
self.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"limit": default_limit,
|
|
"pk_name": default_primary_key_field_name})
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_insert_empty_data(self):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
rows = []
|
|
results = self.insert(client, collection_name, rows)[0]
|
|
assert results['insert_count'] == 0
|
|
# 3. search
|
|
rng = np.random.default_rng(seed=19530)
|
|
vectors_to_search = rng.random((1, default_dim))
|
|
self.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": [],
|
|
"pk_name": default_primary_key_field_name,
|
|
"limit": 0})
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_insert_partition(self):
|
|
"""
|
|
target: test fast create collection normal case
|
|
method: create collection
|
|
expected: create collection with default schema, index, and load successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
partition_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. create partition
|
|
self.create_partition(client, collection_name, partition_name)
|
|
partitions = self.list_partitions(client, collection_name)[0]
|
|
assert partition_name in partitions
|
|
index = self.list_indexes(client, collection_name)[0]
|
|
assert index == ['vector']
|
|
# load_state = self.get_load_state(collection_name)[0]
|
|
# 3. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
results = self.insert(client, collection_name, rows, partition_name=partition_name)[0]
|
|
assert results['insert_count'] == default_nb
|
|
# 3. search
|
|
vectors_to_search = rng.random((1, default_dim))
|
|
insert_ids = [i for i in range(default_nb)]
|
|
self.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"limit": default_limit,
|
|
"pk_name": default_primary_key_field_name})
|
|
# partition_number = self.get_partition_stats(client, collection_name, "_default")[0]
|
|
# assert partition_number == default_nb
|
|
# partition_number = self.get_partition_stats(client, collection_name, partition_name)[0]
|
|
# assert partition_number[0]['value'] == 0
|
|
if self.has_partition(client, collection_name, partition_name)[0]:
|
|
self.release_partitions(client, collection_name, partition_name)
|
|
self.drop_partition(client, collection_name, partition_name)
|
|
if self.has_collection(client, collection_name)[0]:
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
@pytest.mark.parametrize("default_value", ["a" * 64, "aa"])
|
|
def test_milvus_client_insert_with_added_field(self, default_value):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert, add field, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_collection_name_by_testcase_name()
|
|
dim = 8
|
|
# 1. create collection
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, max_length=64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=dim)
|
|
schema.add_field(default_string_field_name, DataType.VARCHAR, max_length=64, is_partition_key=True)
|
|
schema.add_field(default_float_field_name, DataType.FLOAT, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_vector_field_name, metric_type="COSINE")
|
|
self.create_collection(client, collection_name, dimension=dim, schema=schema, index_params=index_params)
|
|
# 2. insert before add field
|
|
vectors = cf.gen_vectors(default_nb * 2, dim, vector_data_type=DataType.FLOAT_VECTOR)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
results = self.insert(client, collection_name, rows)[0]
|
|
assert results['insert_count'] == default_nb
|
|
# 3. add new field
|
|
self.add_collection_field(client, collection_name, field_name="field_new", data_type=DataType.VARCHAR,
|
|
nullable=True, default_value=default_value, max_length=64)
|
|
vectors_to_search = [vectors[0]]
|
|
insert_ids = [i for i in range(default_nb)]
|
|
# 4. check old dynamic data search is not impacted after add new field
|
|
self.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"pk_name": default_primary_key_field_name,
|
|
"limit": default_limit})
|
|
# 5. insert data(old + new field)
|
|
rows_t = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i),
|
|
"field_new": "field_new"} for i in range(default_nb, default_nb * 2)]
|
|
results = self.insert(client, collection_name, rows_t)[0]
|
|
assert results['insert_count'] == default_nb
|
|
insert_ids_after_add_field = [i for i in range(default_nb, default_nb * 2)]
|
|
# 6. search filtered with the new field
|
|
self.search(client, collection_name, vectors_to_search,
|
|
filter=f'field_new=="{default_value}"',
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"pk_name": default_primary_key_field_name,
|
|
"limit": default_limit})
|
|
self.search(client, collection_name, vectors_to_search,
|
|
filter=f"field_new=='field_new'",
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids_after_add_field,
|
|
"pk_name": default_primary_key_field_name,
|
|
"limit": default_limit})
|
|
self.release_collection(client, collection_name)
|
|
self.drop_collection(client, collection_name)
|
|
|
|
|
|
class TestMilvusClientUpsertInvalid(TestMilvusClientV2Base):
|
|
""" Test case of search interface """
|
|
|
|
@pytest.fixture(scope="function", params=[False, True])
|
|
def auto_id(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(scope="function", params=["COSINE", "L2"])
|
|
def metric_type(self, request):
|
|
yield request.param
|
|
|
|
"""
|
|
******************************************************************
|
|
# The following are invalid base cases
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.skip(reason="pymilvus issue 1883")
|
|
def test_milvus_client_upsert_column_data(self):
|
|
"""
|
|
target: test insert column data
|
|
method: create connection, collection, insert and search
|
|
expected: raise error
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
# 2. insert
|
|
vectors = [[random.random() for _ in range(default_dim)] for _ in range(default_nb)]
|
|
data = [[i for i in range(default_nb)], vectors]
|
|
error = {ct.err_code: 1, ct.err_msg: "Unexpected error, message=<'list' object has no attribute 'items'"}
|
|
self.upsert(client, collection_name, data,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_upsert_empty_collection_name(self):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = ""
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 1, ct.err_msg: f"`collection_name` value {collection_name} is illegal"}
|
|
self.upsert(client, collection_name, rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("collection_name", ["12-s", "12 s", "(mn)", "中文", "%$#"])
|
|
def test_milvus_client_upsert_invalid_collection_name(self, collection_name):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 1100, ct.err_msg: f"Invalid collection name: {collection_name}. the first character of a "
|
|
f"collection name must be an underscore or letter: invalid parameter"}
|
|
self.upsert(client, collection_name, rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_upsert_collection_name_over_max_length(self):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = "a".join("a" for i in range(256))
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 1100, ct.err_msg: f"the length of a collection name must be less than 255 characters"}
|
|
self.upsert(client, collection_name, rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_upsert_not_exist_collection_name(self):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str("insert_not_exist")
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 100, ct.err_msg: f"can't find collection[database=default][collection={collection_name}]"}
|
|
self.upsert(client, collection_name, rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("data", ["12-s", "12 s", "(mn)", "中文", "%$#", " "])
|
|
def test_milvus_client_upsert_data_invalid_type(self, data):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
error = {ct.err_code: 1, ct.err_msg: f"wrong type of argument 'data',expected 'Dict' or list of 'Dict'"}
|
|
self.upsert(client, collection_name, data,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_upsert_data_empty(self):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
error = {ct.err_code: 1, ct.err_msg: f"wrong type of argument 'data',expected 'Dict' or list of 'Dict'"}
|
|
self.upsert(client, collection_name, data="",
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_upsert_data_vector_field_missing(self):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i,
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(10)]
|
|
error = {ct.err_code: 1,
|
|
ct.err_msg: "Insert missed an field `vector` to collection without set nullable==true or set default_value"}
|
|
self.upsert(client, collection_name, data=rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_upsert_data_id_field_missing(self):
|
|
"""
|
|
target: test high level api: client.create_collection
|
|
method: create collection with invalid primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(20)]
|
|
error = {ct.err_code: 1,
|
|
ct.err_msg: f"Insert missed an field `id` to collection without set nullable==true or set default_value"}
|
|
self.upsert(client, collection_name, data=rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_upsert_data_extra_field(self):
|
|
"""
|
|
target: test milvus client: insert extra field than schema
|
|
method: insert extra field than schema when enable_dynamic_field is False
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
dim = 32
|
|
self.create_collection(client, collection_name, dim, enable_dynamic_field=False)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(10)]
|
|
error = {ct.err_code: 1,
|
|
ct.err_msg: f"Attempt to insert an unexpected field `float` to collection without enabling dynamic field"}
|
|
self.upsert(client, collection_name, data=rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_upsert_data_dim_not_match(self):
|
|
"""
|
|
target: test milvus client: insert extra field than schema
|
|
method: insert extra field than schema when enable_dynamic_field is False
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [
|
|
{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim + 1))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 65536, ct.err_msg: f"of float data should divide the dim({default_dim})"}
|
|
self.upsert(client, collection_name, data=rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_upsert_not_matched_data(self):
|
|
"""
|
|
target: test milvus client: insert not matched data then defined
|
|
method: insert string to int primary field
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [
|
|
{default_primary_key_field_name: str(i), default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 1,
|
|
ct.err_msg: "The Input data type is inconsistent with defined schema, {id} field should be a int64"}
|
|
self.upsert(client, collection_name, data=rows,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("partition_name", ["12 s", "(mn)", "中文", "%$#", " "])
|
|
def test_milvus_client_upsert_invalid_partition_name(self, partition_name):
|
|
"""
|
|
target: test milvus client: insert extra field than schema
|
|
method: insert extra field than schema when enable_dynamic_field is False
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 65535, ct.err_msg: f"Invalid partition name: {partition_name}"}
|
|
if partition_name == " ":
|
|
error = {ct.err_code: 1, ct.err_msg: f"Invalid partition name: . Partition name should not be empty."}
|
|
self.upsert(client, collection_name, data=rows, partition_name=partition_name,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_upsert_not_exist_partition_name(self):
|
|
"""
|
|
target: test milvus client: insert extra field than schema
|
|
method: insert extra field than schema when enable_dynamic_field is False
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
partition_name = cf.gen_unique_str("partition_not_exist")
|
|
error = {ct.err_code: 200, ct.err_msg: f"partition not found[partition={partition_name}]"}
|
|
self.upsert(client, collection_name, data=rows, partition_name=partition_name,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_upsert_collection_partition_not_match(self):
|
|
"""
|
|
target: test milvus client: insert extra field than schema
|
|
method: insert extra field than schema when enable_dynamic_field is False
|
|
expected: Raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
another_collection_name = cf.gen_unique_str(prefix + "another")
|
|
partition_name = cf.gen_unique_str("partition")
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim)
|
|
self.create_collection(client, another_collection_name, default_dim)
|
|
self.create_partition(client, another_collection_name, partition_name)
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
error = {ct.err_code: 200, ct.err_msg: f"partition not found[partition={partition_name}]"}
|
|
self.upsert(client, collection_name, data=rows, partition_name=partition_name,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("nullable", [True, False])
|
|
def test_milvus_client_insert_array_element_null(self, nullable):
|
|
"""
|
|
target: test search with null expression on each key of json
|
|
method: create connection, collection, insert and search
|
|
expected: raise exception
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
dim = 5
|
|
# 1. create collection
|
|
nullable_field_name = "nullable_field"
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.VARCHAR, max_length=64, is_primary=True,
|
|
auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=dim)
|
|
schema.add_field(nullable_field_name, DataType.ARRAY, element_type=DataType.INT64, max_capacity=12,
|
|
max_length=64, nullable=nullable)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_vector_field_name, metric_type="COSINE")
|
|
self.create_collection(client, collection_name, dimension=dim, schema=schema, index_params=index_params)
|
|
# 2. insert
|
|
vectors = cf.gen_vectors(default_nb, dim)
|
|
rows = [{default_primary_key_field_name: str(i), default_vector_field_name: vectors[i],
|
|
nullable_field_name: [None, 2, 3]} for i in range(default_nb)]
|
|
error = {ct.err_code: 1,
|
|
ct.err_msg: "The Input data type is inconsistent with defined schema, {nullable_field} field "
|
|
"should be a array, but got a {<class 'list'>} instead."}
|
|
self.insert(client, collection_name, rows,
|
|
check_task=CheckTasks.err_res,
|
|
check_items=error)
|
|
|
|
|
|
class TestMilvusClientUpsertValid(TestMilvusClientV2Base):
|
|
""" Test case of search interface """
|
|
|
|
@pytest.fixture(scope="function", params=[False, True])
|
|
def auto_id(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(scope="function", params=["COSINE", "L2"])
|
|
def metric_type(self, request):
|
|
yield request.param
|
|
|
|
"""
|
|
******************************************************************
|
|
# The following are valid base cases
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_milvus_client_upsert_default(self):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
collections = self.list_collections(client)[0]
|
|
assert collection_name in collections
|
|
self.describe_collection(client, collection_name,
|
|
check_task=CheckTasks.check_describe_collection_property,
|
|
check_items={"collection_name": collection_name,
|
|
"dim": default_dim,
|
|
"consistency_level": 0})
|
|
# 2. insert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
results = self.upsert(client, collection_name, rows)[0]
|
|
assert results['upsert_count'] == default_nb
|
|
# 3. search
|
|
vectors_to_search = rng.random((1, default_dim))
|
|
insert_ids = [i for i in range(default_nb)]
|
|
self.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"limit": default_limit,
|
|
"pk_name": default_primary_key_field_name})
|
|
# 4. query
|
|
self.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})
|
|
self.release_collection(client, collection_name)
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_upsert_empty_data(self):
|
|
"""
|
|
target: test search (high level api) normal case
|
|
method: create connection, collection, insert and search
|
|
expected: search/query successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. insert
|
|
rows = []
|
|
results = self.upsert(client, collection_name, rows)[0]
|
|
assert results['upsert_count'] == 0
|
|
# 3. search
|
|
rng = np.random.default_rng(seed=19530)
|
|
vectors_to_search = rng.random((1, default_dim))
|
|
self.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": [],
|
|
"pk_name": default_primary_key_field_name,
|
|
"limit": 0})
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L2)
|
|
def test_milvus_client_upsert_partition(self):
|
|
"""
|
|
target: test fast create collection normal case
|
|
method: create collection
|
|
expected: create collection with default schema, index, and load successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
partition_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. create partition
|
|
self.create_partition(client, collection_name, partition_name)
|
|
partitions = self.list_partitions(client, collection_name)[0]
|
|
assert partition_name in partitions
|
|
index = self.list_indexes(client, collection_name)[0]
|
|
assert index == ['vector']
|
|
# load_state = self.get_load_state(collection_name)[0]
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
# 3. upsert to default partition
|
|
results = self.upsert(client, collection_name, rows, partition_name=partitions[0])[0]
|
|
assert results['upsert_count'] == default_nb
|
|
# 4. upsert to non-default partition
|
|
results = self.upsert(client, collection_name, rows, partition_name=partition_name)[0]
|
|
assert results['upsert_count'] == default_nb
|
|
# 5. search
|
|
vectors_to_search = rng.random((1, default_dim))
|
|
insert_ids = [i for i in range(default_nb)]
|
|
self.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"limit": default_limit,
|
|
"pk_name": default_primary_key_field_name})
|
|
# partition_number = self.get_partition_stats(client, collection_name, "_default")[0]
|
|
# assert partition_number == default_nb
|
|
# partition_number = self.get_partition_stats(client, collection_name, partition_name)[0]
|
|
# assert partition_number[0]['value'] == 0
|
|
if self.has_partition(client, collection_name, partition_name)[0]:
|
|
self.release_partitions(client, collection_name, partition_name)
|
|
self.drop_partition(client, collection_name, partition_name)
|
|
if self.has_collection(client, collection_name)[0]:
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_insert_upsert(self):
|
|
"""
|
|
target: test fast create collection normal case
|
|
method: create collection
|
|
expected: create collection with default schema, index, and load successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
partition_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
self.create_collection(client, collection_name, default_dim, consistency_level="Strong")
|
|
# 2. create partition
|
|
self.create_partition(client, collection_name, partition_name)
|
|
partitions = self.list_partitions(client, collection_name)[0]
|
|
assert partition_name in partitions
|
|
index = self.list_indexes(client, collection_name)[0]
|
|
assert index == ['vector']
|
|
# load_state = self.get_load_state(collection_name)[0]
|
|
# 3. insert and upsert
|
|
rng = np.random.default_rng(seed=19530)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, default_string_field_name: str(i)} for i in range(default_nb)]
|
|
results = self.insert(client, collection_name, rows, partition_name=partition_name)[0]
|
|
assert results['insert_count'] == default_nb
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: list(rng.random((1, default_dim))[0]),
|
|
default_float_field_name: i * 1.0, "new_diff_str_field": str(i)} for i in range(default_nb)]
|
|
results = self.upsert(client, collection_name, rows, partition_name=partition_name)[0]
|
|
assert results['upsert_count'] == default_nb
|
|
# 3. search
|
|
vectors_to_search = rng.random((1, default_dim))
|
|
insert_ids = [i for i in range(default_nb)]
|
|
self.search(client, collection_name, vectors_to_search,
|
|
check_task=CheckTasks.check_search_results,
|
|
check_items={"enable_milvus_client_api": True,
|
|
"nq": len(vectors_to_search),
|
|
"ids": insert_ids,
|
|
"limit": default_limit,
|
|
"pk_name": default_primary_key_field_name})
|
|
if self.has_partition(client, collection_name, partition_name)[0]:
|
|
self.release_partitions(client, collection_name, partition_name)
|
|
self.drop_partition(client, collection_name, partition_name)
|
|
if self.has_collection(client, collection_name)[0]:
|
|
self.drop_collection(client, collection_name)
|
|
|
|
|
|
class TestMilvusClientInsertJsonPathIndexValid(TestMilvusClientV2Base):
|
|
""" Test case of insert interface """
|
|
|
|
@pytest.fixture(scope="function", params=["INVERTED"])
|
|
def supported_varchar_scalar_index(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(scope="function", params=["BOOL", "Double", "Varchar", "json"])
|
|
def supported_json_cast_type(self, request):
|
|
yield request.param
|
|
|
|
"""
|
|
******************************************************************
|
|
# The following are valid base cases
|
|
******************************************************************
|
|
"""
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("enable_dynamic_field", [True, False])
|
|
def test_milvus_client_insert_before_json_path_index(self, enable_dynamic_field, supported_json_cast_type,
|
|
supported_varchar_scalar_index):
|
|
"""
|
|
target: test insert and then create json path index
|
|
method: create json path index after insert
|
|
steps: 1. create schema
|
|
2. create collection
|
|
3. insert
|
|
4. prepare json path index params with parameter "json_cast_type" and "json_path"
|
|
5. create index
|
|
expected: insert and create json path index successfully
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection
|
|
json_field_name = "my_json"
|
|
schema = self.create_schema(client, enable_dynamic_field=enable_dynamic_field)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_string_field_name, DataType.VARCHAR, max_length=64)
|
|
if not enable_dynamic_field:
|
|
schema.add_field(json_field_name, DataType.JSON)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_vector_field_name, metric_type="COSINE")
|
|
self.create_collection(client, collection_name, schema=schema, index_params=index_params)
|
|
# 2. insert with different data distribution
|
|
vectors = cf.gen_vectors(default_nb+50, default_dim)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: {'a': {"b": i}}} for i in
|
|
range(default_nb)]
|
|
self.insert(client, collection_name, rows)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: i} for i in
|
|
range(default_nb, default_nb+10)]
|
|
self.insert(client, collection_name, rows)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: {}} for i in
|
|
range(default_nb+10, default_nb+20)]
|
|
self.insert(client, collection_name, rows)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: {'a': [1, 2, 3]}} for i in
|
|
range(default_nb + 20, default_nb + 30)]
|
|
self.insert(client, collection_name, rows)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: {'a': [{'b': 1}, 2, 3]}} for i in
|
|
range(default_nb + 20, default_nb + 30)]
|
|
self.insert(client, collection_name, rows)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: {'a': [{'b': None}, 2, 3]}} for i in
|
|
range(default_nb + 30, default_nb + 40)]
|
|
self.insert(client, collection_name, rows)
|
|
# 2. prepare index params
|
|
index_name = "json_index"
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(field_name=default_vector_field_name, index_type="AUTOINDEX", metric_type="COSINE")
|
|
index_params.add_index(field_name=json_field_name, index_name=index_name, index_type=supported_varchar_scalar_index,
|
|
params={"json_cast_type": supported_json_cast_type, "json_path": f"{json_field_name}['a']['b']"})
|
|
index_params.add_index(field_name=json_field_name, index_name=index_name + '1',
|
|
index_type=supported_varchar_scalar_index,
|
|
params={"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a']"})
|
|
index_params.add_index(field_name=json_field_name, index_name=index_name + '2',
|
|
index_type=supported_varchar_scalar_index,
|
|
params={"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}"})
|
|
index_params.add_index(field_name=json_field_name, index_name=index_name + '3',
|
|
index_type=supported_varchar_scalar_index,
|
|
params={"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a'][0]['b']"})
|
|
index_params.add_index(field_name=json_field_name, index_name=index_name + '4',
|
|
index_type=supported_varchar_scalar_index,
|
|
params={"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a'][0]"})
|
|
# 3. create index
|
|
self.create_index(client, collection_name, index_params)
|
|
self.describe_index(client, collection_name, index_name,
|
|
check_task=CheckTasks.check_describe_index_property,
|
|
check_items={
|
|
"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a']['b']",
|
|
"index_type": supported_varchar_scalar_index,
|
|
"field_name": json_field_name,
|
|
"index_name": index_name})
|
|
self.describe_index(client, collection_name, index_name + '1',
|
|
check_task=CheckTasks.check_describe_index_property,
|
|
check_items={
|
|
"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a']",
|
|
"index_type": supported_varchar_scalar_index,
|
|
"field_name": json_field_name,
|
|
"index_name": index_name + '1'})
|
|
self.describe_index(client, collection_name, index_name +'2',
|
|
check_task=CheckTasks.check_describe_index_property,
|
|
check_items={
|
|
"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}",
|
|
"index_type": supported_varchar_scalar_index,
|
|
"field_name": json_field_name,
|
|
"index_name": index_name + '2'})
|
|
self.describe_index(client, collection_name, index_name + '3',
|
|
check_task=CheckTasks.check_describe_index_property,
|
|
check_items={
|
|
"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a'][0]['b']",
|
|
"index_type": supported_varchar_scalar_index,
|
|
"field_name": json_field_name,
|
|
"index_name": index_name + '3'})
|
|
self.describe_index(client, collection_name, index_name + '4',
|
|
check_task=CheckTasks.check_describe_index_property,
|
|
check_items={
|
|
"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a'][0]",
|
|
"index_type": supported_varchar_scalar_index,
|
|
"field_name": json_field_name,
|
|
"index_name": index_name + '4'})
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
@pytest.mark.parametrize("enable_dynamic_field", [True, False])
|
|
def test_milvus_client_insert_after_json_path_index(self, enable_dynamic_field, supported_json_cast_type,
|
|
supported_varchar_scalar_index):
|
|
"""
|
|
target: test insert after create json path index
|
|
method: create json path index after insert
|
|
steps: 1. create schema
|
|
2. create all the index parameters including json path index
|
|
3. create collection with schema and index params
|
|
4. insert
|
|
5. check the index
|
|
expected: insert successfully after create json path index
|
|
"""
|
|
client = self._client()
|
|
collection_name = cf.gen_unique_str(prefix)
|
|
# 1. create collection with schema and all the index parameters
|
|
json_field_name = "my_json"
|
|
schema = self.create_schema(client, enable_dynamic_field=enable_dynamic_field)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_string_field_name, DataType.VARCHAR, max_length=64)
|
|
if not enable_dynamic_field:
|
|
schema.add_field(json_field_name, DataType.JSON)
|
|
index_name = "json_index"
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_vector_field_name, metric_type="COSINE")
|
|
index_params.add_index(field_name=json_field_name, index_name=index_name, index_type=supported_varchar_scalar_index,
|
|
params={"json_cast_type": supported_json_cast_type, "json_path": f"{json_field_name}['a']['b']"})
|
|
index_params.add_index(field_name=json_field_name, index_name=index_name + '1',
|
|
index_type=supported_varchar_scalar_index,
|
|
params={"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a']"})
|
|
index_params.add_index(field_name=json_field_name, index_name=index_name + '2',
|
|
index_type=supported_varchar_scalar_index,
|
|
params={"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}"})
|
|
index_params.add_index(field_name=json_field_name, index_name=index_name + '3',
|
|
index_type=supported_varchar_scalar_index,
|
|
params={"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a'][0]['b']"})
|
|
index_params.add_index(field_name=json_field_name, index_name=index_name + '4',
|
|
index_type=supported_varchar_scalar_index,
|
|
params={"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a'][0]"})
|
|
self.create_collection(client, collection_name, schema=schema, index_params=index_params)
|
|
# 2. insert with different data distribution
|
|
vectors = cf.gen_vectors(default_nb+50, default_dim)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: {'a': {"b": i}}} for i in
|
|
range(default_nb)]
|
|
self.insert(client, collection_name, rows)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: i} for i in
|
|
range(default_nb, default_nb+10)]
|
|
self.insert(client, collection_name, rows)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: {}} for i in
|
|
range(default_nb+10, default_nb+20)]
|
|
self.insert(client, collection_name, rows)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: {'a': [1, 2, 3]}} for i in
|
|
range(default_nb + 20, default_nb + 30)]
|
|
self.insert(client, collection_name, rows)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: {'a': [{'b': 1}, 2, 3]}} for i in
|
|
range(default_nb + 20, default_nb + 30)]
|
|
self.insert(client, collection_name, rows)
|
|
rows = [{default_primary_key_field_name: i, default_vector_field_name: vectors[i],
|
|
default_string_field_name: str(i), json_field_name: {'a': [{'b': None}, 2, 3]}} for i in
|
|
range(default_nb + 30, default_nb + 40)]
|
|
self.insert(client, collection_name, rows)
|
|
# 3. check the json path index
|
|
self.describe_index(client, collection_name, index_name,
|
|
check_task=CheckTasks.check_describe_index_property,
|
|
check_items={
|
|
"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a']['b']",
|
|
"index_type": supported_varchar_scalar_index,
|
|
"field_name": json_field_name,
|
|
"index_name": index_name})
|
|
self.describe_index(client, collection_name, index_name + '1',
|
|
check_task=CheckTasks.check_describe_index_property,
|
|
check_items={
|
|
"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a']",
|
|
"index_type": supported_varchar_scalar_index,
|
|
"field_name": json_field_name,
|
|
"index_name": index_name + '1'})
|
|
self.describe_index(client, collection_name, index_name +'2',
|
|
check_task=CheckTasks.check_describe_index_property,
|
|
check_items={
|
|
"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}",
|
|
"index_type": supported_varchar_scalar_index,
|
|
"field_name": json_field_name,
|
|
"index_name": index_name + '2'})
|
|
self.describe_index(client, collection_name, index_name + '3',
|
|
check_task=CheckTasks.check_describe_index_property,
|
|
check_items={
|
|
"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a'][0]['b']",
|
|
"index_type": supported_varchar_scalar_index,
|
|
"field_name": json_field_name,
|
|
"index_name": index_name + '3'})
|
|
self.describe_index(client, collection_name, index_name + '4',
|
|
check_task=CheckTasks.check_describe_index_property,
|
|
check_items={
|
|
"json_cast_type": supported_json_cast_type,
|
|
"json_path": f"{json_field_name}['a'][0]",
|
|
"index_type": supported_varchar_scalar_index,
|
|
"field_name": json_field_name,
|
|
"index_name": index_name + '4'})
|
|
|
|
|
|
class TestMilvusClientPartialUpdateValid(TestMilvusClientV2Base):
|
|
""" Test case of partial update interface """
|
|
@pytest.fixture(scope="function", params=[False, True])
|
|
def auto_id(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(scope="function", params=["COSINE", "L2"])
|
|
def metric_type(self, request):
|
|
yield request.param
|
|
|
|
"""
|
|
******************************************************************
|
|
# The following are valid base cases
|
|
******************************************************************
|
|
"""
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_milvus_client_partial_update(self):
|
|
"""
|
|
target: test basic function of partial update
|
|
method:
|
|
1. create collection
|
|
2. insert a full row of data using partial update
|
|
3. partial update data
|
|
expected: both step 2 and 3 should be successful
|
|
"""
|
|
# Step 1: create collection
|
|
client = self._client()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_string_field_name, DataType.VARCHAR, max_length=64)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_string_field_name, index_type="AUTOINDEX")
|
|
collection_name = cf.gen_collection_name_by_testcase_name(module_index=1)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# Step 2: insert full rows of data using partial update
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.upsert(client, collection_name, rows, partial_update=True)
|
|
result = self.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: rows,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
assert len(result) == default_nb
|
|
|
|
# Step 3: partial update data
|
|
new_row = cf.gen_row_data_by_schema(nb=default_nb, schema=schema,
|
|
desired_field_names=[default_primary_key_field_name, default_string_field_name])
|
|
self.upsert(client, collection_name, new_row, partial_update=True)
|
|
result = self.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
output_fields=[default_string_field_name],
|
|
check_items={exp_res: new_row,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
assert len(result) == default_nb
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_partial_update_with_all_datatype(self):
|
|
"""
|
|
target: test partial update with all datatype
|
|
method:
|
|
1. create collection with all datatype schema
|
|
2. insert data
|
|
3. partial update data
|
|
expected: both step 2 and 3 should be successful
|
|
"""
|
|
# step 1: create collection with all datatype schema
|
|
client = self._client()
|
|
schema = cf.gen_all_datatype_collection_schema(dim=default_dim)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
text_sparse_emb_field_name = "text_sparse_emb"
|
|
|
|
for i in range(len(schema.fields)):
|
|
field_name = schema.fields[i].name
|
|
if field_name == "json_field":
|
|
index_params.add_index(field_name, index_type="AUTOINDEX",
|
|
params={"json_cast_type": "json"})
|
|
elif field_name == text_sparse_emb_field_name:
|
|
index_params.add_index(field_name, index_type="AUTOINDEX", metric_type="BM25")
|
|
else:
|
|
index_params.add_index(field_name, index_type="AUTOINDEX")
|
|
|
|
collection_name = cf.gen_collection_name_by_testcase_name(module_index=1)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: insert data
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.upsert(client, collection_name, rows, partial_update=True)
|
|
|
|
# step 3: partial update data
|
|
for field in schema.fields:
|
|
if field.is_primary:
|
|
primary_key_field_name = field.name
|
|
break
|
|
|
|
vector_field_type = [DataType.FLOAT16_VECTOR,
|
|
DataType.BFLOAT16_VECTOR,
|
|
DataType.INT8_VECTOR]
|
|
# fields to be updated
|
|
update_fields_name = []
|
|
scalar_update_name = []
|
|
vector_update = [] # this stores field object
|
|
for field in schema.fields:
|
|
field_name = field.name
|
|
if field_name != text_sparse_emb_field_name:
|
|
update_fields_name.append(field_name)
|
|
if field.dtype not in vector_field_type:
|
|
scalar_update_name.append(field_name)
|
|
else:
|
|
vector_update.append(field)
|
|
|
|
# PU scalar fields and vector fields together
|
|
new_rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema,
|
|
desired_field_names=update_fields_name)
|
|
self.upsert(client, collection_name, new_rows, partial_update=True)
|
|
# expected scalar result
|
|
expected = [{field: new_rows[i][field] for field in scalar_update_name}
|
|
for i in range(default_nb)]
|
|
|
|
result = self.query(client, collection_name, filter=f"{primary_key_field_name} >= 0",
|
|
check_task=CheckTasks.check_query_results,
|
|
output_fields=scalar_update_name,
|
|
check_items={exp_res: expected,
|
|
"with_vec": True,
|
|
"pk_name": primary_key_field_name})[0]
|
|
assert len(result) == default_nb
|
|
|
|
# expected vector result
|
|
for field in vector_update:
|
|
expected = [{primary_key_field_name: data[primary_key_field_name],
|
|
field.name: data[field.name]} for data in new_rows]
|
|
result = self.query(client, collection_name, filter=f"{primary_key_field_name} >= 0",
|
|
check_task=CheckTasks.check_query_results,
|
|
output_fields=[field.name],
|
|
check_items={exp_res: expected,
|
|
"with_vec": True,
|
|
"vector_type": field.dtype,
|
|
"vector_field": field.name,
|
|
"pk_name": primary_key_field_name})[0]
|
|
assert len(result) == default_nb
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_partial_update_new_field_with_dynamic_field(self):
|
|
"""
|
|
target: Test PU will success when provided empty data
|
|
method:
|
|
1. Create a collection
|
|
2. partial upsert new field
|
|
expected: Step 2 should result success
|
|
"""
|
|
# step 1: create collection
|
|
client = self._client()
|
|
schema = self.create_schema(client, enable_dynamic_field=True)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
collection_name = cf.gen_collection_name_by_testcase_name(module_index=1)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: partial upsert new field
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.upsert(client, collection_name, rows, partial_update=True)
|
|
new_rows = [{default_primary_key_field_name: i, default_int32_field_name: 99} for i in range(default_nb)]
|
|
self.upsert(client, collection_name, new_rows, partial_update=True)
|
|
|
|
self.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
output_fields=[default_int32_field_name],
|
|
check_items={exp_res: new_rows,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_partial_update_partition(self):
|
|
"""
|
|
target: test PU can successfully update data in a partition
|
|
method:
|
|
1. Create a collection
|
|
2. Insert data into a partition
|
|
3. Partial update data in the partition
|
|
expected: Step 3 should result success
|
|
"""
|
|
# step 1: create collection
|
|
client = self._client()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_int32_field_name, DataType.INT32)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_int32_field_name, index_type="AUTOINDEX")
|
|
collection_name = cf.gen_collection_name_by_testcase_name(module_index=1)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: insert data into a partition
|
|
num_of_partitions = 10
|
|
partition_names = []
|
|
for _ in range(num_of_partitions):
|
|
partition_name = cf.gen_unique_str("partition")
|
|
self.create_partition(client, collection_name, partition_name)
|
|
partition_names.append(partition_name)
|
|
|
|
# step 3: insert data into a partition
|
|
# partition 0: 0, 1, 2, ..., 199
|
|
# partition 1: 200, 201, 202, ..., 399
|
|
# partition 2: 400, 401, 402, ..., 599
|
|
gap = default_nb // num_of_partitions # 200
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
for i, partition in enumerate(partition_names):
|
|
self.upsert(client, collection_name, rows[i*gap:i*gap+gap], partition_name=partition, partial_update=True)
|
|
|
|
# step 4: partial update data in the partition
|
|
# i*200+i = 0, 201, 402, 603, ..., 1809
|
|
new_value = np.int32(99)
|
|
for i, partition_name in enumerate(partition_names):
|
|
new_row = [{default_primary_key_field_name: i*gap+i, default_int32_field_name: new_value}]
|
|
self.upsert(client, collection_name, new_row, partition_name=partition_name, partial_update=True)
|
|
self.query(client, collection_name,
|
|
check_task=CheckTasks.check_query_results,
|
|
partition_names=[partition_name],
|
|
ids = [i*gap+i],
|
|
output_fields=[default_int32_field_name],
|
|
check_items={exp_res: new_row,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})
|
|
|
|
result = self.query(client, collection_name, filter=default_search_exp)[0]
|
|
assert len(result) == default_nb
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_partial_update_partition_insert_update(self):
|
|
"""
|
|
target: test PU can successfully update data in a partition and insert data into a partition
|
|
method:
|
|
1. Create a collection
|
|
2. Insert data into a partitions
|
|
3. Partial update data in the partition
|
|
4. Insert data into a different partition
|
|
expected: Step 3 and 4 should result success
|
|
Visualization:
|
|
rows: [0-------------default_nb]
|
|
new_rows: [extra_nb-------------default_nb+extra_nb]
|
|
they overlap from extra_nb to default_nb
|
|
rows is inserted into partition 0
|
|
new_rows is upserted into partition 0 & 1
|
|
"""
|
|
# step 1: create collection
|
|
client = self._client()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_int32_field_name, DataType.INT32)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_int32_field_name, index_type="AUTOINDEX")
|
|
collection_name = cf.gen_collection_name_by_testcase_name(module_index=1)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: insert data into partitions
|
|
num_of_partitions = 2
|
|
partition_names = []
|
|
for _ in range(num_of_partitions):
|
|
partition_name = cf.gen_unique_str("partition")
|
|
self.create_partition(client, collection_name, partition_name)
|
|
partition_names.append(partition_name)
|
|
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.insert(client, collection_name, rows, partition_name=partition_names[0])
|
|
|
|
# step 3: partial update data in the partition
|
|
extra_nb = default_nb // num_of_partitions
|
|
new_rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema, start=extra_nb)
|
|
|
|
for partition_name in partition_names:
|
|
self.upsert(client, collection_name, new_rows, partition_name=partition_name, partial_update=True)
|
|
result = self.query(client, collection_name,
|
|
check_task=CheckTasks.check_query_results,
|
|
partition_names=[partition_name],
|
|
filter=f"{default_primary_key_field_name} >= {extra_nb}",
|
|
check_items={exp_res: new_rows,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
assert len(result) == default_nb
|
|
|
|
result =self.delete(client, collection_name, partition_names=[partition_name],
|
|
filter=f"{default_primary_key_field_name} >= 0")[0]
|
|
if partition_name == partition_names[0]:
|
|
assert result["delete_count"] == default_nb + extra_nb
|
|
else:
|
|
assert result["delete_count"] == default_nb
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_partial_update_insert_delete_upsert(self):
|
|
"""
|
|
target: Test PU will success and query will success
|
|
method:
|
|
1. Create a collection
|
|
2. Insert rows
|
|
3. Delete the rows
|
|
4. Upsert the rows
|
|
expected: Step 2,3,4 should success
|
|
"""
|
|
client = self._client()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_int32_field_name, DataType.INT32)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_int32_field_name, index_type="AUTOINDEX")
|
|
|
|
collection_name = cf.gen_collection_name_by_testcase_name(module_index=1)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: Insert rows
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
new_rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.insert(client, collection_name, rows)
|
|
|
|
# step 3: Delete the rows
|
|
delete_result = self.delete(client, collection_name, filter=default_search_exp)[0]
|
|
query_result = self.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_nothing)[0]
|
|
|
|
# step 4: Upsert the rows
|
|
self.upsert(client, collection_name, new_rows, partial_update=True)
|
|
result = self.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: new_rows,
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
|
|
assert delete_result["delete_count"] == default_nb
|
|
assert len(query_result) == 0
|
|
assert len(result) == default_nb
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_partial_update_insert_delete_upsert_with_flush(self):
|
|
"""
|
|
target: Test PU will success and query will success
|
|
method:
|
|
1. Create a collection
|
|
2. Insert rows
|
|
3. Delete the 1/2 rows and flush
|
|
4. Upsert the default_nbrows and flush
|
|
5. query the rows
|
|
expected: Step 2-5 should success
|
|
"""
|
|
client = self._client()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_int32_field_name, DataType.INT32)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_int32_field_name, index_type="AUTOINDEX")
|
|
collection_name = cf.gen_collection_name_by_testcase_name(module_index=1)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: Insert rows
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
new_rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.insert(client, collection_name, rows)
|
|
|
|
# step 3: Delete the rows and flush
|
|
delete_result = self.delete(client, collection_name,
|
|
filter=f"{default_primary_key_field_name} < {default_nb//2}")[0]
|
|
self.flush(client, collection_name)
|
|
query_result = self.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_nothing)[0]
|
|
|
|
# step 4: Upsert the rows and flush
|
|
self.upsert(client, collection_name, new_rows, partial_update=True)
|
|
self.flush(client, collection_name)
|
|
|
|
# step 5: query the rows
|
|
result = self.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: new_rows,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
|
|
assert delete_result["delete_count"] == default_nb//2
|
|
assert len(query_result) == default_nb//2
|
|
assert len(result) == default_nb
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_partial_update_insert_upsert_delete_upsert_flush(self):
|
|
"""
|
|
target: Test PU will success and query will success
|
|
method:
|
|
1. Create a collection
|
|
2. Insert rows
|
|
3. Delete the rows and upsert new rows, immediate flush
|
|
4. Query the rows
|
|
expected: Step 2-4 should success
|
|
"""
|
|
client = self._client()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_int32_field_name, DataType.INT32)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_int32_field_name, index_type="AUTOINDEX")
|
|
collection_name = cf.gen_collection_name_by_testcase_name(module_index=1)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: Insert rows
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
new_rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
partial_rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema,
|
|
desired_field_names=[default_primary_key_field_name, default_int32_field_name])
|
|
self.insert(client, collection_name, rows)
|
|
|
|
# step 3: partial update rows then delete 1/2 rows and upsert new rows, flush
|
|
self.upsert(client, collection_name, partial_rows, partial_update=True)
|
|
delete_result = self.delete(client, collection_name,
|
|
filter=f"{default_primary_key_field_name} < {default_nb//2}")[0]
|
|
self.upsert(client, collection_name, new_rows, partial_update=True)
|
|
self.flush(client, collection_name)
|
|
|
|
# step 4: Query the rows
|
|
result = self.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: new_rows,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
|
|
assert delete_result["delete_count"] == default_nb//2
|
|
assert len(result) == default_nb
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_partial_update_insert_upsert_flush_delete_upsert_flush(self):
|
|
"""
|
|
target: Test PU will success and query will success
|
|
method:
|
|
1. Create a collection
|
|
2. Insert rows
|
|
3. Upsert the rows
|
|
4. Delete the rows
|
|
5. Upsert the rows
|
|
6. Flush the collection
|
|
7. Query the rows
|
|
expected: Step 2-7 should success
|
|
"""
|
|
client = self._client()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_int32_field_name, DataType.INT32)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_int32_field_name, index_type="AUTOINDEX")
|
|
collection_name = cf.gen_collection_name_by_testcase_name(module_index=1)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: Insert rows
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
partial_rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema,
|
|
desired_field_names=[default_primary_key_field_name, default_int32_field_name])
|
|
new_rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.insert(client, collection_name, rows)
|
|
|
|
# step 3: Upsert the rows
|
|
upsert_result = self.upsert(client, collection_name, partial_rows, partial_update=True)[0]
|
|
self.flush(client, collection_name)
|
|
|
|
# step 4: Delete the rows
|
|
delete_result = self.delete(client, collection_name,
|
|
filter=f"{default_primary_key_field_name} < {default_nb//2}")[0]
|
|
self.upsert(client, collection_name, new_rows, partial_update=True)
|
|
|
|
# step 5: Flush the collection
|
|
self.flush(client, collection_name)
|
|
|
|
# step 6: Query the rows
|
|
result = self.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
check_items={exp_res: new_rows,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
|
|
assert upsert_result["upsert_count"] == default_nb
|
|
assert delete_result["delete_count"] == default_nb//2
|
|
assert len(result) == default_nb
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
"""
|
|
******************************************************************
|
|
# The following are valid cases for nullable fields
|
|
******************************************************************
|
|
"""
|
|
@pytest.mark.tags(CaseLabel.L0)
|
|
def test_milvus_client_partial_update_nullable_field(self):
|
|
"""
|
|
Target: test PU without nullable field, the field will keep its value
|
|
Method:
|
|
1. Create collection, enable nullable fields.
|
|
2. Insert a row while assigning a value to nullable field (using partial update)
|
|
3. PU nullable field and other fields
|
|
Expected: values should be updated
|
|
"""
|
|
# Step 1: create collection with nullable fields
|
|
client = self._client()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_int32_field_name, DataType.INT32, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_int32_field_name, index_type="AUTOINDEX")
|
|
collection_name = cf.gen_collection_name_by_testcase_name(module_index=1)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# Step 2: insert a row while assigning a value to nullable field
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema, skip_field_names=[default_int32_field_name])
|
|
self.upsert(client, collection_name, rows, partial_update=True)
|
|
|
|
# Step 3: PU other fields
|
|
# Even index: update int32 field to new value
|
|
# Odd index: update vector field to random value
|
|
# also update rows to keep track of changes so we can query the result
|
|
new_value = np.int32(99)
|
|
vector_rows = []
|
|
int32_rows = []
|
|
for i, row in enumerate(rows):
|
|
if i % 2 == 0:
|
|
int32_rows.append({default_primary_key_field_name: row[default_primary_key_field_name],
|
|
default_int32_field_name: new_value})
|
|
rows[i][default_int32_field_name] = new_value
|
|
else:
|
|
new_vector = [random.random() for _ in range(default_dim)]
|
|
vector_rows.append({default_primary_key_field_name: row[default_primary_key_field_name],
|
|
default_vector_field_name: new_vector})
|
|
rows[i][default_vector_field_name] = new_vector
|
|
rows[i][default_int32_field_name] = None
|
|
|
|
self.upsert(client, collection_name, int32_rows, partial_update=True)
|
|
self.upsert(client, collection_name, vector_rows, partial_update=True)
|
|
result = self.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
output_fields=[default_vector_field_name, default_int32_field_name],
|
|
check_items={exp_res: rows,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
assert len(result) == default_nb
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_partial_update_null_to_value(self):
|
|
"""
|
|
Target: test PU can successfully update null to a value
|
|
Method:
|
|
1. Create a collection, enable nullable fields init null
|
|
2. Partial update nullable field
|
|
3. Query null field
|
|
Expected: Nullfield should have the same value as updated
|
|
"""
|
|
# step 1: create collection with nullable fields init null
|
|
client = self._client()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_int32_field_name, DataType.INT32, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_int32_field_name, index_type="AUTOINDEX")
|
|
collection_name = cf.gen_collection_name_by_testcase_name(module_index=1)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema, skip_field_names=[default_int32_field_name])
|
|
self.upsert(client, collection_name, rows, partial_update=True)
|
|
|
|
# step 2: Partial update nullable field
|
|
new_value = np.int32(99)
|
|
new_rows = [{default_primary_key_field_name: row[default_primary_key_field_name],
|
|
default_int32_field_name: new_value} for row in rows]
|
|
self.upsert(client, collection_name, new_rows, partial_update=True)
|
|
|
|
# step 3: Query null field
|
|
#self.load_collection(client, collection_name)
|
|
result = self.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
output_fields=[default_int32_field_name],
|
|
check_items={exp_res: new_rows,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
assert len(result) == default_nb
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_partial_update_default_to_value(self):
|
|
"""
|
|
Target: test PU can successfully update a default to a value
|
|
Method:
|
|
1. Create a collection, enable nullable fields init default value
|
|
2. Partial update nullable field
|
|
3. Query null field
|
|
Expected: Nullfield should have the same value as updated
|
|
"""
|
|
# step 1: create collection with nullable fields init default value
|
|
client = self._client()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_int32_field_name, DataType.INT32, nullable=True, default_value=default_int32_value)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_int32_field_name, index_type="AUTOINDEX")
|
|
collection_name = cf.gen_collection_name_by_testcase_name(module_index=1)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema, skip_field_names=[default_int32_field_name])
|
|
self.upsert(client, collection_name, rows, partial_update=True)
|
|
|
|
# step 2: Partial update nullable field
|
|
new_value = 99
|
|
new_row = [{default_primary_key_field_name: i,
|
|
default_int32_field_name: new_value} for i in range(default_nb)]
|
|
self.upsert(client, collection_name, new_row, partial_update=True)
|
|
|
|
# step 3: Query null field
|
|
result = self.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
output_fields=[default_int32_field_name],
|
|
check_items={exp_res: new_row,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
assert len(result) == default_nb
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_partial_update_value_to_null(self):
|
|
"""
|
|
Target: test PU can successfully update a value to null
|
|
Method:
|
|
1. Create a collection, enable nullable fields init value
|
|
2. Partial update nullable field
|
|
3. Query null field
|
|
Expected: Nullfield should have the same value as updated
|
|
"""
|
|
# step 1: create collection with nullable fields init value
|
|
client = self._client()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_int32_field_name, DataType.INT32, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_int32_field_name, index_type="AUTOINDEX")
|
|
collection_name = cf.gen_collection_name_by_testcase_name(module_index=1)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.upsert(client, collection_name, rows, partial_update=True)
|
|
|
|
# step 2: Partial update nullable field
|
|
new_value = None
|
|
new_row = [{default_primary_key_field_name: i,
|
|
default_int32_field_name: new_value} for i in range(default_nb)]
|
|
self.upsert(client, collection_name, new_row, partial_update=True)
|
|
|
|
# step 3: Query null field
|
|
result = self.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
output_fields=[default_int32_field_name],
|
|
check_items={exp_res: new_row,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
assert len(result) == default_nb
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_partial_update_null_to_null(self):
|
|
"""
|
|
Target: test PU can successfully update a null to null
|
|
Method:
|
|
1. Create a collection, enable nullable fields
|
|
2. Insert default_nb rows to the collection
|
|
3. Partial Update the nullable field with null
|
|
4. Query the collection to check the value of nullable field
|
|
Expected: query should have correct value and number of entities
|
|
"""
|
|
# step 1: create collection with nullable fields
|
|
client = self._client()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_int32_field_name, DataType.INT32, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_int32_field_name, index_type="AUTOINDEX")
|
|
collection_name = cf.gen_collection_name_by_testcase_name(module_index=1)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: insert default_nb rows to the collection
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema, skip_field_names=[default_int32_field_name])
|
|
self.upsert(client, collection_name, rows, partial_update=True)
|
|
|
|
# step 3: Partial Update the nullable field with null
|
|
new_value = None
|
|
new_row = [{default_primary_key_field_name: i,
|
|
default_int32_field_name: new_value} for i in range(default_nb)]
|
|
self.upsert(client, collection_name, new_row, partial_update=True)
|
|
|
|
# step 4: Query the collection to check the value of nullable field
|
|
result = self.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
output_fields=[default_int32_field_name],
|
|
check_items={exp_res: new_row,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
|
|
assert len(result) == default_nb
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_partial_update_various_value_to_nullable_field(self):
|
|
"""
|
|
Target: test PU can successfully update various value to a nullable field
|
|
Method:
|
|
1. Create a collection, enable nullable fields
|
|
2. Insert default_nb rows to the collection
|
|
3. Partial Update the nullable field with various value
|
|
4. Query the collection to check the value of nullable field
|
|
Expected: query should have correct value
|
|
"""
|
|
# step 1: create collection with nullable fields
|
|
client = self._client()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_int32_field_name, DataType.INT32, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_int32_field_name, index_type="AUTOINDEX")
|
|
collection_name = cf.gen_collection_name_by_testcase_name(module_index=1)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: insert default_nb rows to the collection
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema, skip_field_names=[default_int32_field_name])
|
|
self.upsert(client, collection_name, rows, partial_update=True)
|
|
|
|
# step 3: Partial Update the nullable field with various value
|
|
new_value = 99
|
|
new_row = [{default_primary_key_field_name: i,
|
|
default_int32_field_name: new_value if i % 2 == 0 else None}
|
|
for i in range(default_nb)]
|
|
self.upsert(client, collection_name, new_row, partial_update=True)
|
|
|
|
# step 4: Query the collection to check the value of nullable field
|
|
result = self.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_query_results,
|
|
output_fields=[default_int32_field_name],
|
|
check_items={exp_res: new_row,
|
|
"with_vec": True,
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
|
|
assert len(result) == default_nb
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_partial_update_filter_by_null(self):
|
|
"""
|
|
target: Test PU will success and query will success
|
|
method:
|
|
1. Create a collection
|
|
2. partial upsert data with nullable field
|
|
3. Query the collection with filter by nullable field
|
|
4. partial update nullable field back to null
|
|
5. Query the collection with filter by nullable field
|
|
expected: Step 2,3,4,5 should success
|
|
"""
|
|
# step 1: create collection with nullable fields
|
|
client = self._client()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_int32_field_name, DataType.INT32, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_int32_field_name, index_type="AUTOINDEX")
|
|
collection_name = cf.gen_collection_name_by_testcase_name(module_index=1)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: partial upsert data with nullable field
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema, skip_field_names=[default_int32_field_name])
|
|
self.upsert(client, collection_name, rows, partial_update=True)
|
|
result = self.query(client, collection_name, filter=f"{default_int32_field_name} IS NULL",
|
|
check_task=CheckTasks.check_query_results,
|
|
output_fields=[default_vector_field_name],
|
|
check_items={exp_res: rows,
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
assert len(result) == default_nb
|
|
|
|
# update first half of the dataset with nullable field value
|
|
new_value = np.int32(99)
|
|
new_row = [{default_primary_key_field_name: i,
|
|
default_int32_field_name: new_value} for i in range(default_nb//2)]
|
|
self.upsert(client, collection_name, new_row, partial_update=True)
|
|
|
|
# step 3: Query the collection with filter by nullable field
|
|
result = self.query(client, collection_name, filter=f"{default_int32_field_name} IS NOT NULL",
|
|
check_task=CheckTasks.check_query_results,
|
|
output_fields=[default_int32_field_name],
|
|
check_items={exp_res: new_row,
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
assert len(result) == default_nb//2
|
|
# query with == filter
|
|
result = self.query(client, collection_name, filter=f"{default_int32_field_name} == {new_value}",
|
|
check_task=CheckTasks.check_query_results,
|
|
output_fields=[default_int32_field_name],
|
|
check_items={exp_res: new_row,
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
assert len(result) == default_nb//2
|
|
|
|
# step 4: partial update nullable field back to null
|
|
null_row = [{default_primary_key_field_name: i,
|
|
default_int32_field_name: None} for i in range(default_nb)]
|
|
self.upsert(client, collection_name, null_row, partial_update=True)
|
|
|
|
# step 5: Query the collection with filter by nullable field
|
|
result = self.query(client, collection_name, filter=f"{default_int32_field_name} IS NULL",
|
|
check_task=CheckTasks.check_query_results,
|
|
output_fields=[default_int32_field_name],
|
|
check_items={exp_res: null_row,
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
assert len(result) == default_nb
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_partial_update_same_pk_same_field(self):
|
|
"""
|
|
target: Test PU will success and query will success
|
|
method:
|
|
1. Create a collection
|
|
2. Insert rows
|
|
3. Upsert the rows with same pk and same field
|
|
4. Query the rows
|
|
5. Upsert the rows with same pk and different field
|
|
expected: Step 2 -> 4 should success 5 should fail
|
|
"""
|
|
# step 1: create collection
|
|
client = self._client()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_int32_field_name, DataType.INT32, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_int32_field_name, index_type="AUTOINDEX")
|
|
collection_name = cf.gen_collection_name_by_testcase_name(module_index=1)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: Insert rows
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.upsert(client, collection_name, rows, partial_update=True)
|
|
|
|
# step 3: Upsert the rows with same pk and same field
|
|
new_rows = [{default_primary_key_field_name: 0,
|
|
default_int32_field_name: i} for i in range(default_nb)]
|
|
self.upsert(client, collection_name, new_rows, partial_update=True)
|
|
|
|
# step 4: Query the rows
|
|
result = self.query(client, collection_name, filter=f"{default_primary_key_field_name} == 0",
|
|
check_task=CheckTasks.check_query_results,
|
|
output_fields=[default_int32_field_name],
|
|
check_items={exp_res: [new_rows[-1]],
|
|
"pk_name": default_primary_key_field_name})[0]
|
|
assert len(result) == 1
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
|
|
class TestMilvusClientPartialUpdateInvalid(TestMilvusClientV2Base):
|
|
""" Test case of partial update interface """
|
|
@pytest.fixture(scope="function", params=[False, True])
|
|
def auto_id(self, request):
|
|
yield request.param
|
|
|
|
@pytest.fixture(scope="function", params=["COSINE", "L2"])
|
|
def metric_type(self, request):
|
|
yield request.param
|
|
|
|
"""
|
|
******************************************************************
|
|
# The following are invalid base cases
|
|
******************************************************************
|
|
"""
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_partial_update_new_pk_with_missing_field(self):
|
|
"""
|
|
target: Test PU will return error when provided new pk and partial field
|
|
method:
|
|
1. Create a collection
|
|
2. partial upsert a new pk with only partial field
|
|
expected: Step 2 should result fail
|
|
"""
|
|
# step 1: create collection
|
|
client = self._client()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_int32_field_name, DataType.INT32, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_int32_field_name, index_type="AUTOINDEX")
|
|
collection_name = cf.gen_collection_name_by_testcase_name(module_index=1)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: partial upsert a new pk with only partial field
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema,
|
|
desired_field_names=[default_primary_key_field_name, default_int32_field_name])
|
|
error = {ct.err_code: 1100, ct.err_msg:
|
|
f"fieldSchema({default_vector_field_name}) has no corresponding fieldData pass in: invalid parameter"}
|
|
self.upsert(client, collection_name, rows, partial_update=True,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_partial_update_new_field_without_dynamic_field(self):
|
|
"""
|
|
target: Test PU will return error when provided new field without dynamic field
|
|
method:
|
|
1. Create a collection with dynamic field
|
|
2. partial upsert a new field
|
|
expected: Step 2 should result fail
|
|
"""
|
|
# step 1: create collection with dynamic field
|
|
client = self._client()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
collection_name = cf.gen_collection_name_by_testcase_name(module_index=1)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: partial upsert a new field
|
|
row = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.upsert(client, collection_name, row, partial_update=True)
|
|
|
|
new_row = [{default_primary_key_field_name: i, default_int32_field_name: 99} for i in range(default_nb)]
|
|
error = {ct.err_code: 1,
|
|
ct.err_msg: f"Attempt to insert an unexpected field `{default_int32_field_name}` to collection without enabling dynamic field"}
|
|
self.upsert(client, collection_name, new_row, partial_update=True, check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_partial_update_after_release_collection(self):
|
|
"""
|
|
target: test basic function of partial update
|
|
method:
|
|
1. create collection
|
|
2. insert a full row of data using partial update
|
|
3. partial update data
|
|
4. release collection
|
|
5. partial update data
|
|
expected: step 5 should fail
|
|
"""
|
|
# Step 1: create collection
|
|
client = self._client()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_string_field_name, DataType.VARCHAR, max_length=64)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_string_field_name, index_type="AUTOINDEX")
|
|
collection_name = cf.gen_collection_name_by_testcase_name(module_index=1)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# Step 2: insert a full row of data using partial update
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.upsert(client, collection_name, rows, partial_update=True)
|
|
|
|
# Step 3: partial update data
|
|
new_row = cf.gen_row_data_by_schema(nb=default_nb, schema=schema,
|
|
desired_field_names=[default_primary_key_field_name, default_string_field_name])
|
|
self.upsert(client, collection_name, new_row, partial_update=True)
|
|
|
|
# Step 4: release collection
|
|
self.release_collection(client, collection_name)
|
|
|
|
# Step 5: partial update data
|
|
new_row = cf.gen_row_data_by_schema(nb=default_nb, schema=schema,
|
|
desired_field_names=[default_primary_key_field_name, default_string_field_name])
|
|
error = {ct.err_code: 101,
|
|
ct.err_msg: f"failed to query: collection not loaded"}
|
|
self.upsert(client, collection_name, new_row, partial_update=True,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_partial_update_same_pk_after_delete(self):
|
|
"""
|
|
target: test PU will fail when provided same pk and partial field
|
|
method:
|
|
1. Create a collection with dynamic field
|
|
2. Insert rows
|
|
3. delete the rows
|
|
4. upsert the rows with same pk and partial field
|
|
expected: step 4 should fail
|
|
"""
|
|
# Step 1: create collection
|
|
client = self._client()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_int32_field_name, DataType.INT32)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_int32_field_name, index_type="AUTOINDEX")
|
|
collection_name = cf.gen_collection_name_by_testcase_name(module_index=1)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# Step 2: insert rows
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.upsert(client, collection_name, rows, partial_update=True)
|
|
|
|
# Step 3: delete the rows
|
|
result = self.delete(client, collection_name, filter=default_search_exp)[0]
|
|
assert result["delete_count"] == default_nb
|
|
result = self.query(client, collection_name, filter=default_search_exp,
|
|
check_task=CheckTasks.check_nothing)[0]
|
|
assert len(result) == 0
|
|
|
|
# Step 4: upsert the rows with same pk and partial field
|
|
new_rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema,
|
|
desired_field_names=[default_primary_key_field_name, default_vector_field_name])
|
|
error = {ct.err_code: 1100,
|
|
ct.err_msg: f"fieldSchema({default_int32_field_name}) has no corresponding fieldData pass in: invalid parameter"}
|
|
self.upsert(client, collection_name, new_rows, partial_update=True,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_partial_update_pk_in_wrong_partition(self):
|
|
"""
|
|
target: test PU will fail when provided pk in wrong partition
|
|
method:
|
|
1. Create a collection
|
|
2. Create 2 partitions
|
|
3. Insert rows
|
|
4. upsert the rows with pk in wrong partition
|
|
expected: step 4 should fail
|
|
"""
|
|
# Step 1: create collection
|
|
client = self._client()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_int32_field_name, DataType.INT32)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_int32_field_name, index_type="AUTOINDEX")
|
|
collection_name = cf.gen_collection_name_by_testcase_name(module_index=1)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# Step 2: Create 2 partitions
|
|
num_of_partitions = 2
|
|
partition_names = []
|
|
for _ in range(num_of_partitions):
|
|
partition_name = cf.gen_unique_str("partition")
|
|
self.create_partition(client, collection_name, partition_name)
|
|
partition_names.append(partition_name)
|
|
|
|
# Step 3: Insert rows
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
gap = default_nb // num_of_partitions
|
|
for i, partition in enumerate(partition_names):
|
|
self.upsert(client, collection_name, rows[i*gap:(i+1)*gap], partition_name=partition, partial_update=True)
|
|
|
|
# Step 4: upsert the rows with pk in wrong partition
|
|
new_rows = cf.gen_row_data_by_schema(nb=gap, schema=schema,
|
|
desired_field_names=[default_primary_key_field_name, default_vector_field_name])
|
|
error = {ct.err_code: 1100,
|
|
ct.err_msg: f"fieldSchema({default_int32_field_name}) has no corresponding fieldData pass in: invalid parameter"}
|
|
self.upsert(client, collection_name, new_rows, partition_name=partition_names[-1], partial_update=True,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
self.drop_collection(client, collection_name)
|
|
|
|
@pytest.mark.tags(CaseLabel.L1)
|
|
def test_milvus_client_partial_update_same_pk_multiple_fields(self):
|
|
"""
|
|
target: Test PU will success and query will success
|
|
method:
|
|
1. Create a collection
|
|
2. Insert rows
|
|
3. Upsert the rows with same pk and different field
|
|
expected: Step 3 should fail
|
|
"""
|
|
# step 1: create collection
|
|
client = self._client()
|
|
schema = self.create_schema(client, enable_dynamic_field=False)[0]
|
|
schema.add_field(default_primary_key_field_name, DataType.INT64, is_primary=True, auto_id=False)
|
|
schema.add_field(default_vector_field_name, DataType.FLOAT_VECTOR, dim=default_dim)
|
|
schema.add_field(default_int32_field_name, DataType.INT32, nullable=True)
|
|
index_params = self.prepare_index_params(client)[0]
|
|
index_params.add_index(default_primary_key_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_vector_field_name, index_type="AUTOINDEX")
|
|
index_params.add_index(default_int32_field_name, index_type="AUTOINDEX")
|
|
collection_name = cf.gen_collection_name_by_testcase_name(module_index=1)
|
|
self.create_collection(client, collection_name, default_dim, schema=schema,
|
|
consistency_level="Strong", index_params=index_params)
|
|
|
|
# step 2: Insert rows
|
|
rows = cf.gen_row_data_by_schema(nb=default_nb, schema=schema)
|
|
self.upsert(client, collection_name, rows, partial_update=True)
|
|
|
|
# step 3: Upsert the rows with same pk and different field
|
|
new_rows = []
|
|
for i in range(default_nb):
|
|
data = {}
|
|
if i % 2 == 0:
|
|
data[default_int32_field_name] = i + 1000
|
|
data[default_primary_key_field_name] = 0
|
|
else:
|
|
data[default_vector_field_name] = [random.random() for _ in range(default_dim)]
|
|
data[default_primary_key_field_name] = 0
|
|
new_rows.append(data)
|
|
|
|
error = {ct.err_code: 1,
|
|
ct.err_msg: f"The data fields length is inconsistent. previous length is 2000, current length is 1000"}
|
|
self.upsert(client, collection_name, new_rows, partial_update=True,
|
|
check_task=CheckTasks.err_res, check_items=error)
|
|
|
|
self.drop_collection(client, collection_name) |